
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023), pages 201–207
December 7, 2023 ©2023 Association for Computational Linguistics

Aambela at BLP-2023 Task 1: Focus on UNK tokens: Analyzing Violence
Inciting Bangla Text with Adding Dataset Specific New Word Tokens

Md Fahim
Center for Computational & Data Sciences

Independent University, Bangladesh
Dhaka-1229, Bangladesh
fahimcse381@gmail.com

Abstract

The BLP-2023 Task 1 aims to develop a Nat-
ural Language Inference system tailored for
detecting and analyzing threats from Bangla
YouTube comments. Bangla language mod-
els like BanglaBERT have demonstrated re-
markable performance in various Bangla nat-
ural language processing tasks across different
domains. We utilized BanglaBERT for the vio-
lence detection task, employing three different
classification heads. As BanglaBERT’s vocab-
ulary lacks certain crucial words, our model
incorporates some of them as new special to-
kens, based on their frequency in the dataset,
and their embeddings are learned during train-
ing. The model achieved the 2nd position on
the leaderboard, boasting an impressive macro-
F1 Score of 76.04% on the official test set.
With the addition of new tokens, we achieved
a 76.90% macro-F1 score, surpassing the top
score (76.044%) on the test set.

1 Introduction

In recent times, transformer models have gained
popularity through pretraining on diverse text data
(Zhang et al., 2022). Pretraining imparts context
awareness, linguistic patterns, and word knowl-
edge (Yenicelik et al., 2020). Combining it with
fine-tuning vastly outperforms traditional models.
These models have a vocabulary from pretraining,
representing known words. During fine-tuning the
pretrained in a task, there might be some words
not in the vocabulary. Tokenizer furhtermore tries
to split the word into multiple subwords. Still, if
a word is missing or unsegmentable, they use a
[UNK] token (Nayak et al., 2020).
BanglaBERT (Bhattacharjee et al., 2022) model

is one of the most popular pretrained language
models in Bangla text classification which is
trained on a large corpus of Bangla text. It faces
trouble because of [UNK] tokens. This problem
arises because the pretrianed BERT model some-
times can’t give representation to the words that

Sentence Tokens

সুন্দর িসদ্ধান্ত েনওয়া হেয়েছ [’সুন্দর', 'িসদ্ধান্ত', '[UNK]', '[UNK]']

বয়কট িনউমােকর্ট [’[UNK]’, ’িনউমােকর্ট']

ঢাকা কেলজ মােনই [’ঢাকা', 'কেলজ', 'মােনই', '[UNK]']

অনয্ােয়র িবরুেদ্ধ পৰ্িতবাদ। ’িবরুেদ্ধ', 'পৰ্িতবাদ','।']

Table 1: The table depicts word-wise tokenization for
some example sentences using BanglaBERT tokenizer.
Here [UNK] means unknown token

are very important to understand the context. Ta-
ble 1 represents a small sample taken from the
dataset. Here, it can be seen that the significant
words which are important for the contextual un-
derstanding, assigned as [UNK] token in token rep-
resentation.
In this study, the main focus was to identify the

most frequent words for which [UNK] tokens are
assigned and add these words to the pretrained vo-
cabulary as a special token. It is shown in the study
that this approach improved performance for text
classification. To further improve the model’s per-
formance, three different classification heads were
used. These heads improved the model’s predic-
tion by focusing on different words. Three classi-
fication heads, along with the proposed approach,
achieved better performance than the previous ap-
proach.

2 Background

2.1 Task and Dataset Description
The preliminary task of shared task 1 (Saha et al.,
2023b) is to detect violence-inciting text (VITD),
particularly focusing on identifying threats that
could incite further violence. The dataset (Saha
et al., 2023a), comprised of Bangla-language
YouTube comments, is centered around the top
nine violent incidents in the Bengal region over
the past decade. This task involves three cat-
egories: Direct violence, encompassing explicit

201



threats to individuals or communities; Passive vi-
olence, representing violence through derogatory
language, abusive remarks, or slang; and Non-
violence, which pertains to content unrelated to vi-
olence, including discussions on social rights and
general topics. The primary objective is to develop
models for automated detection, contributing to on-
line safety and, foster responsible and constructive
discourse.

Data
Splits

Total
Samples Label wise Samples

Label 0 Label 1 Label 2
Train 2700 1389 922 389
Dev 1330 717 417 196
Test 2016 1096 719 201

Table 2: Dataset Statistics for Shared Task 1 (VITD).

The dataset,Vio-lens, for shared task 1 (Saha
et al., 2023a) comprises texts explicitly associated
with violence, each annotated with a correspond-
ing label. Labels are assigned as follows: direct
violence is labeled as 2, passive violence is labeled
as 1, and non-violence is designated as 1. The
dataset statistics are given in Table 2, with men-
tioning label wise sample sizes for different splits
of the dataset.
The dataset (for all splits) contains a signifi-

cant number of emojis, and these emojis exhibit
a notable influence on class dependencies. For in-
stance, violent texts often feature angry emojis.

2.2 Related Work and Baselines
BanglaHateBERT (Jahan et al., 2022), a BERT
model for Bangla abusive language detection,
was trained on a large-scale offensive text cor-
pus. They also provide a 15K manually anno-
tated Bangla hate speech dataset to the research
community. By retraining BanglaBERT (Bhat-
tacharjee et al., 2022) with 1.5 million offen-
sive posts, BanglaHateBERT consistently outper-
forms the generic pre-trained languagemodel in all
datasets. (Mridha et al., 2021) address the rise of
offensive Bangla and Banglish texts in online com-
munication. They propose an offensive message
detection mechanism using BanglaBERT (Sarker,
2020) combining AdaBoost (Hastie et al., 2009)
and LSTM (Hochreiter and Schmidhuber, 1997)
models. This proposed L-Boost model outper-
forms baseline classifiers.
Vio-lens dataset provided by the organizer for

this shared task introduces a novel dataset related
to violence detection tasks in Bangla consists of

different forms of violence. The organizer also
provided the baselines for this tasks, where fine-
tuned model of BERT multilingual base (Devlin
et al., 2019) gets 68.19% macro-F1 score where
as fine-tuned model of XLM-Roberta (Conneau
et al., 2020) gets 72.92% and the fine-tuned model
of BanglaBERT (Bhattacharjee et al., 2022) gets
78.79% in the validation test dataset.

3 Method Description

3.1 Adding New Tokens to Vocabulary
Table 1 provides insights into the behavior of the
BanglaBERT tokenizer. Notably, the tokenizer oc-
casionally represents highly informative words as
[UNK] tokens. These words are pivotal for context
comprehension, and their conversion to [UNK] to-
kens can pose challenges for the model’s predic-
tive capabilities. Identifying the words that result
in [UNK] tokens from the tokenizer presents a no-
table challenge. This complexity arises from the to-
kenizer’s utilization of subword tokenization tech-
niques, wherein token lengths may not align with
the number of words in a sentence.
To address this challenge effectively, we restrict

our analysis to samples without subwords in their
tokenization. Within this subset, we extract the
specific words that are tokenized as [UNK] by
the BanglaBERT tokenizer. These words are then
ranked by their frequency of occurrence, andwe se-
lect the top pwords to be introduced as new tokens,
precisely as special tokens, into the pre-trained vo-
cabulary.

Vocabnew = Vocaboriginal + {w1, w2, . . . , wp}

where w1, w2, . . . , wp denotes the those fre-
quent words. For a given sentence S, the original
tokenization process as:

Soriginal = {t1, t2, . . . , tn}

Here, ti represents the i-th token obtained using
the BanglaBERT pretrained tokenizer. While con-
sidering new vocabulary for tokenization, the tok-
enization process becomes:

Supdated = {t1, t2, . . . , tl}

During the fine-tuning process of the
BanglaBERT model, it adapts its internal
representations to consider new tokens as valid
tokens. This enables the model to encode the

202



contextual information of words. As a result of
fine-tuning, the BanglaBERT model generates
contextual embeddings for each token, including
those new tokens. These embeddings capture the
semantic meaning and context of each token in
the input sequence.

3.2 Model Classification Heads for Enhanced
Performance

For an input sentence S, we will get S =
{t1, t2, . . . , tn} after passing the sentence into the
BanglaBERT tokenizer, where ti represents the i-
th token. In this case, we also incorporate the new
tokens added to the BanglaBERT tokenizer as we
discuss in Section 3.1.
After passing the sentence S through a

BanglaBERT model, we obtain contextual
representations for each token ti, denoted as
H = {h1, h2, . . . , hn}, where hi represents the
contextual representation of token ti. In this case,
we consider the last layer hidden representations
of the BanglaBERT encoder.

3.2.1 MLP Head on CLS Token
To obtain a fixed-size representation for the en-
tire sentence for classification, we typically use
the special [CLS] token representation hCLS. This
representation can be extracted as: hCLS = h1.
Then we pass this hCLS representation through a
two-layer Feed Forward Neural Network (FFN)
for classification the get class logits.

3.2.2 Dropout-Enhanced CLS Token Head
We introduce an extended classification head, an
expansion of the CLS_MLP head detailed in Sec-
tion 3.2.1. In this variant, we apply dropout to the
FFN layer. We explore a set of distinct dropout
rates denoted as D = {d1, d2, . . . , dm}, where
di represents the i-th dropout rate. For a given
dropout rate di, we compute class representations
zi from the MLP. Once we obtainm distinct class
representations (logits), we derive the final repre-
sentation z by averaging these representations, as
defined by the equation:

z =
1

m

m∑

i=1

zi

3.2.3 Attention-Based Head
For this classification head, once contextual repre-
sentationsH are obtained for a sentenceS, an addi-
tional attention layer is added to compute learnable

attention scores αi for each token ti in H , and its
calculation is as follows:

αi = softmax(W · hi + b),

i = 1, 2, . . . , n

This results in a set of attention_scores =
{α1, α2, . . . , αn} corresponding to the tokens in
sentenceS. These attention scores collectively rep-
resent the overall attention distribution across the
sentence, indicating the relative importance or rel-
evance of each token to the context of the entire
sentence. After finding attention scores for each
token, we find the context vector for the sentence
S by multiplying the contextual representations of
token ti with its attention score αi.

c =
n∑

i=1

αi · hi

After obtaining the context vector, it is further
processed through a linear layer to perform the
classification task.

4 Result and Analysis

During the development phase, we conducted var-
ious experiments, all of which are detailed in
Appendix B. The experiment setup and hyper-
parameter specifics can be found in Appendix
A. Our experiments for model selection encom-
passed a wide range, including machine learn-
ing models (SVM, RandomForest, XGBoost) with
TF-IDF feature extraction, deep learning mod-
els (LSTM, LSTM+Attention), and multilingual
Transformer models (mBERT, mDeBerta, XLM-
Roberta base). Notably, mDeBerta exhibited su-
perior performance. Additionally, we evaluated
two Bangla language models, with the csebuetnlp-
BanglaBERT model emerging as the top per-
former. For a concise summary of the experimen-
tal outcomes related to model selection, please re-
fer to Table 4.
It’s important to note that the LSTM and

LSTM+Attention models were trained for 5
epochs, while all transformer-based models under-
went finetuning for 3 epochs with the utilization of
the [CLS]-based classification head, as detailed in
Section 3.2.1.
Table 3 displays the main experimental find-

ings. Each experiment employed a 5-fold cross-
validation technique, with the Macro-F1 score as

203



Performance Metrics
Techniques Classification Head CV Score Dev Set Test Set

Macro F1 Accuracy Macro F1 Accuracy Macro F1

CLS + MLP 79.13 82.63 80.82 80.01 75.96
Without Adding
New Tokens Dropouts Enhanced MLP 79.26 81.80 80.07 80.10 76.04

Attention Pool 79.76 82.26 80.20 80.36 76.59

CLS + MLP 80.45 - - 78.77 74.51
Including
Dev Dataset Dropouts Enhanced MLP 80.49 - - 78.52 74.14

Attention Pool 80.29 - - 79.86 75.80

CLS + MLP 79.28 83.38 81.55 80.86 76.76
With Addition of
New Tokens Dropouts Enhanced MLP 79.20 82.78 80.94 80.31 76.79

Attention Pool 79.39 82.86 80.60 80.65 76.90

Table 3: Performance of different classification heads at the top of the BanglaBERT with different techniques is
shown here. Dropouts EnhancedMLP without new token addition indicates that the best performing model scores
that were submitted to the competition. All the experiments with new token addition techniques and attention-
based heads weren’t submitted to the competition. But the experiments with new token addition + attention-based
classification head give the beat the top leaderboard score, which is marked in underline.

Model Name Acc ↑ F1 ↑
TF-IDF + SVM 62.26 53.76
TF-IDF +RandomForest 61.88 51.76
TF-IDF + XGBoost 62.83 52.49
LSTM 67.89 62.37
LSTM + Attention 70.76 66.31
mBERT-case 72.33 68.06
mDeBerta-v3 base 75.04 72.27
XLM-Roberta base 73.61 71.68
SagorSarker-BanglaBERT 71.35 67.63
csebuetnlp-BanglaBERT 81.20 79.12

Table 4: Different Types of Model Performance in Val-
idation (Dev) Dataset. Epoch Size 3

the evaluation metric. Three distinct scenarios
were examined with different classification heads,
as outlined in Section 3.2. In the first scenario, the
use of new token additions (described in Section
3.1) was omitted. In this context, we observed that
the CLS+MLP configuration outperformed others
in the development set. However, theDropouts En-
hanced MLP head demonstrated notable improve-
ments, not only in cross-validation scores but also
in the test set performance. The Attention based
head had showed significant enhancements in both
cross-validation scores and test set results, despite
a slightly lower performance in the development
set. Interestingly, incorporating the development
dataset with the training dataset did not yield supe-

rior results in the test dataset, despite achieving a
better cross-validation score.
Fascinating findings emerged when we incor-

porated new token additions as new special to-
kens (described in Section 3.1) into the pretrained
BanglaBERT vocabulary. The words that are con-
sidered as new tokens are mentioned in Appendix
C. In this experiment, we observed approximately
a 1% improvement in both dev set and test set
performance, measured by accuracy and macro-F1
metrics across all heads. Remarkably, the Atten-
tion pool combined with the addition of new to-
kens yielded the highest macro-F1 score. Notably,
the Dropouts Enhanced MLP model without the
new tokens addition , which secured the 2nd po-
sition on the leaderboard, emerged as the top-
performing model among the submissions.
All heads with new token addition and attention

pool head without new tokens addition beat the
top leaderboard score, which was 76.044% macro-
F1 score. Unfortunately, those models weren’t
submitted during the competition. The models
that beat the top leaderboard score are marked as
underlined in Table 3.

5 Conclusion

In this study, an analysis is done when we add
dataset-specific tokens (most frequent) to the pre-
trained vocabulary of BanglaBERT for which the
BanglaBERT tokenizer gives the [UNK] token.

204



The addition tokens learn their embeddings during
the finetuning. From the experiment, it has been
seen that the addition of those type of tokens boosts
the model’s performance. To enhance the model
prediction’s further, different classification heads
are applied.

Limitations and Future Plan

The aforementioned approach, adding dataset-
specific most frquent tokens for which the pre-
trained tokenizer gives [UNK] tokens, helps in this
task. A proper investigation is needed to analyse if
this approach performs better in some other tasks.

References
Abhik Bhattacharjee, Tahmid Hasan, Wasi Ahmad,
Kazi Samin Mubasshir, Md Saiful Islam, Anindya
Iqbal, M. Sohel Rahman, and Rifat Shahriyar.
2022. BanglaBERT: Language model pretraining
and benchmarks for low-resource language under-
standing evaluation in Bangla. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 1318–1327, Seattle, United States. As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou.
2009. Multi-class adaboost. Statistics and its Inter-
face, 2(3):349–360.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Md Saroar Jahan, Mainul Haque, Nabil Arhab, and
Mourad Oussalah. 2022. BanglaHateBERT: BERT
for abusive language detection in Bengali. In Pro-
ceedings of the Second International Workshop on
Resources and Techniques for User Information in
Abusive Language Analysis, pages 8–15, Marseille,
France. European Language Resources Association.

Muhammad F Mridha, Md Anwar Hussen Wadud,
Md Abdul Hamid, Muhammad Mostafa Monowar,
Mohammad Abdullah-Al-Wadud, and Atif Alamri.
2021. L-boost: Identifying offensive texts from so-
cial media post in bengali. Ieee Access, 9:164681–
164699.

Anmol Nayak, Hariprasad Timmapathini, Karthikeyan
Ponnalagu, and Vijendran Gopalan Venkoparao.
2020. Domain adaptation challenges of BERT in
tokenization and sub-word representations of out-
of-vocabulary words. In Proceedings of the First
Workshop on Insights from Negative Results in NLP,
pages 1–5, Online. Association for Computational
Linguistics.

Sourav Saha, Jahedul Alam Junaed, Arnab Sen Sharma
Api, Nabeel Mohammad, and Mohammad Ruhul
Amin. 2023a. Vio-lens: A novel dataset of annotated
social network posts leading to different forms of
communal violence and its evaluation. In Proceed-
ings of the 1st International Workshop on Bangla
Language Processing (BLP-2023), Singapore. Asso-
ciation for Computational Linguistics.

Sourav Saha, Jahedul Alam Junaed, Nabeel Mo-
hammed, Sudipta Kar, and Mohammad Ruhul Amin.
2023b. Blp-2023 task 1: Violence inciting text de-
tection (vitd). In Proceedings of the 1st Interna-
tional Workshop on Bangla Language Processing
(BLP-2023), Singapore. Association for Computa-
tional Linguistics.

Sagor Sarker. 2020. Banglabert: Bengali mask lan-
guage model for bengali language understading.
textsIGitHub.

David Yenicelik, Florian Schmidt, and Yannic Kilcher.
2020. How does BERT capture semantics? a closer
look at polysemous words. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 156–162,
Online. Association for Computational Linguistics.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,
and Dawei Song. 2022. A survey of controllable text
generation using transformer-based pre-trained lan-
guage models. ACM Computing Surveys.

A Experimental Setup and
Hyperparameters

In this research endeavour, various text prepara-
tion procedures, such as eliminating punctuation,
emojis, numeric characters, and potential web
addresses, were implemented. LSTM and Bert
were used as the text encoders. Their generated
representation were used as the hidden layer
representation for the text. Different models
including TF-IDF combinations, LSTM variants
and Bert variations were applied on Dev dataset.
Then utilizing the representation, different models

205

https://doi.org/10.18653/v1/2022.findings-naacl.98
https://doi.org/10.18653/v1/2022.findings-naacl.98
https://doi.org/10.18653/v1/2022.findings-naacl.98
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.restup-1.2
https://aclanthology.org/2022.restup-1.2
https://doi.org/10.18653/v1/2020.insights-1.1
https://doi.org/10.18653/v1/2020.insights-1.1
https://doi.org/10.18653/v1/2020.insights-1.1
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15


including combinations involving TF-IDF, various
LSTM variants, and variations of Bert were used
in this study.

LSTM-based models including standalone
LSTM and LSTM+Attention used embedding
dimension of 128 for an embedding layer.The
models include hidden dimension of 256, learning
rate of 10−3, batch size of 16 for this configura-
tion. As it can be seen from table 7, this batch
size bested all other variation for Dev dataset.
Thus, batch size 16 was consider for the models
to gain the optimal performance for all the models.

For the BERT model used in this study, we uti-
lized the Bangla BERT variant that enables us to
extract contextual representations and long-term
dependency through fine-tuning and pretraining.
In this case, the hidden dimension of the BERT
model was set to 768. The learning rate for BERT
was 2× 10−5, maximum token length was 64 and
batch size was 16. From table 5, it can be seen that
the Bert models outperformed all other variations
for token length 64. Therefore, token length 64
was considered.

Both configurations included the AdamW
optimizer with β1 = 0.9 and β2 = 0.99. To
ensure robustness, we performed five-fold cross-
validation and three different random seeds.
Additionally, we set λ = 10 for all experiments.
An ablation study investigating the effect of differ-
ent λ values is presented in Table. All experiments
were conducted using Python (version 3.10) and
PyTorch, leveraging the free NVIDIA Tesla T4
GPU available in Google Colab, as well as a sin-
gle NVIDIA Tesla P100 GPU provided by Kaggle.

B Ablation Study

This section represents the ablation studies
performed in this study. Which includes token
cutoff analysis, batch size effect analysis and Loss
analysis. For each of the analysis we compare
the variations in terms of the optimal value of
accuracy and F1 score.

B.1 Token Length Effects
In this study, different token length were consid-
ered to gain the highest performance for all the per-
formancematrices. Token length 512 showed poor
performance for the implemented models. The
value of token length 64 outperforms all other vari-
ations, while improving the lowest accuracy and
F1 score by 1%-2%. Rest of the variations slightly
lags behind.

Token Length Dev Acc ↑ Dev F1 ↑
32 80.15 77.28
64 80.75 78.35
128 80.32 77.92
256 80.3 77.36
512 79.1 76.72

Table 5: Token Cutoff Experiment of cse-
buetnlp/BanglaBert in Validation (Dev) Dataset.

B.2 Batch Size Influence
Batch size effects were also considered to gain op-
timal results. Batch size 16 showed superior per-
formance than all other variations. It bested the
lowest performance of batch size 64 by 2% in ac-
curacy, and 4% in F1 score. While batch size 8 and
16 closely tails behind in terms of performance ma-
trices.

B.3 Loss Analysis
Loss has significant effects on overall outcome of
the study. Thus, a detailed investigation was per-
formed on different variant of loss. Cross Entropy
loss bested all other loss variations. The Cross En-
tropy Loss and Focal loss variation (0.5*Focal +
0.5*CE) performed vary poorly among the losses.
Weighted Cross Entropy Loss showed slight im-
provement. While The standalone Cross Entropy
loss, and the combination of Cross Entropy Loss
and Focal loss (0.3*Focal + 0.7*CE) showed im-
provement by 1% to 3% from the lowest values
of accuracy and F1 score for all the performance
matrices. Finally, the Cross Entropy Loss showed
superior performance to all other variations.

C The words which are considered as
new tokens

As per discussion in Section 3.1, it is very chal-
lenging to figure out the words for which the to-
kenizer is giving [UNK] tokens. The reason be-
hind this, the tokenizer that BanglaBERT uses sub-

206



Preprocessing Dev Acc ↑ Dev F1 ↑
No Preprocessing 80.30 77.92

Removing Punctuation & Emoji’s 79.10 76.72
Removing Emoji’s Only 78.50 76.23

Removing Punctuation Only 78.95 75.96
Adding Normalizer in the text 81.20 79.12
Adding BN-Unicode Noramlizer 80.15 79.00
Converting Emoji’s into Text 80.90 78.44

Adding most frequent [UNK] tokens as new tokenizers 83.01 81.40

Table 6: Effect of different preprocessing in dev set. For experiment BanglaBERT is used with 4 epochs of training

Batch Size Dev Acc ↑ Dev F1 ↑
8 79.77 77.59
16 80.08 77.99
32 80 76.95
64 78.12 73.22

Table 7: Batch Size Effect of csebuetnlp/BanglaBert in
Validation (Dev) Dataset while Token Length = 64were
considered. Epoch Size 5

word tokenization for which the no. of tokens and
white space based basic tokenizer word list of a
sentence aren’t equal. To takcle this issues we ex-
tracted those samples for which token legnth from
tokenizer is equal to length white space based ba-
sic tokenizer word list. We find only 531 samples
considering both train and validation dataset for
which the condition is followed. For those 531
samples, the most frequent words for which the
BanglaBERT tokenizer gives [UNK] tokens. The
tokens that are considered as new tokens is shown
in Table 8.

D Preprocessing Analysis

In Table 6, several experiment are done with dif-
ferent preprocessing techniques. The table shows
that punctuation of emoji’s carry some contextual
information while classifying the texts. So, remov-
ing them didn’t help the model. For bangla text,
normalizer plays a vital role. Two differnet nor-
malization techniques were experimented where
csebuetnlp/normalizer proven effective rather than
BN-unicode normalizer. Another experiment were
done converting emoji’s into but it didn’t help. Fi-
nally, adding most frquent words for which pre-
trained BanglaBERT gives [UNK] tokens become
more helpful for the model.

Word Count

হয় 21

হেয় 21

সময় 21

েদওয়া 17

িমিডয়া 16

িনেয় 14

বয়কট 13

যায় 12

আওয়ামী 11

ভয় 10

বড় 10

হায়ের 9

েদয়া 8

দায় 8

আওয়ািমলীগ 8

হেয়েছ 7

িদেয় 7

এিগেয় 7

Table 8: The list of words that are considered as new
tokens to the model

207


