
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), pages 137–147
July 13, 2023 c©2023 Association for Computational Linguistics

Scalable and Explainable Automated Scoring for Open-Ended Constructed
Response Math Word Problems

Scott Hellman and Alejandro Andrade and Kyle Habermehl
Pearson

Boulder, CO
{scott.hellman, alejandro.andradelotero,

kyle.habermehl}@pearson.com

Abstract

Open-ended constructed response math word
problems ("math plus text", or MPT) are a pow-
erful tool in the assessment of students’ abili-
ties to engage in mathematical reasoning and
creative thinking. Such problems ask the stu-
dent to compute a value or construct an ex-
pression and then explain, potentially in prose,
what steps they took and why they took them.
MPT items can be scored against highly struc-
tured rubrics, and we develop a novel technique
for the automated scoring of MPT items that
leverages these rubrics to provide explainable
scoring. We show that our approach can be
trained automatically and performs well on a
large dataset of 34,417 responses across 14
MPT items.

1 Introduction

Math word problems are a common question type
in both formative and summative mathematics as-
sessment. In a math word problem, the prompt
describes a scenario and asks the student to calcu-
late some value or construct some mathematical
expression pertaining to that scenario. Such prob-
lems assess both the student’s ability to carry out
mathematical computation and reasoning as well
as their ability to apply their knowledge in deter-
mining how to solve a mathematical problem.

Automated assessment of closed constructed-
response (CR) math problems is straightforward,
although complexities arise due to the variety of
possible representations for a given mathematical
expression. Examples of automated assessment
systems for closed CR items include m-rater (Fife,
2017) and MathQuery (Streeter et al., 2011). In
contrast, open-ended CR math problems are diffi-
cult to automatically score, since responses to open
CR items combine mathematical expressions with
prose explanations. And if a problem asks students
to both compute a value and explain their com-
putation, that introduces the complexity of partial

credit; in the dataset we consider in this work, score
ranges for items vary between 0–2 and 0–4. Even
for humans, these sorts of items, with partial credit
and open-ended responses, are time-consuming to
score (Stankous, 2016).

Automated assessment of CR items outside of
mathematics is now common, thanks to the achieve-
ments of researchers in the areas of Automated Es-
say Scoring (AES) and Automated Short Answer
Scoring (SAS). The reliability of AES systems is
often comparable to that of humans (Shermis and
Burstein, 2003, 2013), and the same is true for SAS
systems (Butcher and Jordan, 2010). Given that
MPT items are themselves CR items, this suggests
that such approaches could also be used for MPT;
research in this area is promising, but sparse (Er-
ickson et al., 2020; Cahill et al., 2020).

How mathematical expressions are encoded in
response text is a key attribute of a given MPT
dataset. In this work, we use data generated by a
writing environment that allows students to enter
mathematics using a math editor tool. Any math
written in this tool is represented in the final re-
sponse text as Content MathML (an XML-based
specification for the representation of mathemat-
ics). As students can also write math outside of
the math editor, the dataset that we consider in this
work contains math represented both in MathML
and in plain text, often within the same response.

Given this set of challenges, our interest is in
creating an explainable predictive model for MPT.
Such a model would be able to differentiate, for ex-
ample, between a response that received a 1 out of
3 because it contained the correct final answer with-
out showing work, and a response that received a 1
out of 3 because it contained correct reasoning but
incorrect computations. A model that successfully
achieved this would be useful both for students, as
they would better understand why their responses
received their assigned scores, as well as for test ad-
ministrators, as the explanations would build trust

137

in the validity of the model’s scoring.
This paper is structured as follows. We begin

with a discussion of related work and a detailed
description of our task. We introduce a novel scor-
ing model that uses the rubric’s structure to pro-
vide explainable scoring for MPT, and show how
our model can be automatically trained. We then
present experimental results that show the effec-
tiveness of our approach, and conclude with a dis-
cussion of the present and future work.

2 Related Work

There is a substantial literature around the au-
tomated scoring of non-mathematical CR items.
Work on AES dates back to the 1960s (Page, 1966),
and modern-day AES systems involve a wide va-
riety of approaches, including linear regression
(Larkey, 1998), random forests (Hellman et al.,
2019), and neural networks (Taghipour and Ng,
2016; Dong et al., 2017; Riordan et al., 2017).
Short answer scoring is also relevant, as our MPT
responses tend to be only a few hundred charac-
ters long. For SAS, many systems involve para-
phrase detection, or some similar notion of seman-
tic similarity to reference answers (Leacock and
Chodorow, 2003; Tandalla, 2012; Ramachandran
et al., 2015; Kumar et al., 2017).

While much work has been done on AES and
SAS, as well as around the automated solving of
math word problems (e.g. Kushman et al. 2014;
Huang et al. 2016; Wang et al. 2017; Xie and Sun
2019), work around the automated scoring of math
word problems is more limited. Livne et al. demon-
strate a system that successfully uses instructor-
provided reference answers to automatically score
responses to closed CR math word problems (Livne
et al., 2007). Lan et al. present a system that
predicts scores by embedding multi-step math re-
sponses using a bag-of-expressions model, a bag-
of-words approach designed to capture mathemat-
ical features (Lan et al., 2015). Once embedded,
they use a combination of clustering and limited
human scoring to score all responses. However,
while their items were open CR math word prob-
lems, any prose in student responses was ignored
by the scoring system.

Some systems do attempt to grapple with the
full complexity of open CR math word problems.
Kadupitiya et al. present a system that can score
CR math word problems for summative assess-
ments whose responses contain both prose and

math (Kadupitiya et al., 2017). Their system as-
sumes that all math is encoded as MathML, and
prose is handled by estimating the semantic similar-
ity of response phrases to known reference phrases.
Erickson et al. (Erickson et al., 2020) investigated
the effectiveness of random forests, XGboost, and
LSTMs for scoring formative open CR math prob-
lems with only plain text responses, and follow-up
work has shown that transformer-based approaches
can also perform well on this task (Baral et al.,
2021; Shen et al., 2021).

As mentioned above, we expect that many real-
world MPT datasets will include responses that
contain math represented both as plain text and as
MathML. To the best of our knowledge, Cahill et al.
is the only published work that attempts to score
these sorts of responses (Cahill et al., 2020). In
their work, they extract plain text math from stu-
dent responses using regular expressions, and then
use the m-rater (Fife, 2017) math scoring system
to evaluate the correctness of this extracted math.
They then build a feature space that includes binary
features indicating whether certain rubric elements
were covered by the student response. By train-
ing machine learning models on this feature space,
they create models with interpretable features. This
process requires knowledge of the rubric during
training. Our work differs from Cahill et al. in
that the model that we introduce relies only on fea-
tures that are aligned with the rubric, and produces
scores that are inherently explainable. Furthermore,
it requires no knowledge of the rubric during train-
ing. We also evaluate our approach across a wider
variety of items with more responses per item.

3 Open Constructed Response Math
Word Problems

The dataset we use in this work is proprietary, so
we have adapted an item from the GSM8K dataset
1 (Cobbe et al., 2021) as an illustrative example,
shown in Table 1. In this example, the prompt
establishes a scenario and asks the student to com-
pute a value related to that scenario. The rubric
defines three binary components that a response
can achieve, which defines the score range for this
item to be from 0 to 3. Finally, the example re-
sponse shows a typical mixing of MathML and
prose.

1Dataset located at https://github.com/openai/
grade-school-math/tree/master/grade_
school_math/data.

138

https://github.com/openai/grade-school-math/tree/master/grade_school_math/data
https://github.com/openai/grade-school-math/tree/master/grade_school_math/data
https://github.com/openai/grade-school-math/tree/master/grade_school_math/data

Example Prompt Albert is wondering how much pizza he can eat in one day. He buys 2 large
pizzas and 2 small pizzas. A large pizza has 16 slices and a small pizza has 8
slices. If he eats it all, how many pieces does he eat that day?

Example Rubric 1 point for correct computation (48 pieces).
1 point for correct modeling of the number of slices for the large pizza (2 ∗ 16)
and the small pizza (2 ∗ 8).
1 point for correct modeling of the total number of slices (32 + 16).

Example Response He eats 32 from the largest pizzas because <math> <apply><eq/> <apply>
<times/> <cn>2</cn> <cn>15</cn> </apply>32</apply> </math>. He eats
16 from the small pizza because <math> <apply> <eq/> <apply> <times/>
<cn>2</cn><cn>8</cn> </apply>16</apply> </math>. He eats 48 pieces
because <math><apply> <eq/> <apply> <plus/>< cn>32</cn> <cn>16</cn>
</apply>48</apply> </math>.

Normalized Response He eats 32 from the largest pizzas because 2*15=32. He eats 16 from the
small pizza because 2*8=16. He eats 48 pieces because 32+16=48.

Table 1: Example item and response. Adapted from the GSM8K dataset (Cobbe et al., 2021)

We are focused on word problems that ask the
student to construct some mathematical equation
and/or compute some number, as well as to provide
the work and reasoning that they used in coming
to their answer. For some items, this explanation
is required to be prose, while for others the chain
of mathematical expressions that led to the answer
can suffice.

Each item has a rubric composed of some num-
ber of computation, modeling, and reasoning com-
ponents, each of which is worth one point. Compu-
tation components generally refer to the presence
of a correct final answer, modeling components to
showing the correct mathematical derivation of the
final result, and reasoning components to an ex-
planation of why those steps were taken. A given
rubric may not include all three of these compo-
nents, and may also define multiple components
of a given kind. The final score of a response is
the sum of these binary component scores. Note
that even if a rubric does not require a prose expla-
nation, the student may still include prose in their
final response.

The characteristics of the dataset used in this
work are shown in Table 2. A critical aspect of
our dataset is that MPT problems are, in general,
quite difficult for students to answer correctly. For
some items, more than 70% of student responses
received a score of 0. This is an expected feature of
our dataset, as math word problems are known to be
substantially harder for students to solve than con-
ventional math problems (Cummins et al., 1988).

Student responses are written in an environment

that supports the entry of both plain text in a con-
ventional text field and of math via a math editor.
Critically, arbitrary text input is allowed in the math
editor, to support the presence of variables in the
student answer. While the expectation is that stu-
dents will use this math editor to write the relevant
mathematical expressions, and write the rest of the
response outside of the math editor, in practice stu-
dents often write prose inside of the math editor and
math expressions outside of the math editor. Thus,
we cannot look only at the MathML in a response
to identify the mathematical statements produced
by the student, and we cannot look only at the plain
text to identify their explanations and supporting
arguments. Because of this, we believe the best
way to score MPT responses is by converting them
to a normalized form.

This normalization process consists of three
steps: first, we convert mathematical terms in the re-
sponse into their symbolic equivalents, e.g. "eight"
to "8", or "plus" to "+". Next, we need to ac-
count for prose written in the math editor. We
identify MathML containing chains of variables
being multiplied together that appear to spell out
English words. When such a chain is found, it
is removed from the MathML and converted to
plain text by preserving the order of the variables
and removing the multiplication operators. This
replaces the variables in the MathML by their cor-
responding plain text word. Finally, we transform
all remaining MathML into plain text by taking the
in-order traversal of the expression tree defined by
the MathML.

139

item grade domain response count mathml % char count score range sp 0 %

1 7 algebra 4095 18.1 167 0-2 37.2
2 high school algebra 2634 26.4 166 0-2 77.4
3 high school algebra 2472 47.3 109 0-2 92.6
4 high school algebra 2362 34.4 97 0-2 81.8
5 high school algebra 5701 28.3 202 0-4 70.0
6 4 arithmetic 1266 72.5 87 0-2 50.0
7 5 geometry 1596 62.7 125 0-3 32.7
8 7 algebra 1665 29.6 198 0-3 41.4
9 7 algebra 1085 32.7 95 0-2 39.9

10 7 algebra 838 30.8 91 0-3 70.5
11 high school algebra 1581 19.7 294 0-2 63.5
12 high school algebra 1495 22.2 294 0-4 72.5
13 6 algebra 6018 36.0 212 0-3 54.6
14 6 arithmetic 1609 29.5 259 0-4 40.1

Table 2: Dataset summary. Mathml % is the mean percentage of characters in a response occurring inside of
MathML spans. Char count is the mean number of characters. Sp 0 % is the percentage of responses at scorepoint 0.

4 Explainable Scoring

As outlined in Section 3, the rubrics for our MPT
items are highly structured. We leverage this struc-
ture to create a new approach to the automated
scoring of MPT items by essentially codifying the
rubric in a machine-understandable way. The close
alignment of our model with the rubric produces
predictions that are inherently explainable.

Rules form the core building block of our ap-
proach. Rules encode short mathematical expres-
sions and the transformations required to convert
them into other lexically distinct but semantically
identical forms. For example, a rule encoding "2 +
3" could generate "3.0 + 2" as an alternative form.
These alternate forms account for different mathe-
matical properties, principally commutativity and
conversion between floats and integers (for whole
numbers). To account for variables, we also allow
single letters to serve as operands in our expres-
sions.

To determine if a rule is present in a student re-
sponse, we first extract all mathematical text from
the normalized text of the response. This is to pre-
vent superfluous words from obscuring the under-
lying mathematics. See Figure 1b for an example.
Then, if any of the forms of a rule are present as a
substring of the extracted math, that rule is consid-
ered to be present in the response.

The amount of prose in a response is highly item-
dependent. To account for items where prose is
important, we also include the ability to write regu-

lar expressions as rules. Such a rule is found in a
response if its constituent regular expression has at
least one match in the response.

Assembling these rules into a form that can au-
tomatically score responses is done as follows. We
define a group to be a list of rules, and we con-
sider a group to be present in a response if any of
its constituent rules are present. This allows us to
capture mathematics that are equivalent under the
rubric but not captured by the lexical transforma-
tions of our rules, for instance, "2 * 16" and "16 +
16" could be two valid ways of writing an expected
expression.

We then create evidence out of these groups. Ev-
idence is a list of groups, and we consider evi-
dence to be present in a response if all of its con-
stituent groups are in the response. This allows us
to capture rubric elements that require the student
to cover multiple areas. For example, if a student
needs to show two distinct values to achieve a Com-
putation component, we can capture this notion by
constructing evidence with two groups, one for
each of those two distinct values.

Finally, to mirror the structure of the rubric com-
ponents, we collect evidence into scorable traits. A
scorable trait contains lists of positive and negative
evidence. If any positive evidence and no negative
evidence is present in a response, then the scorable
trait scores a 1. Otherwise, it scores a 0. We in-
clude this concept of negative evidence to account
for misconceptions and other incorrect mathemat-

140

(a) Example Scorable Trait (b) Example Response

Figure 1: An example scorable trait is shown in Figure 1a. This scorable trait captures a modeling component from
the example shown in Table 1. This scorable trait is composed of one piece of positive evidence, which in turn
consists of two groups. The first detects if the student found a correct equation for the number of slices for the large
pizza. The second detects if the student found a correct equation for the number of slices for the small pizza. Figure
1b shows the normalized response from Table 1, alongside the math extracted from the response. The highlighted
characters indicate where in the response the rules from the Scorable Trait were found. The automatically generated
explanation of the score is also shown.

ics that can prevent a student from receiving full
credit on a rubric component. For example, if an
item asked the student to compute 4 divided by 2,
the student could incidentally compute the correct
value by subtracting 2 from 4.

We construct a number of scorable traits cor-
responding to the number of components in the
rubric, and the final predicted score for a response
is the sum of the individual binary trait scores. Be-
cause we know exactly which rules, groups, evi-
dence, and scorable traits were found or not found
when scoring, we can automatically construct an
explanation of our predicted scores. See Figure 1
for an example of a scorable trait and the score and
explanation it produces.

5 Automated Discovery of Rules

Given the hierarchy of rules, groups, evidence, and
scorable traits described above, one approach to
developing a scoring model would be to define all
of these elements manually. While manually con-
structed models perform well (per our experiments
below), requiring manual effort to construct a scor-
ing model prevents the adoption of this approach
at any scale larger than a small handful of items.
Thus, we would like to automate this process. How-
ever, our model is not differentiable, so approaches
such as stochastic gradient descent can not be used.

Simulated annealing is a highly flexible opti-

mization technique that makes few assumptions
about the objective function being optimized (Kirk-
patrick et al., 1983). When applied to our modeling
task, simulated annealing maximizes the perfor-
mance of a model by iteratively adding or remov-
ing rules. If a change increases the model’s training
set performance, we keep it. Otherwise, the change
is stochastically accepted with a probability based
on a temperature variable and the difference in
performance between the new and previous states.
As the procedure continues over many iterations,
the temperature is slowly reduced according to a
cooling schedule. The result of this is a process
that initially makes many random changes, but that
tends towards only making changes that maximize
the performance of the model as the temperature
decreases.

In practice, we evaluate the performance of our
models using both accuracy and the unweighted
average recall (UAR), and so we optimize against
both of these metrics during the annealing process.
That is, our goal is to maximize the following func-
tion:

S(θ) = λ ∗UAR(ŷθ) + (1− λ) ∗Acc(ŷθ)

where θ corresponds to the model parameters, i.e.,
the rules, groups, and evidence of the model, ŷθ to
the predictions of the current model on the training
set, and λ is a hyperparameter that controls the

141

relative importance of UAR versus accuracy.
To use simulated annealing, we must define the

ways in which an existing model can be altered to
generate a new model. We begin by building a set
of candidate rules. Candidate math expressions are
generated by identifying sequences of alternating
operands and operators in the math extracted from
a response. In this work, we consider sequences of
up to six operands. Once these expressions have
been identified, we rank them according to their
information gain. We keep the top n expressions
as our set of candidate rules for use in annealing.

When humans craft manual rules, they are able
to write regular expressions. Automatically deter-
mining useful regular expressions in full generality
is beyond the scope of this work, but providing
our automated rules with some ability to reason
about prose writing is important. For this reason,
we consider all words in the responses, again rank
by information gain, and then keep the top m as
regular expression rules (that ultimately will match
if the given word is present in the response).

When annealing our rules, we allow for four
transformations:

1. Add a rule to a group.

2. Remove a rule from a group.

3. Replace a rule with a new rule.

4. Move a rule from one group to another group.

We initialize our model to have a number of
scorable traits equal to the maximum score for the
item, and create a user-defined number of empty
evidences and groups for each trait. To improve
final model performance, we use random restarts
during training. That is, we perform k simulated
annealing runs, and keep the model with the best
training set performance as our final trained model.

To avoid overfitting to our training data, we also
include two regularization terms in our objective
function. The first term, R(θ), penalizes the model
by the total number of operands used by all rules.
The second term, E(θ), penalizes the model for the
number of non-empty evidences used by the model.
Our final objective function is

S′(θ) = S(θ) + γ ∗ (α ∗R(θ) + β ∗ E(θ))

where α, β, and γ are hyperparameters that control
the relative and overall regularization strength.

6 Experiments

To the best of our knowledge, there is no publicly
available dataset that features open CR math word
problems with a large number of student responses
per item. For example, the GSM8k Dataset used in
Table 1 has only one response per item. Therefore,
we use our own proprietary dataset of MPT items
for our experiments. This dataset consists of 14
items covering algebra, arithmetic, and geometry,
targeting grade levels from fourth grade to high
school. The scoring scales for these items range
from 0–2 to 0–4. See Table 2 for detailed per-item
information.

Our primary goal is to evaluate the perfor-
mance of our rules-based model, both with manu-
ally crafted rules and automatically learned rules.
The manual rules used in these experiments were
crafted by human experts, who were allowed to
view only a randomly sampled subset of the re-
sponses for each item. Responses used in this way
during rule creation were also used for hyperparam-
eter search for the simulated annealing approach,
but were excluded from the dataset used in the final
experiments. The response counts in Table 2 corre-
spond to the counts used in our final experiments.

We perform a grid search for the cooling rate,
number of iterations to run annealing for, and the
overall regularization strength γ. Our pool of can-
didate rules consists of the top 500 expressions and
top 50 words. We spend 1000 iterations at each tem-
perature, create 3 positive evidences and 1 negative
evidence for each trait, allow up to 10 groups per
evidence, and set α = 0.0025, and β = 0.01. We
use a geometric cooling schedule, and perform 5
random restarts. These settings are based on values
that were found to work well during initial develop-
ment. We use 5 stratified and randomized train/test
splits when performing this hyperparameter search,
with 25% of the data in the test split.

Prior work has found that traditional AES ap-
proaches can work well for MPT, such as random
forests (Erickson et al., 2020) and recurrent neu-
ral networks (Cahill et al., 2020). For this rea-
son, we compare our rules-based scoring to three
other conventional approaches: fine-tuned Distil-
BERT (Sanh et al., 2019), character n-gram random
forests, and word n-gram random forests.

For both random forest models, we use regres-
sion random forests with 100 trees, and 33% of
the features considered at each split. We keep all
n-grams that occur in more than 5% of documents

142

0.7 0.8 0.9
Cooling Rate

0.0

0.2

0.4

0.6

0.8
ua

r regularization_strength
0.5
1.0
1.5

Figure 2: Mean UAR achieved by annealing on Item 6
at various regularization strengths and cooling rates at
25,000 annealing iterations. We also evaluated perfor-
mance at 50,000 and 75,000 iterations, but performance
across all three settings was similar, so we show only
the results for 25,000 for clarity. Error bars are 95%
bootstrap confidence intervals.

and in fewer than 95% of documents. For charac-
ter n-grams, we consider n-grams ranging from 3
to 6 characters long. For word n-grams, we con-
sider n-grams ranging from 1 to 4 words. We use
scikit-learn’s implementations of random forests
and count vectorizers (Pedregosa et al., 2011).

For the DistilBERT model, we finetune all layers
using the Adam optimizer. We use a learning rate of
2e-5, a weight decay of 0.01, and train for 4 epochs.
The training data is further split into a final train-
ing set and an evaluation set; we evaluate model
performance on the evaluation set after each epoch,
and we evaluate our final test-set performance on
the model that achieved the best evaluation set per-
formance. DistilBERT uses wordpiece tokens (Wu
et al., 2016) with a 512 token context window. All
of our responses fit within this window; the longest
response in our dataset is 501 tokens long. Our Dis-
tilBERT fine-tuning utilizes Hugging Face (Wolf
et al., 2020).

For both random forests and DistilBERT finetun-
ing, all hyperparameters not mentioned here were
left at their default values.

For each item, we create 30 stratified and ran-
domized train/test splits, with 25% of the data in the
test split, and train and evaluate all models on these
splits. We evaluate model performance using both
accuracy and the unweighted average recall (UAR).
In our operational scoring, poor performance at
any scorepoint can rule out the use of a model, and
UAR captures this by considering the impact of
poor performance at rare and common scorepoints

annealing manual bert char_rf word_rf
model

0.0

0.2

0.4

0.6

0.8

1.0

ua
r

(a) Overall UAR

annealing manual bert char_rf word_rf
model

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(b) Overall Accuracy

Figure 3: Mean UAR and accuracy of each approach,
averaging over all items and folds. Error bars are 95%
bootstrap confidence intervals.

to be equivalent. For all regression models, we gen-
erate final score predictions by rounding the model
output to the nearest whole number.

7 Results and Discussion

The results of our hyperparameter grid search for
simulated annealing are shown in Figure 2. We
see that performance is quite robust across all hy-
perparameter settings tested. Best performance is
achieved by annealing for 25,000 iterations, with
a cooling rate of 0.7 and a regularization strength
of 0.5. These are the settings that we use for simu-
lated annealing in the other experiments described
in this section.

The mean UAR and accuracy of each model, av-
eraging over all items and folds, is shown in Figure
3. Focusing on UAR, we see that the random for-
est using word n-grams performs noticeably worse
than the other approaches. Character n-gram ran-
dom forests and manually crafted rules perform
well. Finally, we see that our annealing-based ap-
proach to automatically constructing rules performs
slightly worse than the manually crafted rules, but
slightly better than the DistilBERT model.

When we compare accuracy trends, we see that
our rules-based approaches perform no better than
DistilBERT. This is due to performance at the low-
est scorepoints - these tend to be common (and thus
prominent in the calculation of accuracy), but the
rules-based approaches tend to have slightly lower
recall at the lowest scorepoint. This is not seen in
the UAR figures because the rules-based models
tend to perform slightly better on the higher (and
rarer) scorepoints.

In Figure 4, we show the mean UAR of each
model for all items. Our discussion here will focus
on items 2 and 10; these items were chosen as
examples where the annealing approach performs

143

0.0

0.2

0.4

0.6

0.8

1.0

ua
r

item = 1 item = 2 item = 3 item = 4 item = 5

0.0

0.2

0.4

0.6

0.8

1.0

ua
r

item = 6 item = 7 item = 8 item = 9

annealing manual bert char_rf word_rf
model

item = 10

annealing manual bert char_rf word_rf
model

0.0

0.2

0.4

0.6

0.8

1.0

ua
r

item = 11

annealing manual bert char_rf word_rf
model

item = 12

annealing manual bert char_rf word_rf
model

item = 13

annealing manual bert char_rf word_rf
model

item = 14

Figure 4: Mean UAR per item, averaging over all folds. Error bars are 95% bootstrap confidence intervals.

very well and very poorly, respectively.

For Item 2, our annealing approach performs the
best out of all models. This item describes the im-
provement in average speed of two athletes over
the course of a training regimen, and asks the stu-
dents to calculate at what week of training their
average speeds will be equal. The rubric contains
a computation component, requiring the students
to calculate the correct week, and a modeling com-
ponent, requiring students to show their work in
calculating their answer. The annealing process
successfully constructs evidence both for identi-
fying when the correct answer is present, and for
identifying work that supports that correct answer.

In contrast, for Item 10, the annealing process
performs quite badly. Item 10 asks students to
calculate the speed of a real car based on the perfor-
mance of a scale model of that car. The rubric con-
tains one computation component, for the correct
final speed, as well as two modeling components,
one for proper unit conversion and one for correctly
scaling the speed to the full-size car. The manually
crafted rules perform comparably to the character
n-gram random forest for Item 10, indicating that
is possible for our rules-based approach to perform
relatively well on this item. However, our manual
rules for this item make extensive use of regular ex-
pressions, both to capture information about units
and to capture notions such as the student stating

in prose that they multiplied by the scaling factor.
These sorts of sophisticated regular expressions are
not captured by our current candidate rule genera-
tion process.

The relatively lackluster performance of the
DistilBERT model is surprising, given the dom-
inance of transformer-based approaches in many
areas of NLP. However, there is a substantial litera-
ture detailing how both recurrent and transformer-
based neural models can struggle with mathematics
(Huang et al., 2018; Cobbe et al., 2021; Hendrycks
et al., 2021). This literature, in combination with
our results here, suggests that fine-tuning off-the-
shelf neural models is not a particularly powerful
approach for MPT scoring.

In light of these results, we conclude that our
rules-based approach enables explainable auto-
mated scoring of MPT items without sacrificing
performance, at the cost of requiring manual ef-
fort in designing the rules. However, we also have
found that a simulated annealing-based approach
to automatic rule creation can produce explainable
models that are almost as effective as manually
crafted rules, allowing for scalable and explainable
MPT scoring.

8 Conclusion and Future Work

We have presented a novel, explainable approach
to scoring MPT items via handcrafted rules that

144

performs well, and have shown that such rules can
be automatically discovered through simulated an-
nealing.

While our model is able to provide explanations
of its scores, generating explanations is only the
first step in the full explainability process. Expla-
nations are of limited utility without the ability to
convey model explanations to stakeholders such
as test takers or test administrators. Determining
how best to use the explanations produced by our
models is an important area of future work.

Our approach is heavily reliant on the assump-
tion that the final score of a response is the sum of
multiple binary components. For MPT items that
are not structured in this way, it is unlikely that our
approach would work well on its own, although it
could possibly be combined with other approaches.
We are actively investigating how best to extend
our approach to more rubric types.

The success of our annealing process ultimately
relies on our ability to generate useful candidate
rules. While our current process works well, we
have seen that for some items, we need to be able
to construct more sophisticated rules. Determining
how to improve the generation of our candidate
pool is another promising area for future work.

The dataset we used in this work is mainly com-
posed of algebra problems. While we do have some
geometry and arithmetic items, how well our ap-
proach can generalize to other MPT item types is
an area of future work. In particular, our items
do not cover calculus, trigonometry, or other areas
that require students to extensively reason about
functions.

Acknowledgements

We would like to thank Alicia Bouy for her assis-
tance in constructing the manually-crafted rules,
and Lee Becker and Joshua Southerland for their
feedback during the writing process.

References
Sami Baral, Anthony F Botelho, and John A Erick-

son. 2021. Improving Automated Scoring of Student
Open Responses in Mathematics. In Proceedings of
The 14th International Conference on Educational
Data Mining (EDM21), page 9, Paris, France.

Philip G. Butcher and Sally E. Jordan. 2010. A com-
parison of human and computer marking of short
free-text student responses. Computers & Education,
55(2):489–499.

Aoife Cahill, James H Fife, Brian Riordan, Avijit Vaj-
payee, and Dmytro Galochkin. 2020. Context-based
Automated Scoring of Complex Mathematical Re-
sponses. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 186–192, Seattle, WA, USA →
Online. Association for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Denise Dellarosa Cummins, Walter Kintsch, Kurt
Reusser, and Rhonda Weimer. 1988. The role of
understanding in solving word problems. Cognitive
Psychology, 20(4):405–438.

Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based Recurrent Convolutional Neural Network for
Automatic Essay Scoring. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153–162, Vancouver,
Canada. Association for Computational Linguistics.

John A Erickson, Anthony F Botelho, Steven McA-
teer, Ashvini Varatharaj, and Neil T Heffernan. 2020.
The automated grading of student open responses in
mathematics. In Proceedings of the Tenth Interna-
tional Conference on Learning Analytics & Knowl-
edge, pages 615–624.

James H Fife. 2017. The m-rater™ Engine: Introduc-
tion to the Automated Scoring of Mathematics Items.
Technical Report ETS RM–17-02.

Scott Hellman, Mark Rosenstein, Andrew Gorman,
William Murray, Lee Becker, Alok Baikadi, Jill Bud-
den, and Peter W. Foltz. 2019. Scaling Up Writing in
the Curriculum: Batch Mode Active Learning for Au-
tomated Essay Scoring. In Proceedings of the Sixth
(2019) ACM Conference on Learning @ Scale, L@S
’19, pages 1–10, New York, NY, USA. Association
for Computing Machinery.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with re-
inforcement learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 213–223, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do Computers
Solve Math Word Problems? Large-Scale Dataset
Construction and Evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
887–896, Berlin, Germany. Association for Compu-
tational Linguistics.

145

https://doi.org/10.1016/j.compedu.2010.02.012
https://doi.org/10.1016/j.compedu.2010.02.012
https://doi.org/10.1016/j.compedu.2010.02.012
https://doi.org/10.18653/v1/2020.bea-1.19
https://doi.org/10.18653/v1/2020.bea-1.19
https://doi.org/10.18653/v1/2020.bea-1.19
https://doi.org/10.1016/0010-0285(88)90011-4
https://doi.org/10.1016/0010-0285(88)90011-4
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.1145/3330430.3333629
https://doi.org/10.1145/3330430.3333629
https://doi.org/10.1145/3330430.3333629
https://aclanthology.org/C18-1018
https://aclanthology.org/C18-1018
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084

J. C. S. Kadupitiya, Surangika Ranathunga, and Gihan
Dias. 2017. Assessment and Error Identification of
Answers to Mathematical Word Problems. pages
55–59. ISSN: 2161-377X.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vec-
chi. 1983. Optimization by simulated annealing. sci-
ence, 220(4598):671–680.

Sachin Kumar, Soumen Chakrabarti, and Shourya Roy.
2017. Earth Mover’s Distance Pooling over Siamese
LSTMs for Automatic Short Answer Grading. Pages:
2052.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to Automatically
Solve Algebra Word Problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281, Baltimore, Maryland. Association for Com-
putational Linguistics.

Andrew S. Lan, Divyanshu Vats, Andrew E. Waters,
and Richard G. Baraniuk. 2015. Mathematical Lan-
guage Processing: Automatic Grading and Feedback
for Open Response Mathematical Questions. In Pro-
ceedings of the Second (2015) ACM Conference on
Learning @ Scale, L@S ’15, pages 167–176, New
York, NY, USA. Association for Computing Machin-
ery.

Leah S. Larkey. 1998. Automatic essay grading using
text categorization techniques. In Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval -
SIGIR ’98, pages 90–95, Melbourne, Australia. ACM
Press.

Claudia Leacock and Martin Chodorow. 2003. C-
rater: Automated Scoring of Short-Answer Ques-
tions. Computers and the Humanities, 37(4):389–
405.

Nava L Livne, Oren E Livne, and Charles A Wight.
2007. Can Automated Scoring Surpass Hand Grad-
ing of Students’ Constructed Responses and Error
Patterns in Mathematics? MERLOT Journal of On-
line Learning and Teaching, 3(3):12.

Ellis B Page. 1966. The imminence of grading essays
by computer. The Phi Delta Kappan, 47(5):238–243.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learn-
ing Research, 12(Oct):2825–2830.

Lakshmi Ramachandran, Jian Cheng, and Peter Foltz.
2015. Identifying Patterns For Short Answer Scoring
Using Graph-based Lexico-Semantic Text Matching.
In Proceedings of the Tenth Workshop on Innovative

Use of NLP for Building Educational Applications,
pages 97–106, Denver, Colorado. Association for
Computational Linguistics.

Brian Riordan, Andrea Horbach, Aoife Cahill, Torsten
Zesch, and Chong Min Lee. 2017. Investigating neu-
ral architectures for short answer scoring. In Pro-
ceedings of the 12th Workshop on Innovative Use of
NLP for Building Educational Applications, pages
159–168, Copenhagen, Denmark. Association for
Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In
5th Workshop on Energy Efficient Machine Learning
and Cognitive Computing - NeurIPS 2019, volume
abs/1910.01108.

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil
Heffernan, Xintao Wu, Ben Graff, and Dongwon Lee.
2021. MathBERT:A Pre-trained Language Model
for General NLP Tasks in Mathematics Education.
In Math AI For Education Workshop.

Mark D. Shermis and Jill C. Burstein, editors. 2003. Au-
tomated essay scoring: A cross-disciplinary perspec-
tive. Lawrence Erlbaum Associates, Inc., Mahway,
NJ.

Mark D. Shermis and Jill C. Burstein, editors. 2013.
Handbook of automated essay evaluation: Current
applications and new directions. Routledge, New
York.

Nina V Stankous. 2016. Constructive response vs.
multiple-choice tests in math: American experience
and discussion. In 2nd PAN-AMERICAN INTER-
DISCIPLINARY CONFERENCE, PIC 2016 24-26
February, Buenos Aires Argentina, page 321.

Lynn Streeter, Jared Bernstein, Peter Foltz, and Don-
ald DeLand. 2011. Pearson’s Automated Scoring
of Writing, Speaking, and Mathematics. Technical
report.

Kaveh Taghipour and Hwee Tou Ng. 2016. A Neural
Approach to Automated Essay Scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1882–1891,
Austin, Texas. Association for Computational Lin-
guistics.

Luis Tandalla. 2012. Scoring Short Answer Essays.
Technical report.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le

146

https://doi.org/10.1109/ICALT.2017.48
https://doi.org/10.1109/ICALT.2017.48
https://doi.org/10.24963/ijcai.2017/284
https://doi.org/10.24963/ijcai.2017/284
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.1145/2724660.2724664
https://doi.org/10.1145/2724660.2724664
https://doi.org/10.1145/2724660.2724664
https://doi.org/10.1145/290941.290965
https://doi.org/10.1145/290941.290965
https://doi.org/10.1023/A:1025779619903
https://doi.org/10.1023/A:1025779619903
https://doi.org/10.1023/A:1025779619903
https://doi.org/10.3115/v1/W15-0612
https://doi.org/10.3115/v1/W15-0612
https://doi.org/10.18653/v1/W17-5017
https://doi.org/10.18653/v1/W17-5017
http://images.pearsonassessments.com/images/tmrs/pearsonsautomatedscoringofwritingspeakingandmathematics.pdf
http://images.pearsonassessments.com/images/tmrs/pearsonsautomatedscoringofwritingspeakingandmathematics.pdf
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/D16-1193
https://storage.googleapis.com/kaggle-competitions/kaggle/2959/media/TechnicalMethodsPaper.pdf

Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Zhipeng Xie and Shichao Sun. 2019. A Goal-Driven
Tree-Structured Neural Model for Math Word Prob-
lems. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence,
pages 5299–5305, Macao, China. International Joint
Conferences on Artificial Intelligence Organization.

147

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736

