@inproceedings{mukherjee-etal-2023-ufal-uld,
title = "{UFAL}-{ULD} at {BLP}-2023 Task 2 Sentiment Classification in {B}angla Text",
author = "Mukherjee, Sourabrata and
Ojha, Atul Kr. and
Du{\v{s}}ek, Ond{\v{r}}ej",
editor = "Alam, Firoj and
Kar, Sudipta and
Chowdhury, Shammur Absar and
Sadeque, Farig and
Amin, Ruhul",
booktitle = "Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.banglalp-1.45",
doi = "10.18653/v1/2023.banglalp-1.45",
pages = "336--339",
abstract = "In this paper, we present the UFAL-ULD team{'}s system for the BLP Shared Task 2: Sentiment Analysis of Bangla Social Media Posts. The Task 2 involves classifying text into Positive, Negative, or Neutral sentiments. As a part of this task, we conducted a series of experiments with several pre-trained sequence classification models {--} XLM-RoBERTa, BanglaBERT, Bangla BERT Base and Multilingual BERT. Among these, our best-performing model was based on the XLM-RoBERTa-base architecture, which outperforms baseline models. Our system was ranked 19th among the 30 teams that participated in the task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mukherjee-etal-2023-ufal-uld">
<titleInfo>
<title>UFAL-ULD at BLP-2023 Task 2 Sentiment Classification in Bangla Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sourabrata</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Dušek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="given">Absar</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farig</namePart>
<namePart type="family">Sadeque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruhul</namePart>
<namePart type="family">Amin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present the UFAL-ULD team’s system for the BLP Shared Task 2: Sentiment Analysis of Bangla Social Media Posts. The Task 2 involves classifying text into Positive, Negative, or Neutral sentiments. As a part of this task, we conducted a series of experiments with several pre-trained sequence classification models – XLM-RoBERTa, BanglaBERT, Bangla BERT Base and Multilingual BERT. Among these, our best-performing model was based on the XLM-RoBERTa-base architecture, which outperforms baseline models. Our system was ranked 19th among the 30 teams that participated in the task.</abstract>
<identifier type="citekey">mukherjee-etal-2023-ufal-uld</identifier>
<identifier type="doi">10.18653/v1/2023.banglalp-1.45</identifier>
<location>
<url>https://aclanthology.org/2023.banglalp-1.45</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>336</start>
<end>339</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UFAL-ULD at BLP-2023 Task 2 Sentiment Classification in Bangla Text
%A Mukherjee, Sourabrata
%A Ojha, Atul Kr.
%A Dušek, Ondřej
%Y Alam, Firoj
%Y Kar, Sudipta
%Y Chowdhury, Shammur Absar
%Y Sadeque, Farig
%Y Amin, Ruhul
%S Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F mukherjee-etal-2023-ufal-uld
%X In this paper, we present the UFAL-ULD team’s system for the BLP Shared Task 2: Sentiment Analysis of Bangla Social Media Posts. The Task 2 involves classifying text into Positive, Negative, or Neutral sentiments. As a part of this task, we conducted a series of experiments with several pre-trained sequence classification models – XLM-RoBERTa, BanglaBERT, Bangla BERT Base and Multilingual BERT. Among these, our best-performing model was based on the XLM-RoBERTa-base architecture, which outperforms baseline models. Our system was ranked 19th among the 30 teams that participated in the task.
%R 10.18653/v1/2023.banglalp-1.45
%U https://aclanthology.org/2023.banglalp-1.45
%U https://doi.org/10.18653/v1/2023.banglalp-1.45
%P 336-339
Markdown (Informal)
[UFAL-ULD at BLP-2023 Task 2 Sentiment Classification in Bangla Text](https://aclanthology.org/2023.banglalp-1.45) (Mukherjee et al., BanglaLP 2023)
ACL