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Abstract

In this study, we address the task of Sentiment
Analysis for Bangla Social Media Posts, intro-
duced in first Workshop on Bangla Language
Processing (Hasan et al., 2023a). Our research
encountered two significant challenges in the
context of sentiment analysis. The first chal-
lenge involved extensive training times and
memory constraints when we chose to employ
oversampling techniques for addressing class
imbalance in an attempt to enhance model per-
formance. Conversely, when opting for under-
sampling, the training time was optimal, but
this approach resulted in poor model perfor-
mance. These challenges highlight the com-
plex trade-offs involved in selecting sampling
methods to address class imbalances in senti-
ment analysis tasks. We tackle these challenges
through cost-sensitive approaches aimed at en-
hancing model performance. In our initial sub-
mission during the evaluation phase, we ranked
9th out of 30 participants with an F1-micro
score of 0.7088 . Subsequently, through addi-
tional experimentation, we managed to elevate
our F1-micro score to 0.7186 by leveraging the
BanglaBERT-Large model in combination with
the Self-adjusting Dice loss function. Our ex-
periments highlight the effect in performance
of the models achieved by modifying the loss
function. Our experimental data and source
code can be found here.1

1 Introduction

Sentiment analysis is an important task in natural
language processing that involves automatic detec-
tion of expressed opinions within text. The prolifer-
ation of online social media interactions has led to
a surge in textual content, necessitating strategies
to address associated challenges.

While sentiment analysis for high-resource lan-
guages like English has made significant progress,

1https://github.com/towhidultonmoy/Bangla-Multiclass-
Sentiment-Analysis-Shared-Task-.git

low-resource languages like Bangla are still lag-
ging behind. Low resource languages have intricate
sentence structures and grammatical rules, mak-
ing the development of systems resource-intensive.
Achieving optimal model performance requires
substantial annotated data, leading to longer pro-
cessing times as data volume increases. Addition-
ally, when performing multiclass sentiment anal-
ysis, there is a common challenge related to class
imbalance, which can lead to models exhibiting
bias towards particular classes. Previous studies
have concentrated on improving the quantity of
training data instances, although this approach can
extend the duration of model training.

Numerous studies have been undertaken to ad-
vance the development of linguistic resources for
the Bangla language. (Islam et al., 2021) intro-
duced SentNoB dataset for multiclass sentiment
analysis task. (Patra et al., 2015) summarized the
sentiment analysis task for three Indian language ,
namely Bangla, Hindi and Tamil. They showed the
results for shared task on binary sentiment analysis
and introduced the SAIL dataset. (Rezaul Karim
et al., 2020) introduced the BengFastText dataset
which was able to capture semantics of Bangla
words. They experimented their corpus with tra-
ditional ML algorithms and also utilized MConv-
LSTM network to tackle the binary sentiment anal-
ysis task. (Tripto and Ali, 2018) introduced Bangla
language corpus from Bangla youtube comments.
(Rahman et al., 2018) focused on aspect based sen-
timent analysis and introduced the research com-
munity with ABSA cricket and restaurant datasets.
But all of this datasets had class imbalances in their
classes. (Hasan et al., 2020) and (Alam et al., 2021)
compiled all the previously mentioned datasets and
benchmarked their results with different traditional
and transformer based models. The ongoing chal-
lenge lies in the escalating fine-tuning time due to
the increasing data volume. This study seeks to
enhance fine-tuned transformer model efficiency
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by employing cost-sensitive learning to tackle class
imbalance problem. Our contributions can be sum-
marized as follows:

• Cost sensitive learning improves the perfor-
mance of most of the transformer based mod-
els. We perform an extensive series of exper-
iments involving SOTA transformer models,
exploring various loss functions.

• The best F1-micro score was achieved with
BanglaBERT-Large variant combining it
with self adjusting dice loss.

• Additionally, we examine the impact of di-
verse preprocessing techniques on model per-
formance.

2 Related Work

2.1 Sentiment Classification with Deep
Learning

In the context of text classification for sentiment
analysis in Bangla, researchers have utilized a
range of models, from traditional ones to the latest
prompt-based large language models (LLMs).

(Rahman et al., 2018) employed SVM, RF, and
KNN models to perform ABSA in Bangla. They
achieved F1 scores of 0.37 and 0.42, respectively,
using TF-IDF features on their ABSA cricket and
restaurant datasets. (Rezaul Karim et al., 2020)
explored a comprehensive set of models, including
LR, NB, SVM, KNN, GBT, RF, MConv-LSTM,
and MAE. They achieved impressive results with
MConv-LSTM, attaining an MCC of 0.746 and an
AUC of 0.87 for sentiment analysis in Bangla using
BengFastText embeddings. (Hasan et al., 2023b)
delved into zero- and few-shot in-context learn-
ing for sentiment analysis in Bangla. They com-
pared Open LLMs like Flan-T5 and GPT-4 against
fine-tuned models, where BanglaBERT outper-
formed others with a weighted F1 of 69.39. They
utilized SentNoB and introduced the MUBASE
dataset, which included Facebook posts and tweets.
(Alam et al., 2021) conducted a comparative anal-
ysis of Bangla NLP tasks using transformer mod-
els, achieving an 82.0 weighted F1 using XLM-
RoBERTa on various publicly available datasets.
In their study, (Hasan et al., 2020) conducted
comparative sentiment analysis on Bangla text us-
ing classical algorithms and deep learning models.
BERT and XLM-RoBERTa demonstrated strong
performance on different datasets, with an average
weighted F1 of 0.671 and 0.653, respectively.

2.2 Handling Class Imbalance

(Hasib et al., 2023b) present a system that employs
RUS and SMOTE to balance the dataset. Their
approach utilizes a range of machine learning and
deep learning models, with BERT reaching a max-
imum accuracy of 99.04% in balanced datasets
and 72.23% in imbalanced datasets. Another note-
worthy contribution by (Hasib et al., 2023a) intro-
duces MCNN-LSTM, a novel fusion of CNN and
LSTM for news text classification. After balancing
the dataset using the Tomek-Link algorithm, their
model attains remarkable performance, achieving
a 98% F1-score and 99.71% accuracy compared
to prior research. (Rafi-Ur-Rashid et al., 2022)
address class imbalance using various models for
binary sentiment analysis, achieving 0.94 accuracy
with their CNN model on the original corpus, em-
ploying a comprehensive approach that includes
data augmentation, focal loss functions, outlier de-
tection, data resampling, and hidden feature ex-
traction across diverse datasets. Lastly, (Ashrafi
et al., 2020) introduce BERT-based deep learning
models for Bangla NER while addressing class im-
balance with a modified cost-sensitive loss function.
Their proposed models yield 8% enhancement in
F1 MUC score compared to previous Bangla NER
research.

3 Dataset

3.1 Data Description

The dataset for this shared task is a combination
of two sources: SentNoB (Hasan et al., 2020) and
MUBASE (Hasan et al., 2023b). Table 1 reports the
number of samples in the train, validation and test
sets for each class. The dataset distribution reveals
a noticeable class imbalance across the training,
validation, and test sets.

Class Train Validation Test
Negative 15767 1753 3338
Positive 12364 1388 2092
Neutral 7135 793 1277
Total 35266 3934 6707

Table 1: Class-wise Dataset Distribution in Train, Vali-
dation, and Test Sets.

4 System Overview

Recent developments in NLP have seen the emer-
gence of pre-trained transformer models, based on
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the transformer architecture proposed by (Vaswani
et al., 2017). These models consistently achieve
state-of-the-art performance across a wide range of
NLP tasks.

In our study, we initially fine-tuned multiple
pre-trained transformer models using the default
cross-entropy loss as our baseline approach. Subse-
quently, we aimed to enhance model performance
through cost-sensitive learning, which effectively
addresses class imbalances and mitigates biases
towards the majority classes.

4.1 Finetuning Pre-trained Language Models
(PLMs)

We selected various pre-trained models and fine-
tuned them for our baseline. These models include
Bangla-Bert (Bhattacharjee et al., 2022), Bangla-
GPT2(Flax Community, 2023), Indic-BERT (Kak-
wani et al., 2020) and mBERT (Devlin et al., 2018).
We employed cross-entropy loss and the AdamW
optimizer for fine-tuning. Details regarding the
hyperparameter values used for training the base-
line and subsequent models can be found in the
Appendix.

4.2 Cost Sensitive Learning

A prominent challenge we encountered with our
dataset was class imbalance, a common issue in ma-
chine learning tasks. However, conventional meth-
ods like oversampling and undersampling were not
feasible in our case due to their drawbacks, which
involve increased training times and reduced per-
formance, respectively. Thus, we explored the hy-
pothesis that modifying the loss function could po-
tentially enhance model performance without the
need for additional data.

To elevate our model’s performance beyond the
baseline, we introduced various loss functions,
namely, the self-adjusting dice loss (Li et al., 2019),
focal loss (Lin et al., 2017), and F1-micro loss.
These alternative loss functions were employed as
part of our strategy to address class imbalance and
improve overall model performance. Details about
this loss functions are mentioned in the appendix C

5 Experiments and Results

We explored various model and custom loss func-
tion combinations as described in Section 4. In this
section, we outline the evaluation for the shared
task competition, with the F1-micro score as the
key performance metric. Our model assessments

were conducted on the test set, and, as outlined
in Section 6, we noted improved model perfor-
mance without text preprocessing as mentioned
in appendix 6.2. Table 2 presents the test set re-
sults, trained upon dataset B . Details about the
dataset are mentioned in A.

In our initial experimentation with transformer
models, we fine-tuned each model using the default
cross-entropy loss function. Among the models in
our baseline study, BanglaBERT-Large stood out,
achieving the highest F1-micro score of 0.7101.
Subsequently, we investigated the impact of cost-
sensitive loss functions on model performance.
We implemented focal loss, self-adjusting dice
loss, and F1-micro loss. Notably, for two mod-
els, BanglaBERT-Large and mBERT, these alterna-
tive loss functions led to significant improvements
compared to the baseline approach.

For BanglaBERT-Large, self-adjusting dice loss
produced the best result, with an F1-micro score
of 0.7186, surpassing all other transformer mod-
els used in our research. For mBERT, focal loss
resulted in improved performance, achieving an
F1-micro score of 0.6606. Other loss functions for
these two models also outperformed the baseline,
as shown in the table 2.

However, for BanglaGPT2, incorporating cost-
sensitive loss functions did not enhance model
performance; the baseline approach yielded the
highest F1-micro score at 0.6788. Regarding the
IndicBERT model, self-adjusting dice loss im-
proved performance compared to the baseline cross-
entropy loss, achieving an F1 score of 0.6263. How-
ever, focal loss and F1-micro loss did not yield
performance improvements for this model.

6 Ablation Study

In the scope of our study, we conducted a sequence
of experiments to understand key factors affecting
our model’s performance.

6.1 Impact of Combining Training and
Validation Set

To evaluate the merging of training and develop-
ment sets, we analyzed two datasets: Dataset A
and Dataset B (the consolidated dataset). We then
assessed their impact on the designated test dataset.
Appendix A offers a detailed data distribution anal-
ysis for both datasets, and Table 3 summarizes the
effect of these datasets on the performance of the
most promising combinations from Table 2.
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Label Word Unigram Overlap 

Negative খারাপ (Bad), দ াষ (Fault), ধষষণ (Rape), নিনষদ্ধ (Prohibited), যুদ্ধ (War), হামলা (Attack), গুম (Disappearance), ভুযা (Fake), ধ্বংস 
(Destroy), প্রত্যাহার (Withdrawal), কষ্ট (Suffering), হত্যা (Murder), শানি (Peace), উন্নযি (Development), অবৈধ (Illegal), ভয 
(Fear), ধিযৈা  (Gratefulness), পনরৈত্ষি (Change), প্রাণহানি (Homicide), অনভযযাগ (Complaint) 

Neutral ভয (Fear), গুরুত্বপূণষ (Important), ভুল (Mistake), জয (Victory), ঘুম (Sleep), হামলা (Attack), খারাপ (Bad), ধ্বংস (Destruction), 
উন্নযি (Development), গুম (Loss), ধষষণ (Assault), অবৈধ (Illegal), ভুযা (Destruction), ধিযৈা  (Gratefulness), দ াষ (Fault), যুদ্ধ 
(War), কষ্ট (Suffering), নপ্রয (Favorite), আলহাম ুনলল্লাহ (Gratitude), সুন্দর (Beautiful) 

Positive পনরৈত্ষি (Change), ঘুম (Sleep), নপ্রয (Favorite), আলহাম ুনলল্লাহ (Gratitude), শানি (Peace), হত্যা (Murder), সুন্দর (Beautiful), খারাপ 
(Bad), উন্নযি (Development), গুরুত্বপূণষ (Important), ধ্বংস (Destruction) , খারাপ (Bad), ধিযৈা  (Gratefulness) , নিনষদ্ধ (Prohibited), 
প্রাণহানি (Homicide), অনভযযাগ (Complaint), নিনষদ্ধ (Prohibited),  প্রত্যাহার (Withdrawal), যুদ্ধ (War), জয (Victory) 

Figure 1: Example of word unigram overlaps among label categories with English translations. Here distinct colors
are used to emphasize concurrent words: Green color denotes common words across all labels, Green denotes
common words between Negative and Neutral labels, Green color denotes common words between Negative and
Positive labels, and Green denotes common words between Neutral and Positive labels.

Model Loss Function F1

BanglaBERT

Cross Entropy Loss 0.7101
Focal Loss 0.7177
SA Dice Loss 0.7186
F1 Micro Loss 0.7126

Bangla GPT2

Cross Entropy Loss 0.6788
Focal Loss 0.6757
SA Dice Loss 0.6569
F1 Micro Loss 0.6707

mBERT

Cross Entropy Loss 0.6497
Focal Loss 0.6606
SA Dice Loss 0.6528
F1 Micro Loss 0.6581

IndicBERT

Cross Entropy Loss 0.6166
Focal Loss 0.6062
SA Dice Loss 0.6263
F1 Micro Loss 0.6145

Table 2: F1-micro score on the Competition Test Set for
Various Transformer Models Trained with Dataset B

6.2 Impact of Different Text Processing
Techniques

In our study, we performed two crucial text prepro-
cessing steps: 1) removing emojis and 2) eliminat-
ing punctuation marks. We assessed the effects of
each step independently and when applied together.
We’ve summarized the results in Table 4, using the
acronyms: P1 (for Step 1), P2 (for Step 2), All
(for Both Steps), and None (for No Preprocessing).
This analysis sheds light on how these preprocess-
ing methods impact our research outcomes.
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F1

BanglaBERT
SA

Dice Loss
A 0.7067
B 0.7186

Bangla
GPT2

Cross
Entropy Loss

A 0.6833
B 0.6788

mBERT
Focal
Loss

A 0.6446
B 0.6606

IndicBERT
SA

Dice Loss
A 0.6230
B 0.6263

Table 3: Impact of Diverse Datasets on Optimal Trans-
former Model Combinations. Dataset A: Original Train-
ing Set, Dataset B: Combined Train and Validation Sets.

7 Error Analysis

Table 2 present the performance results of
BangaBERT-Large, which, notably, outperformed
all other methods in our experiments. This section
delves into a quantitative error analysis employing
a confusion matrix, as displayed in Figure 2, fo-
cusing on the top-performing model. Our analysis
reveals a distinct pattern of misclassification occur-
ring primarily between the ’neutral’ and ’negative’
classes.

In Appendix D, Table 7 demonstrates the subpar
performance observed in the ’neutral’ class. De-
spite our diligent efforts to mitigate class imbalance
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Dataset BanglaBERT with SA Dice Loss
P1 0.7182
P2 0.7088
All 0.7106

None 0.7186

Table 4: F1-micro score for Different Preprocessing
Techniques on Dataset B: Combined Train and Valida-
tion Sets
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Figure 2: Confusion Matrix of Best Performing Model

through a cost-sensitive loss function, the model
continues to encounter difficulties in distinguishing
between ’neutral’ and ’negative’ labels.

Furthermore, this misclassification is influenced
by semantic similarities between words across dif-
ferent classes. Figure 1 visually represents the com-
mon unigrams across various labels, highlighting
the areas where the model exhibits errors, espe-
cially when there are concurrent words between
the ’negative’ and ’neutral’ labels.

8 Conclusion

This research paper primarily emphasizes the en-
hancement of transformer-based models’ perfor-
mance through the application of cost-sensitive
learning techniques, aimed at alleviating issues re-
lated to class imbalance and overfitting. Among
various combinations of transformers and loss func-
tions explored, the BanglaBERT model utilizing
the self-adjusting dice loss exhibited the highest
F1 score of 0.7186 on the test dataset. Although
the combination of cost-sensitive techniques with
transformer models led to notable enhancements
in performance, it’s important to highlight that the
model’s effectiveness still falls short, especially
when it comes to the ’neutral’ class.

Limitations

In this research, we chose a cost-sensitive approach
as an alternative to augmentation of the training
dataset, recognizing its resource-intensive demands
in GPU resources and training time. Our objec-
tive was to investigate how modifying loss func-
tions could improve the performance of fine-tuned
transformer models, presenting a more resource-
efficient route to better outcomes.

Despite our experiments demonstrating several
strategies for enhancing fine-tuned transformer
model performance, we acknowledge the model’s
ongoing challenge in accurately classifying less
frequent classes. This limitation directs our fu-
ture research towards optimizing loss function hy-
perparameters and assessing their effectiveness
across various model architectures and datasets as
a promising avenue for improvement.
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A Dataset

We conducted experiments using two datasets, A
and B, as described in our ablation study. The table
5 shows the number of examples in each split.

For dataset A, we utilized the original training
and test sets. In dataset B, we combined the training
and validation sets into a single unified training set,
while keeping the test set unchanged.

Split Class Dataset A Dataset B
Train Negative 15767 17520

Positive 12364 13752
Neutral 7135 7928

Test Negtaive 3338 3338
Positive 2092 2092
Neutral 1277 1277

Table 5: Class wise Dataset Distribution in Dataset A
and Dataset B

B Model Training

In this section, we provide the hyperparameter
values we used during fine tuning our models to
facilate the reproducibility of our results at a later
time. The acronyms correspond to:

• LR : Learning Rate

• BS : Batch Size

• EP : Epoch

• WD : Weight Decay

• MP : Mixed Precision
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• TML : Tokenizer Max Length

• ES : Early Stopping

• ESP : Early Stopping Patience

• FL : Focal Loss (Gamma , Alpha)
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LR 2E-5 2E-5 2E-5 2E-5
BS 20 1 20 20
EP 20 20 20 20
WD 0.02 0.02 0.02 0.02
MP True True True True

TML 200 200 200 200
ES True True True True

ESP 3 3 3 3
FL 2,4 2,4 2,4 2,4

Table 6: Hyperparameter and Fine-Tuning Settings for
Various Transformer Models in Our Experiment

C Loss functions

C.1 Self-adjusting Dice Loss

The Self-adjusting Dice Loss(Li et al., 2019) was
introduced as an objective function for handling
imbalanced datasets in NLP. It derives from the
original dice coefficient, an F1-oriented metric for
measuring set similarity. This loss function, based
on a modified dice coefficient, was reported to yield
superior F1 scores compared to models trained with
cross-entropy loss.

DiceLoss = 1− 2(1− pn1)
α · (pn1) · yn1 + γ

(1− pn1)α(pn1) + yn1 + γ
(1)

Here, for the nth training instance, pn1 is the
predicted probability of positive class and yn1 is
the ground truth label. The loss function also has
two hyperparameters, alpha and gamma, which we
tuned for our models.

C.2 Focal Loss

In order to focus on hard, wrongly classified sam-
ples, Focal Loss applies a modulating term to the

cross-entropy loss. Given the crossentropy loss
formula:

CrossEntropyLoss(pt) = −αt · log(pt) (2)

the focal loss formula is as follows:

FocalLoss(pt) = −αt · (1− pt)
γ · log(pt) (3)

where α and γ are the focusing hyperparameter.
The higher the hyperparameter, the more the fo-
cal loss function will focus on wrongly classified
samples.

C.3 F1 micro loss
We transformed the F1-micro score metric into an
F1-micro loss specific to our task. This loss func-
tion optimizes the F1-micro score and prioritizes
overall performance across all classes, offering a
more balanced evaluation of a model’s capabilities
in scenarios involving class imbalance.

D Error Analysis

Class Precision Recall F1
Neutral 0.53 0.39 0.45

Negative 0.77 0.71 0.74
Positive 0.74 0.85 0.79

Table 7: Classification Report of Best Performing Model
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