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Abstract

Stemmers are commonly used in NLP to re-
duce words to their root form. However, this
process may discard important information
and yield incorrect root forms, affecting the ac-
curacy of NLP tasks. To address these limita-
tions, we propose a Contextual Bangla Neural
Stemmer for Bangla language to enhance word
representations. Our method involves split-
ting words into characters within the Neural
Stemming Block, obtaining vector representa-
tions for both stem words and unknown vocab-
ulary words. A loss function aligns these rep-
resentations with Word2Vec representations,
followed by contextual word representations
from a Universal Transformer encoder. Mean
Pooling generates sentence-level representa-
tions that are aligned with BanglaBERT’s rep-
resentations using a MLP layer. The proposed
model also tries to build good representations
for out-of-vocabulary (OOV) words. Experi-
ments with our model on five Bangla datasets
shows around 5% average improvement over
the vanilla approach. Notably, our method
avoids BERT retraining, focusing on root word
detection and addressing OOV and sub-word
issues. By incorporating our approach into a
large corpus-based Language Model, we ex-
pect further improvements in aspects like ex-
plainability.

1 Introduction

Large Language Models (LLMs) like BERT (De-
vlin et al., 2019), GPT (Brown et al., 2020), and
others have proven their efficacy in various Nat-
ural Language Processing (NLP) tasks. They ex-
cel at capturing contextual information and cul-
tural subtleties in specific languages. These mod-
els exhibit strong capabilities for addressing di-
verse NLP tasks, especially during their unsuper-
vised pretraining phase. However, in low resource
language like Bangla, there are so many language
specific problems that haven’t been resolved yet

Method Tokens

Original Text েস বািড়েত যাওয়ার পর আর েযাগােযাগ কেরিন

BanglaBERT Tokenizer [’েস', '[UNK]', '[UNK]', 'পর'

’আর', 'েযাগােযাগ', 'কেরিন']

Bangla Stemmer [েস, 'বািড়', 'যাওয়', 'পর'

’আর', 'েযাগােযাগ', 'কেরিন']

Table 1: The Limitations of Bangla BERT which gives
[UNK] tokens for many informative words of a sen-
tence and Bangla Stemmer sometimes produce a word
with no meaning and also losses the context informa-
tion.

since Bangla language lack comprehensive lexi-
cons, word embeddings, or linguistic resources.
Firstly, there may be a good number of out-of-
vocabulary (OOV) words which may hamper the
NLP tasks. Secondly, in LLMs, tokenizing one
word can result splitting into different subwords
that make the model difficult to explain. In the fol-
lowing paragraphs, we clarify these problems with
examples.
In Table 1, we show an example of Bangla sen-

tence and outputs of the tokenizer of the Bangla
BERT (Bhattacharjee et al., 2022): a BERT model
trained on the Bangla Corpus to demonstrate the
first kind of problems. We can easily see that
the occurrence of OOV tokens represented as
”[UNK]” is very frequent. This significantly im-
pacts the model’s ability to comprehend semantic
and linguistic information in the sentence. One
possible solution to solve the OOV problem is to
find root words.
Second set of problems are observed due to the

use of bangla stemmer/lemmitizer. There aremany
existing way for finding the root words like stem-
ming and lemmitizer. Lemmitizer needs ground
truth word mapping to find the word. On the other
hand, stemming algorithms typically use heuristics
to identify the suffixes of words that can be re-
moved to obtain the root form. However, by re-
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Method Tokens

Original Text নটরেডম, হিলকৰ্স ও িভকারুনিনসা কেলেজ

ভিতর্ হেত পারেব না ধূমপায়ী িশক্ষাথীরা।

BanglaBERT Tokenizer [’নট', '##র', '##েডম', ',', 'হিল', '##কৰ্', '##স', 'ও',

’িভক', '##◌ার', '##◌ুন', '##িন', '##সা','কেলেজ'

’ভিতর্', 'হেত', 'পারেব', 'না', '[UNK]', 'িশক্ষাথীরা' , '।']

Table 2: Subwords Problem in Bangla BERT.

ducing words to their root form, a stemmer dis-
cards important information that could be useful
in natural language processing tasks. In cases of
bangla, a stemmer may reduce a word to an incor-
rect root form, leading to incorrect results. For
example in Table 1, for a given bangla sentence,
the bangla stemmer creates some incorrect roots
that have no vector representations at all. More-
over, LLMs like Bangla-BERT also faces OOV
problem very recurrently because Bangla-Bert to-
kenizer splits a word into one or more subwords.
It has been shown that splitting words into mul-
tiple subwords is not the best option all the time.
There are some cases where this might not work
well (Nayak et al., 2020), (Toraman et al., 2023).
Some words might have a prefix or suffix that
changes the meaning of the word, but BERT’s
subword tokenizer might split it into separate sub-
words. For example, in Table 2, Bangla BERT to-
kenizer splits words into multiple subwords, lead-
ing to a significant increase in the number of sub-
words. This excessive subword splitting makes it
challenging to extract the actual meaning of indi-
vidual words in the sentence, thereby affecting the
overall interpret-ability and comprehensibility of
the model.
Considering the aforementioned limitations of

Rule Based Stemmer, we want to create a Con-
textual Bangla Neural Stemmer for Bangla lan-
guage to find better representation of words. Es-
pecifically, in our proposed method, by splitting
each word of a sentence into characters in Neu-
ral Stemming Block, we will get vector represen-
tation for not only the stem word but also the un-
known vocab word. A loss is used to make sure
that the representations of the words should be
aligned with the Word2Vec representations. Then
after a liner layer transformations those represen-
tations is passed into Universal Transformer (UT)
(Dehghani et al., 2018) encoder to assure of get-
ting contextual representation of a word via self at-
tention. Mean Pooling is used to get a sentence

level representation for a sentence from those con-
textual word representations. A MLP layer is used
and a loss is defined to align the sentence repre-
sentation with the BanglaBERT’s one. The whole
model pipeline is described in Section 3.
Our model employs character-based representa-

tions to find root word representations, which ef-
fectively addresses the issues of OOV tokens and
subword tokenization. By combining these rep-
resentations with BERT, our model is capable of
obtaining contextual representations for these root
words, enhancing its ability to capture the seman-
tic nuances and context of the language. We eval-
uate our model performance in 5 different Bangla
dataset. In every dataset, our model outperforms
the vanilla approach by a good margin (around 5%
improvement on average). More details are de-
scribed in Section 5. Please note that our goal is
not retraining the BERT at all. Instead of retrain-
ing the BERT, our proposedmethod is used finding
the root words with contextual representations and
address OOV & sub-word problem. If we create a
LLM based on our methodology with a large cor-
pus, our methodmay outperform the Vanilla BERT
in different aspects and may improve the explain-
ability also. Therefore, the summary of the contri-
butions of this paper is given below.

• We propose a neural network based stemmer
that can be contextualized

• We propose new losses to learn root word rep-
resentations with contextual information

• We design a number of experiments to show
the efficacy of the proposed appoach

2 Related Work

Finding root words for Bangla word is one of the
most popular tasks in Bangla Natural Language
Processing (NLP). Several works have been done
already. We can categorize those works in two dif-
ferent perspective, one is morphological method
base and another is heuristic base. In morpholog-
ical method based approach for root word finding
Lemmitizer and Stemming are used. In heuris-
tic base, rule base or model base approaches are
used. In (Mahmud et al., 2014), a rule based
stemming technique is used for finding the root
word in Bangla. They use different set of rules
so that they can find the stem word by cutting
down the prefixes. (Das et al., 2020) enhanced
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the rule based stemming techniques by improving
the rules for different categories. They also in-
corporate Bangla Corpus and different inflections
for noun, verb, and other parts of speech. (Rahit
et al., 2018) introduces BanglaNet which is an ap-
proach to make a WordNet for Bangla Language.
(Chakrabarty et al., 2016) uses a single layer Multi
Layer Perceptron MLP for finding the lemmitize
word of a word along with its contextual neigh-
bours. (Chakrabarty and Garain, 2016) uses a dis-
tance based algorithm to find the lemma of a word
with respect to a given context and part of speech
of the word. (Chakrabarty et al., 2017) and (Islam
et al., 2022) propose algorithm to find lemmaword
based on the contextutal representations. The con-
textual representations are derived from Bi-LSTM
or Bi-GRU. No works have been proposed to find
the stemmedword representations from the contex-
tual information.

3 Methodology

The tokenizers that are used in Transformer based
model like BPE, Wordpiece, Unigram split a word
into multiple subwords. This may cause informa-
tion discrepancy between the actual meaning of
the actual word which may affect the low resource
language models like Bangla language model. Be-
sides, there also may have a good amount of out of
vocabulary words in those low resource language
model. One option is to find the root form of the
words but this approach miss the contexutal infor-
mation. Considering all scenarios, we propose a
character based contextual neural stemmer which
not only find the stemmed root word to surpass sub-
word techniques but also give the contextual em-
beddings. For being character based model, our
proposed model can also deal with the out of vo-
cabulary issues. Our model have two major com-
ponents, Character Level Neural Stemming Block,
Universal Transformer Encoding Block along with
two different losses for fulfilling our criteria.

3.1 Character Based Neural Stemmer
After passing a sentence into the Basic Tokenizer,
we get the tokens of the sentence. Let S =
[x1, x2, . . . , xm] represent a sentence, where each
word token xi is split into characters.
For each word token xi, we denote the charac-

ter embeddings as Ci = [c1i, c2i, c3i, . . .], where
cij represents the embedding of the jth character.
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Figure 1: Model Architecture of Neural Stemmer Block

We pass Ci through an LSTM layer, which pro-
duces a sequence of hidden representations Hi =
[h1i, h2i, h3i, . . .]. Each hij represents the hidden
state at time step j.
The LSTM layer takes the character embeddings

as input and generates hidden states using the fol-
lowing equations:

hij = LSTM(cij , hi(j−1)) (1)

Once we have obtained the sequence of hidden
states Hi, we compute the mean of these hidden
states to obtain the word embedding vi:

vi =
1

m

m∑

j=1

hij (2)

Here, m represents the total number of char-
acters in the word token ti. The mean aggrega-
tion operation captures the overall representation
of the word by considering the contextual informa-
tion contained in the LSTM hidden states.
This process allows us to derive word embed-

dings vi from character embeddings, enabling us to
capture fine-grained information and enhance the
representation of word tokens within the given sen-
tence. In this block, we also apply a stemming loss
with the pre-trained Word2Vec representations of
the stemming words. The stemming loss is de-
scribed in Section 3.4.

3.2 Universal Transformer Encoder
After obtaining the neural stemming output V =
[v1, v2, . . . , vm] for a sentence from the Neu-
ral Stemming Block described in Section 3.1,
we perform a linear transformation on each vi
to map them into a d-dimensional vector space.
Now those transformed representations V ′ =
[v′1, v

′
2, . . . , v

′
m], is fed into the Universal Trans-

former (UT) encoder which consists of several UT
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encoder blocks for finding contextual representa-
tions. We choose UT because it is a tied weight
model which also uses Adaptive Computational
Time (ACT). So we need less computational time
for training and fine-tuning the Universal Trans-
former model than the vanilla Transformer model.
The components of the UT encoder blocks are:

3.2.1 Positional Encoding and Time Signal
To incorporate positional and temporal informa-
tion, the combined positional encoding and time
signal embeddings Pt ∈ Rm×d, are applied where
m represents the total number of positions and
d is the dimensionality of the embeddings. The
combined embeddings are obtained by computing
the sinusoidal position and time embeddings sepa-
rately for each vector dimension 1 ≤ j ≤ d and
summing them:

Pt[i, 2j] = sin

(
i

10000(2j/d)

)

+sin

(
t

10000(2j/d)

) (3)

Pt[i, 2j + 1] = cos

(
i

10000(2j/d)

)

+cos

(
t

10000(2j/d)

) (4)

where i represents the position index (1 ≤ i ≤
m), t represents the time-step index (1 ≤ t ≤ T ),
and j represents the vector dimension index (1 ≤
j ≤ d).

3.2.2 Attention Mechanism
At each step t, the UT computes revised represen-
tationsHt ∈ Rm×d for allm input positions. This
is done by applying the scaled dot-product atten-
tion mechanism, which combines queries Q, keys
K, and values V as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V (5)

Here, d is the number of columns of Q, K, and
V . In the Universal Transformer, a multi-head ver-
sion of the attention mechanism is used, with k
heads:

MultiHeadSelfAttention(Ht) = concat(head1,
. . . , headk)×Wo

(6)

Each head headi is calculated as
Attention(HtWQi,HtWKi,HtWV i), where
WQ ∈ Rd×d/k,WK ∈ Rd×d/k, andWV ∈ Rd×d/k

are learned parameter matrices. The output of the
multi-head attention is then transformed using the
weight matrixWo ∈ Rd×d.

3.2.3 Encoder Block Representation
After applying the multi-head self-attention, the
UT computes the revised representations Ht by
combining the attention output At with the previ-
ous representation Ht−1 and the positional encod-
ing and time signal embeddings Pt:

At = LayerNorm((Ht−1 + Pt)

+MultiHeadSelfAttention(Ht−1 + Pt))
(7)

Here, LayerNorm() represents the layer normal-
ization function. Finally, the revised representa-
tions are obtained by applying a transition func-
tion:

Ht = LayerNorm(At + Transition(At)) (8)

The transition function Transition() applies non-
linear transformations to the attention output At

and integrates it with the previous representation.
The resulting revised representations Ht capture
the refined information at step t.
The UT encoder utilizes an iterative computa-

tion process, repeating for a total of T steps. This
iterative process progressively refines the represen-
tations of the input sequence, capturing intricate
dependencies. To determine the number of steps,
the Universal Transformer employs the Adaptive
Computation Time (ACT) mechanism. After un-
dergoing T steps, where each step updates all po-
sitions of the input sequence simultaneously, the
final output of the Universal Transformer encoder
is a matrix HT ∈ Rm×d. This matrix consists of
d-dimensional vector representations for them to-
kens present in the input sequence.
By considering the hidden representation ob-

tained after T iterations, we obtain the contextual
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Figure 2: Model Architecture of Contextual Neural Stemmer Block

embeddings of the word tokens. Denoting the em-
beddings as E = [e1, e2, . . . , em], we can equiva-
lently express E as E = HT . Therefore, the ma-
trix HT represents the contextual embeddings for
the sentence S.

3.3 Mean Pooling

Let E = [e1, e2, . . . , em] be the input se-
quence S with embedding ei ∈ Rd that we
get from the universal transformer encoder block.
The sequence may contain padded values for
equal length. Define the mask vector M =
[mask1,mask2, . . . ,maskm] to indicate valid to-
kens. maski = 1 for valid tokens and 0 for padded
values. The masked mean pooling operation is:

MeanPooling(X,M) =
1∑n

i=1maski

n∑

i=1

maski·ei
(9)

After applying mean pooling to the sentence S, the
sentence-level representation eS from the UT en-
coder are obtained. An MLP (Multi Layer Percp-
tron) is applied to the eS to get the final sentence
level representation eS .

3.4 Stemming Loss
We utilize a loss function called Stemming Loss in
the Neural Stemmer Block, as described in Sec-
tion 3.1. The main objective of this loss is that
the character based representations for the word
tokens should be similar with their word2vec rep-
resentation of their stemmed words. Given a sen-
tence S = [x1, x2, . . . , xm], we feed it into the
neural stemmer block, which generates character-
based representations vi for each word token xi in
the sentence S. Additionally, each token in sen-
tence S is passed through a rule-based stemmer to
obtain the root form, resulting in the stemmed ver-
sion S = [r1, r2, . . . , rm] of the sentence.
Subsequently, we input each root word ri into

a pre-trained word2vec model, which produces a
static embedding ui for the word ri. We didn’t
train the pre-trained word2vec model during train-
ing. To align the predicted embedding vi with the
static embedding ui, we employ Cosine Similarity
based loss as follows:

Stemming_Loss(ui, vi) = 1− ui · vi
∥ui∥∥vi∥

(10)

This loss ensures that the representation from
the Neural Stemmer Block should be aligned
with the stemming representation from pre-trained
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Word2vec. If the word2vec representations of a
stemmed words is not found, we simply ignore the
word while calculating the stemming loss.

3.5 Dissimilarity Loss
During training ourmodel, we also employ another
loss named Cosine Dissimilarity Loss. The objec-
tive to use the loss is that the contextual embed-
dings for a sentence from the UT encoder block
should be aligned with the pre-trained BERT con-
textual embeddings for that sentence. To calculate
the loss, we also feed our input text into the pre-
trained BERT and we get contextual embeddings
for that sentences S, E′ = [e′1, e

′
2, . . . , e

′
m]. We

apply Mean Pooling described in Section 3.3 to
get the sentence level representation e′S from the
pre-trained BERT for sentence S. The pre-trained
BERT model is not trained during the training pro-
cess.
On the other hand, we also get another sentence

level representation eS from UT encoder as de-
scribed in Section 3.3. Then, we apply the cosine
dissimilarity based loss as follows:

Cosine_Dissimilarity(eS , e′S) = 1− eS · e′S
∥eS∥∥e′S∥

(11)

3.6 Model Loss
To obtain high-quality contextual representations
from our model, we rely on the Stemming Loss
(Section 3.4) and cosine dissimilarity (Section 3.5).
The cosine dissimilarity is based on the pretrained
BERT representations, which face challenges such
as the subword problem and out-of-vocabulary
(OOV) problem. To ensure effective training of
our model, we adopt a guided training schema.
In this schema, we prioritize training our model
on samples where the BERT tokenizer yields a
lower number of OOV and subword tokens. Ad-
ditionally, we incorporate a penalty score based
on BERT tokenization techniques when calculat-
ing the final loss. Hence, our final training loss is
defined as:

Loss = γ × Stemming_Loss

+

(
1− a+ b

m

)
× β × Dissimilarity_Loss

(12)
Her, a represent the number of subword tokens,

b denotes the count of unknown ([UNK]) tokens,

and m indicate the total number of tokens. The
weights γ and β determine the contribution of the
stemming loss and cosine dissimilarity loss, re-
spectively, to the main loss.

4 Experimental Setup

4.1 Experimental Design
Our model follows a two-step training process for
each experimental dataset. In the first step, we en-
gage in unsupervised training to learn contextual
representations between words. The primary ob-
jective of this unsupervised training is to transfer
the knowledge from the pre-trained BERT model
to our contextual neural stemmer. In the second
step, we conduct supervised fine-tuning, where we
further train our model in a supervised fashion, fo-
cusing solely on the classification loss. To prior-
itize the development of semantic/contextualized
representations for stemming words only, rather
than building a language model (LM), we opted
not to train our model extensively on a large cor-
pus during the unsupervised training phase.
To identify stemming words in Bangla, a rule-

based stemmer is employed, utilizing the Bangla
Stemmer library. In unsupervised training, we
choose Bangla-NLP Toolkit for find finding rep-
resentations of the stemmed words as Bangla Pre-
trained Word2vec. BanglaBERT (Bhattacharjee
et al., 2022) model is used as pre-trained BERT
algorithm in our model. Bangla-Word2vec pro-
vides 100-dimensional vector representations for
each word. Consequently, we set the character em-
bedding size to 100. For contextualized embed-
ding, we define an embedding dimension of 768
to align with the 768-dimensional word representa-
tions obtained from Bangla BERT. To convert the
100-dimensional vectors to 768 dimensions, we
employ a linear transformation block comprising a
single linear layer. If we don’t have the word2vec
representations of a stemmed word, we neglect the
word representations while calculating Stemming
Loss. We evaluated our model’s performance in
different evaluation metrics like accuracy, macro
f1 score and roc-auc. The details can be found
about at Appendix B.

4.2 Model Training Setup and Training
Scheme

We choose AdamW (Loshchilov and Hutter, 2017)
optimizer for our training where β1 = 0.9 and
β2 = 0.99. Character embedding size is 100 dim

99

https://pypi.org/project/bangla-stemmer/
https://pypi.org/project/bangla-stemmer/
https://pypi.org/project/bnlp-toolkit/


Dataset Experiment Pretraining Performance Metrics
Perplexity Accuracy Macro F1 Weighted F1

Rule Based Stemmer - 88.1 87.2 91.1
BanFake News Neural Stemmer - 90.4 89.6 93.6

CNS 125.51 93.1 92.2 94.8

Rule Based Stemmer - 85.4 45.1 89.9
Sarcasm Detection Neural Stemmer - 87.8 46.0 91.4

CNS 117.47 90.3 48.7 95.6

Rule Based Stemmer - 64.5 60.8 64.1
SentNoB Neural Stemmer - 69.2 62.3 68.8

CNS 134.97 73.3 68.3 72.2

Rule Based Stemmer - 62.5 35.4 61.2
Emotion Detection Neural Stemmer - 64.6 39.7 62.1

CNS 87.38 68.4 40.26 64.41

Rule Based Stemmer - 48.5 31.7 32.4
Sentiment Classification Neural Stemmer - 50.1 32.2 32.8

CNS 103.49 52.3 34.5 35.9

Table 3: Experimental result for CNS in 5 different dataset. In every dataset, 3 different experiments along with CNS are done,
Rule Based Stemmer, Neural Stemmer, and CNS. In every dataset, our CNSmethod outperform rule based stemmer with a good
margin. Here, CNS means the Contextual Neural Stemmer

and contextual word representations has 768 dim
as described in Section 4.1. We use a learning rate
of 2 ∗ 10−5 for unsupervised training and 10−3 for
supervised finetuning. A LSTM (Hochreiter and
Schmidhuber, 1997) based decoder with dropout
of 0.1 while finetuning the model. A batch size
of 32 is used for unsupervised training and 16 for
supervised finetuning. We also experiment with
the different combinations of γ and β and found
that γ = 0.7 and β = 0.5 gives better perfor-
mance most of the cases. All the experiments run
with Python (version 3.8) and Pytorch with free
NVIDIA Tesla K80 GPU in Google Colab and sin-
gle Nvidia Tesla P100 GPU provided by Kaggle.
The training time for both unsupervised and super-
vised varies but on average it takes around 6 mins
on average for training one epoch in unsupervised
training and 4 mins in supervised training.

5 Result and Discussion

5.1 Effects in Different NLP Datasets

To measure the performance of our model, we con-
sider five different Bangla dataset. The dataset
tasks and information are listed in the Appendix

A. In every dataset, we run three different experi-
ment.

• Rule Based Stemmer: In this experiment,
we use a rule based stemmer to find the
stemmed word of a word in a sentence. We
consider the stemmed words as the tokens of
a sentence. Finding the embeddings of the
tokens a single LSTM layer is used to find
contextual representations. We consider last
lstm cell output as sentence representation
and passed it into MLP for classification.

• Neural Stemmer: Instead of rule based
stemmed word, we use Neural Stemmer
Block described in Section 3.1. After finding
neural stemming representations, we passed
them into a single LSTM layer and MLP lay-
ers for classifcation as same as Rule Based
Stemmer.

• CNS: CNS stands for Contextual Neural
Stemmer which is our proposed model as de-
scribed in Figure 2. We use last MLP layer
representations for classification. In every
dataset, we first pretrained our model in un-
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supervised fashion and then finetune it using
classification loss.

Table 3 shows the experimental result in five
different dataset. In every dataset Neural Stem-
mer slightly outperforms the rule based one. This
is because, sometimes the rule-based stemmer re-
sults in the stemmed words which may have no
meaning. In this case, character based word rep-
resentations improves model performance. In ev-
ery dataset, our method surpass both rule based
and neural stemmer based approaches by a good
margin (around 2 - 7% improvement on average in
different metrics). The reason behind this is, the
stemming word (either rule based or neural model
based) losses the contextual and semantic informa-
tion like tense, expression, grammatical context
which are very useful for a model to find a good
representations. CNS captures those information
along with the stemmed word and that’s why our
model surpassed the other methods.

Dataset Name Average Cosine
BanFake News 0.7014

Sarcasm Detection 0.7862
SentNoB 0.6776

Emotion Detection 0.7569
Sentiment Classification 0.7980

Table 4: Average Cosine Similarity fromCNSModel in
Test Sentences between Word2vec of Stemming word
andWord Representations fromNeural Stemmer Layer.

5.2 Preserving the Stemming Words in
Neural Stemmer

Wealso further investigate on howmuch stemming
information are captured by our model. To find
this, we consider the test dataset in aforementioned
datasets. We find the pretrained Word2vec pre-
sentations of the word in text sentences. We find
average cosine similarity between those stemmed
word’s pretrained word2vec representations and
the representations from Neural Stemmer layer.
The results are reported in Table 4. From this ta-
ble we can see our model is able to capture stem-
ming information. By tuning γ we can control how
much stemming information should be captured by
our model.

Dataset Name Average Cosine
BanFake News 0.6572

Sarcasm Detection 0.7284
SentNoB 0.6397

Emotion Detection 0.7128
Sentiment Classification 0.7329

Table 5: Average Cosine Similarity fromCNSModel in
Test Sentences between Token Representations of Pre-
Trained Bangla BERT and Contextual Word Represen-
tations from UT Encoder.

5.3 How Contextualized the Contextual
Neural Stemmer

We were also interested in experimenting how
much contextual information is capturing like
BERT. For doing this we reported two experiment.
For the first one, we average cosine similairties be-
tween the word representations of a sentence of
pretrained Bangla-BERT in the test samples and
the Universal Transformer (UT) encoder represen-
tations from CNS. The results are in Table 5. An-
other experiment is done on the sentence level rep-
resentations. We consider mean of the word rep-
resentations of pretrained model as sentence level
representations and measure a cosine similarities
with MLP representations from CNS in Tabale 6.
From this experiment, we can see that our CNS
model is also able to capture contextual informa-
tion.

Dataset Name Average Cosine
BanFake News 0.9563

Sarcasm Detection 0.9790
SentNoB 0.9227

Emotion Detection 0.9673
Sentiment Classification 0.9872

Table 6: Average Cosine Similarity of Sentences in
Test Sentences betweenMean Pooling Output from Pre-
trained Bangla BERT Representations and Last Layer
MLP Representations from CNS.

6 Conclusion

In this research, we proposed a Contextual Bangla
Neural Stemmer to overcome the limitations of tra-
ditional rule-based stemmers. By obtaining vec-
tor representations for both stem words and un-
known vocabulary words, our method offers im-
proved word representations for Bangla language
processing tasks. The model leverages the Uni-
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versal Transformer encoder and Mean Pooling to
capture contextual word and sentence-level repre-
sentations. Our evaluation on five Bangla datasets
demonstrated significant performance gains, out-
performing the vanilla approach. Notably, our ap-
proach focuses on root word detection and address-
ing OOV and sub-word problems rather than re-
training the BERT.
Our findings suggest that a large corpus-based

language model incorporating our methodology
could further enhance NLP tasks and potentially
improve explainability. By addressing the limita-
tions of stemmers and providing better word repre-
sentations, our proposed approach opens new av-
enues for research in Bangla language processing
and contributes to advancing natural language un-
derstanding in the context of Bangla text.

Limitations

As we mentioned above, the proposed method
works well against the stemming method but it
can’t beat the finetuning BanglaBERT. (The per-
formance of BanglaBERT is reported in Appendix
C.) The reason behind this BanglaBERT is a lan-
guage model which was trained on huge corpus.
As our method isn’t trained on the huge corpus
so our model can’t beat the BanglaBERT. If we
trained our proposed model in a huge corpus, it
may be possible to beat BanglaBERT.
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A Dataset Description

• BanFake News - (Hossain et al., 2020) intro-
duces a dataset for detecting fake news. The
dataset is consisted of 48K authentic and 1k
fake news articles of different category. The
tasks is classification tasks to find if a news is
fake or not.

• Sarcasm Detection - This is Kaggle Com-
peition Dataset 1 where the organizer curated
a dataset comprised of around 50K news head-
lines labeled in two categories: Sarcastic (1)
or Not-Sarcastic (0).

• SentNoB - In SentNoB(Islam et al., 2021),
public comments on news and videos were
collected from social media for detecting the
sentiment. The sentiment were labeled as
Positive, Negative and Neutral. The training
dataset size is 13.5Kwhere validation and test
dataset size is 1.5K

1https://www.kaggle.com/competitions/nlp-competition-
cuet-ete-day-2022/data

• Emotion Detection - (Tripto and Ali, 2018)
collected user emotion dataset from YouTube
user comments. The emotion detection
dataset has 5 types of emotion: anger/disgust,
joy, sadness, fear/surprise, and none.

• Sentiment Classification - (Tripto and Ali,
2018) also find the sentiment of the comments
in the pervious dataset. We use five class
sentiment dataset in this case. The sentiment
were labeled as Strongly Positive ,Positive,
Strongly Negative, Negative and Neutral.

B Evaluation Metrics

In our experiment, we calculate Perplexity Score
(PPL Score) for evaluation the model performance.
It measures how well a probability distribution or
language model predicts a given sample.

Perplexity = 2−
1
N

∑N
i=1 log2 p(xi) (13)

Here, N represents the number of samples, and
p(xi) is the probability assigned by the language
model to the i-th sample xi. A lower perplexity in-
dicates better predictive performance, as themodel
can more accurately predict the given samples.
For the downstream tasks, we trace down Accu-

racy, F1 Score and ROC-AUC Score. The ROC-
AUC metric measures the ability of a model to
distinguish between positive and negative classes
based on the area under the receiver operating char-
acteristic curve.

C BanglaBERT Baseline

For most of the dataset the performance of
BanglaBERT isn’t reported. For each dataset that
mentioned above we finetuned BanglaBERT. The
baseline result for BanglaBERT is reported below:

Model Name Acc ↑ Macro F1 ↑
BanFake 96.65 92.99

Sarcasm Detection 93.30 49.00
SentNoB 74.46 69.55

Emotion Detection 70.78 41.26
Sentiment Analysis 54.11 42.59

Table 7: BanglaBERT baseline performance after fine-
tuning it on afermentioned datasets.
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