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Abstract

A peer-assessment system allows students to
provide feedback on each other’s work. An
effective peer assessment system urgently re-
quires helpful reviews to facilitate students to
make improvements and progress. Automated
evaluation of review helpfulness, with the help
of deep learning models and natural language
processing techniques, gains much interest in
the field of peer assessment. However, collect-
ing labeled data with the “helpfulness” tag to
build these prediction models remains challeng-
ing. A straightforward solution would be using
a supervised learning algorithm to train a pre-
diction model on a similar domain and apply it
to our peer review domain for inference. But
naïvely doing so can degrade the model perfor-
mance in the presence of the distributional gap
between domains. Such a distributional gap can
be effectively addressed by Domain Adaptation
(DA). Self-training has recently been shown as
a powerful branch of DA to address the distribu-
tional gap. The first goal of this study is to eval-
uate the performance of self-training-based DA
in predicting the helpfulness of peer reviews
as well as the ability to overcome the distribu-
tional gap. Our second goal is to propose an
advanced self-training framework to overcome
the weakness of the existing self-training by
tailoring knowledge distillation and noise injec-
tion, to further improve the model performance
and better address the distributional gap.

1 Introduction

Peer review is a learning tool that enables students
to evaluate their peers’ assignments or projects
(Gamage et al., 2021; Topping, 2009; Li et al.,
2019). It can help instructors enhance their teach-
ing (Çevik et al., 2015; Gamage et al., 2021), and
allow students to develop skills in assessing and
providing feedback to others. Figure 1 illustrates
the steps of the peer review process. It starts with
the authors submitting their work. The peers then
evaluate the work and provide both textual feed-
back and numerical scores. The author assesses
the feedback and tends to accept only the helpful
reviews to make further revisions (Lundstrom and
Baker, 2009). The instructors can refer the numer-
ical scores provided by the reviewers to give the
final grades. Therefore, identifying helpful peer
reviews can enhance the benefits to students from
the peer-review process (Nelson and Schunn, 2009;
Ramachandran et al., 2017). Automatic recognition
of peer-review helpfulness has been studied lim-
itedly with the help of deep learning models and
natural language processing (Xiong and Litman,
2011b;Xiao et al., 2022). However, in order to
create a reliable model that can accurately predict
helpfulness, a considerable amount of peer-review
data labeled with helpfulness is required (Chapelle
et al., 2009). The students receiving the reviews are
the most suitable individuals to label the data, but
the difficulty in collecting labeled reviews from stu-
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Figure 1: Peer review process flowchart. The pipeline
involves the evaluation of the feedback from peers by
the author. Only the helpful review is accepted and
taken into account for further revisions.

dents poses a challenge. Moreover, the subjective
nature of “helpfulness” creates ambiguity, making
it challenging to achieve a consensus in a team on
whether a review is helpful. As a result, obtaining
sufficient labeled data to develop a robust model
for predicting helpfulness remains a significant ob-
stacle.

A straightforward solution to overcome the chal-
lenges of collecting labeled data is to adapt a model
trained on a pre-existing labeled dataset from a sim-
ilar domain that includes "helpfulness" tags to our
peer review domain. Specifically, we can train the
prediction model on a “source domain” labeled
data following the supervised manner, and generate
“helpfulness” prediction on the “target domain”
unlabeled data from our peer reviews. However,
the discrepancies in data distribution between the
source and target domains, i.e., domain shift (Li
et al., 2020;Wang and Breckon, 2020), can cause
the model’s performance to degrade on unseen tar-
get domain data.

In this paper, in order to address the domain shift
issue, we propose to apply Self-training (a.k.a.,
Pseudo-labeling) (Zou et al., 2019; Lee, 2013;Feng
et al., 2021;Mei et al., 2020;Yu et al., 2021), as a
promising technique in Domain Adaptation (DA)
((Ben-David and Urner, 2012; Liu et al., 2021; Zou
et al., 2019)). Self-training-based Domain Adapta-
tion aims to transfer knowledge learned from the
source domain to the target domain, by involving
the unlabeled data from the target domain in the
model training. We hypothesize that learning from
the unlabeled data can enhance the generalization
ability, and facilitate the effective knowledge trans-
fer across domains. This hypothesis will be vali-
dated through the experiment results.

Our proposed approach for domain adaptation
using self-training follows the “student-teacher
model” framework (Pu and Li, 2023). As shown in
Figure 3, the student and teacher models will con-
stantly exchange their roles during the iterative pro-
cess, and the student model will continuously learn
from the pseudo labels predicted by the teacher
model. Self-training helps to overcome the domain
shift between the source and target domains (Liu
et al., 2021). As a novelty, our study also pro-
poses an advanced self-training framework that
utilizes knowledge distillation (Hinton et al., 2015)
and noise injection (Xie et al., 2020) techniques
to overcome some weaknesses of the traditional
self-training, and further improve the adaptation
performance. By incorporating knowledge distilla-
tion, the student model can better mimic the teacher
model and break through the limitation of only be-
ing able to learn from the “hard labels” provided
by the teacher model. Additionally, the incorpora-
tion of noise injection enables the student model to
outperform the teacher model by learning from the
augmented data, which is beyond what the teacher
model predicts.

The contributions are summarized as follows:

– We propose the use of self-training-based do-
main adaptation to predict peer review help-
fulness, which overcomes the challenge of col-
lecting labeled data and mitigates the domain
shift issue.

– We improve self-training by tailoring knowl-
edge distillation techniques and utilizing soft
labels to provide more comprehensive knowl-
edge for the student model to learn from the
teacher model.

– We improve self-training by introducing noise
during the student model training phase, en-
abling the student model to learn beyond the
predictions generated by the teacher model.

2 Related Work

2.1 Peer Review Helpfulness Prediction
Previous peer-review research has not paid much
attention to helpfulness prediction, with only a few
studies utilizing NLP techniques to identify key
features in review comments to evaluate the qual-
ity. Xiong and Litman (2011a) conducts a pioneer-
ing study on predicting peer-review helpfulness and
suggests that techniques used in other domains can
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be applied to the peer-review domain. Zingle et al.
(2019) describes a method for automatically detect-
ing suggestions in review text. Xiao et al. focus
on detecting problem statements which point out
the problems that need to be addressed in review
comments.

However, there is no study that directly investi-
gates predicting helpfulness based on the semantics
of the review content. The lack of labeled train-
ing data also poses a challenge to building such
a prediction model, due to the subjective nature
of helpfulness and controversies surrounding its
definition. Xiong and Litman (2011b) reports that
there is a great deal of variation among students and
even domain experts in terms of “what constitutes
a helpful comment.”

Fortunately, several researchers (Tsur and Rap-
poport, 2009; Qu et al., 2020; Yang et al., 2015)
have explored predicting the helpfulness of online
product reviews, which can be conveniently labeled
with “helpfulness” through user voting from online
shopping platforms. In this study, we adapt the task
of predicting the helpfulness of online product re-
views to our academic peer reviews, drastically re-
ducing the need for collecting peer-review labeled
data.

2.2 Domain Adpatation
Training models on the “source domain”(with la-
beled data) and testing them on the “target domain”
(without labeled data) using supervised learning
algorithms often fail due to the distributional gap
between the two domains, commonly known as
domain shift (Long et al., 2015).

Domain adaptation (DA) aims to alleviate the
effect of domain shift. Various methods have been
proposed to mitigate that by aligning the source
and target domain in the feature space. These ap-
proaches explicitly align their statistics or use ad-
versarial learning. For instance, Glorot et al. (2011)
proposed an autoencoder-based domain adaptation
network, which extracts high-level representations
from both source and target domain data. They
then trained a linear classifier to learn from the
source data’s extracted features and applied it to
the target data. Long et al. (2015) used a deep neu-
ral network to learn transferable features across
domains by adding multiple adaptation layers to
the task-specific representations. They match the
marginal distributions of both domains. Further-
more, Ganin and Lempitsky (2015) proposed an

adversarial-based domain adaptation approach that
adds an effective Gradient Reversal Layer (GRL)
to the model, inspired by Generative Adversarial
Networks (Goodfellow et al., 2014), to match the
domain gap.

Despite the success of the existing approaches,
Ben-David and Urner (2012) highlighted the dif-
ficulty of applying the above feature-adaptation-
based approaches in DA and suggested that none
of those methods have the capacity to general-
ize well to the unlabeled target domain data. In
this study, we propose to use self-training (a.k.a,
pseudo-labeling) as a promising alternative to the
feature-adaptation approaches to better handle the
domain shift.

2.3 Self-training
Self-training is a popular technique in semi-
supervised learning, where a supervised method
is applied for classification or regression tasks in
a semi-supervised manner. In self-training, the
model is trained on a small amount of labeled data,
then it generates predictions on the unlabeled data,
which are adopted as pseudo-labels. The model is
retrained on the combination of both labeled data
and pseudo-labeled data, and the process iterates
until convergence.

In pioneering work, Lee (2013) first introduces
the classical pseudo-labeling method, which differs
from the self-training framework in that the model
is not retrained after each pseudo-labeling. He et al.
(2020) successfully applies the self-training frame-
work in NLP tasks such as machine translation
and text summarization, also provides a compre-
hensive evaluation of its effectiveness. Another
approach proposed by Pu and Li (2023) is the self-
training framework with a “student-teacher model”,
in which a teacher model assigns pseudo-labels
to unlabeled data, and a student model is trained
on the combined dataset iteratively. However, the
vanilla self-training suffers from certain limitations
of the student model’s learning abilities, which we
defined as “inability to learn sufficiently from the
teacher model” and “inability to learn beyond the
teacher model”.

To address these limitations, we propose apply-
ing knowledge distillation and noise injection to
the self-training framework, which ensures a well-
performing student model. Our approach improves
the student model’s learning ability, achieving de-
cent results over the traditional self-training ap-
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proach.

3 Methodology

3.1 Self-training for Domain Adaptation
Self-training for domain adaptation is a bit differ-
ent from the traditional single-domain self-training
approach, the workflow is illustrated in Figure 3
and formulated using the following steps:
Requirements: Source-domain labeled dataset

DSL =
{(

xLi , yi
)}Nsl

i=1
and target-domain unla-

beled dataset DTU =
{(

xUj

)}Ntu

j=1
where Nsl and

Ntu stands for the number of samples in source
and target dataset respectively; xLi and xUj are the
vector representations of each review text; and yi
stands for the one-hot encoding label for source
domain labeled data.
Steps:

1. To initiate the self-training process, a teacher
model fτ (θ∗) (e.g., a BERT-based language
classification model (Devlin et al., 2019)) is
trained on the labeled dataset from the source
domain, to minimize the cross-entropy loss
using Equation 1.

1

Nsl

Nsl∑

i=1

CE(yi, fτ
(
xLi , θ

)
) (1)

2. The teacher model is then used to generate
pseudo-labels on the unlabeled dataset from
the target domain, as shown in Equation 2.

ŷj = fτ
(
xUj , θ∗

)
,∀j ∈ [1, Ntu] (2)

3. A student model fs (θ′∗) (e.g., BERT-based
language classification model) is then learned
to minimize the cross entropy loss on a com-
bined dataset DC = {(xc)}Nc

c=1, which in-
cludes the source domain labeled data DSL

and target domain pseudo-labeled data ˆDTU .
The loss is calculated using Equation 3.

1

Nc

Nc∑

c=1

CE(yc, fs
(
xc, θ

′)) (3)

where Nc = Nsl + Ntu, (xc, yc) represents
(xi, yi) and (xj , ŷj) for the source labeled set
and the target pseudo-labeled set, respectively.

3.2 Knowledge Distillation — “Student
Learns More From Teacher”

Knowledge Distillation (KD) is a technique for
compressing a model by using a more complex
teacher model that has already been trained to guide
a smaller, less-complex student model. This is done
to maintain the accuracy of the original teacher
model while reducing the model size and computa-
tional resources required (Hinton et al., 2015).

In traditional classification, the model aims to
map input features to the one-hot labels, which
only provide class information. However, with
KD, the teacher model can generate a continuous
distribution of class labels (i.e., soft labels) for each
sample, allowing for more information to be used.
The student model is then trained to closely match
the output distribution of the teacher model.

Specifically, KD employs softmax probability to
generate soft labels. In contrast, traditional classifi-
cation tasks use cross-entropy as the loss function,
with hard one-hot labels as targets. However, as
highlighted by Hinton et al. (2015), this approach
can result in the loss of valuable information on the
similarity between and within classes. By using the
probability output from the softmax layer instead,
KD is able to retain more information.

Incorporating the KD technique into our self-
training framework aims to improve the perfor-
mance of the student model by acquiring additional
knowledge from the pseudo-labels generated by
the teacher model. Figure 3 illustrates the process
of knowledge distillation in self-training. In this
process, we retained both the hard and soft pseudo-
labels generated by the teacher model to preserve
an adequate amount of information. Consequently,
we substituted the conventional cross-entropy loss
function with the KD loss function (Hinton et al.,
2015) as represented in Equation 4.

L = −
K∑

i=1

phardi log qi+
K∑

i=1

psofti log(
psofti

qi
) (4)

The first segment of the equation calculates the
cross-entropy loss between the hard pseudo-labels
phardi (one-hot encoding), which are generated by
the teacher model and represented through one-hot
encoding, and the soft output qi produced by the
student model. The latter part computes the Kull-
back–Leibler divergence (Wikipedia contributors,
2023) between the soft pseudo-labels psofti from
the teacher model and the output qi of the student
model. Our objective is to account for both the
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Figure 2: Self-training pipeline for peer review helpfulness detection across domains. A “Teacher model” will be
trained on the labeled data from the source domain. Then a “Student model” will be trained using both the labeled
data from the source domain and the pseudo-labeled data from the target domain labeled by the teacher model. The
trained “Student model” will be used as the new “Teacher model” in the next iteration.

Figure 3: Schematic diagram of the KD loss computa-
tion in single self-training iteration

hard and soft pseudo-labels’ information while cal-
culating the loss.

3.3 Noise Injection – “Student Learns Beyond
Teacher”

The use of Knowledge Distillation enables the stu-
dent model to learn more information from the
soft labels. However, it is crucial to acknowledge
that the primary objective of employing KD is to
train a smaller and more efficient student model
that has the same capabilities as the teacher model.
Conversely, in self-training, our goal is to train a
superior performing student model. To achieve this,
we must ensure that the student model is not less
complex than the teacher model and has the ability
to capture more variance of the data. Unfortunately,
incorporating KD is insufficient to accomplish this.

Noise injection creates a more challenging en-
vironment for the student model to learn beyond
the predictions. In this study, we utilize data aug-
mentation as the noise injection method in the stu-

dent model training phase. We implement back-
translation (Ng et al., 2019) as a prominent text-
augmentation approach on the target domain’s
pseudo-labeled data. For the augmented data, we
keep the same pseudo-labels (both hard and soft).
Consequently, this requires the student model to
ensure that a translated version of the text yields
the same output as the original text, which is also
known as consistency regularization (Ho et al.,
2022). By doing this, we improve the student
model by providing augmented data to learn be-
yond what the teacher model predicts.

4 Experiments and Results

4.1 Datasets
Source Domain Labeled Data. Our source do-
main labeled data is obtained from the Amazon
Product Review (Ni et al., 2019), which contains 29
categories of online products. Since the categories’
relevance to our peer-review data varies, we con-
duct experiments on two product categories. The
“software” category is chosen, since it is closely
related to our peer-review data, as both involve
user-experience feedback on developed applica-
tions. The “automotive” category is also selected
to evaluate whether data from a less-relevant do-
main would impact the performance of domain
adaptation. Additionally, we create two datasets of
varying size within each category and investigate
how significantly the size affects the performance.

Our objective is to predict binary class labels of
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Figure 4: Helpfulness rate distribution of “software”
product review. Note in these plots that the majority of
the reviews have the “helpfulness ratio” larger than 0.8.

reviews, where “0” represents “not helpful” and “1”
represents “helpful”. However, the original data
contain the “helpfulness” tags, which have been
collected through user votes formatted as: “the
number of users who find the review helpful out of
the total number of users who vote for the review”
(e.g., [2,3] implies that out of 3 users who voted
on the review, 2 of them rated it as helpful, thus
the “helpfulness ratio (hr)” is 2/3). To convert this
into binary class labels, we decide to set a thresh-
old for the “helpfulness ratio” and split the data
into the two classes of “helpful” and “not helpful”.
Figures 4 and 5 illustrate the distribution of the
“helpfulness ratio” for “software” and “automotive”
datasets. To create a clear distinction between the
two classes, we choose the reviews with a “helpful-
ness ratio” above 0.85 as helpful and below 0.35 as
unhelpful reviews.

After text cleaning and processing, we collect
500 and 2000 labeled product reviews for each of
the two categories. We also ensured that the class
labels are evenly distributed.
Target Domain Unlabeled Data The peer review
data of the target domain is collected from the Ex-
pertiza system (Gehringer et al., 2006), which is a
web-based peer review system used in a masters-
level computer science class. The system requires
students to review assignments from their peers
and provide numerical scores and textual feedback.
We extract the textual feedback data from the fall
semesters of 2017 to 2020, resulting in 24,619 re-
view samples after cleaning and processing.
Target Domain Validation Data. We should also
need a validation set from the target domain to
assess whether it generalized well by using our

Figure 5: Helpfulness rate distribution of “automotive”
product review.

proposed self-training approach. However, col-
lecting “helpfulness” tags in our peer review sys-
tem is challenging. Fortunately, the Expertiza sys-
tem (Gehringer et al., 2006) provides a way for
students to tag the reviews they received as hav-
ing or not having particular characteristics. These
tags identified features such as contains problem
statement and contains suggestion. A study con-
ducted by Xiao et al. (2022) states that these two
features are highly correlated with review helpful-
ness. Therefore, we decide to utilize these tags as
a proxy for “helpfulness” tag to create our target
domain validation data.

We generated the “helpfulness” label for our vali-
dation sets by considering review comments tagged
as containing both “problem statement” and “sug-
gestion” as “helpful” and those without either of
these two as “not helpful”. (Comments containing
either "problem statement" or "suggestion" tags,
but not both, were excluded from the dataset.) The
result was a balanced validation set of 7000 re-
views, consisting of an equal number of “helpful”
and “not helpful” samples.

4.2 Experiment Settings
Supervised Learning Baseline The first baseline
method uses a supervised learning approach. We
aim to investigate the existence of a domain shift
in our task. We applied the pre-trained “bert-
base-uncased” model from the Hugging Face li-
brary (Wolf et al., 2019) and fine-tuned it on the
labeled dataset from the source domain. Then, we
validated its performance on the target domain val-
idation set. The domain shift is evaluated by cal-
culating the accuracy score of the model on the
validation set. The detailed settings of this baseline
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Parameters Value
Tokenizer ’bert-based-uncased’
Classification model ’bert-based-uncased’
Number of classes 2
Loss function Cross-entropy loss
Optimizer Adam
Dropout 0.3
Learning rate 2e-5
Epoch 5
Batch size 16

Table 1: Supervised learning baseline experiment setting

are presented in Table 1.
Self-training Baseline We establish our second
baseline as applying the vanilla self-training ap-
proach to examine whether learning from the target
domain unlabeled data could enhance the perfor-
mance and address the domain shift. As shown
in Figure 3, the training of the teacher model uses
the exact same settings as the supervised learning
baseline presented in Table 1. Afterward, the self-
training loop is initiated, where each loop starts by
generating pseudo-labels using the trained teacher
model and ends by taking the trained student model
as the new teacher model. In the self-training phase,
we have set the value of outer_epoch to 10, which
indicates how many times we will repeat the loop
described above. Additionally, we also set the value
of inner_epoch to 3, which represents the number
of training iterations of the student model in each
self-training loop.
Our Proposed Approach To overcome the limita-
tions of the self-training, we propose an approach
that integrates knowledge distillation and noise in-
jection in the self-training loop. The core idea
behind knowledge distillation is to generate soft
pseudo-labels in the form of prediction probabil-
ities to enable student models to learn from addi-
tional knowledge. Therefore, in addition to retain-
ing the prediction probabilities from the teacher
model, we also replace the cross-entropy loss with
the “kd_loss” (defined in Equation 4) for training
the student model. However, we continue to use the
cross-entropy loss for training the teacher model
with hard labels. Consequently, the general loss
function of both the student and teacher models can
be formulated as follows:

loss = α× KL_loss + (1− α)× CE_loss (5)

in which we introduce an α value to regulate the
weight of the KL divergence loss and the cross-
entropy loss. We set α to 0 to exclusively use the
cross-entropy part in the teacher model training. In

contrast, during student model training, we set α
to 0.5 to consider both parts of the loss with soft
and hard pseudo-labels. It would be interesting as
future work to experimentally search for an optimal
value of α to explore its impact on performance.

To add the noise injection part, we utilize the pre-
trained EN-DE/DE-EN and EN-RU/RU-EN back-
translation models (Ng et al., 2019). Considering
that transformer-based augmentation models can
exponentially increase the computation time, we
limit the amount of data to be augmented at 40%
by setting the augmentation ratio to 0.4.

4.3 Experiment Results
The experimental results are presented in Table 2,
where we evaluate the performance of our proposed
approach, by measuring the accuracy on the vali-
dation dataset and comparing it with the baseline
approaches. To analyze the results, we aim to an-
swer the following research questions:
RQ1: Does domain shift exist in our task?
According to the first row of Table 2, training the
model on product reviews and using it to predict
peer reviews leads to very poor results. The ac-
curacy scores are mostly around 50%, and some
are even worse than random guessing. This sug-
gests that the domain shift does exist in our case,
and without applying any domain adaptation tech-
niques, the model’s performance will be poor.
RQ2: Is the performance different for different
categories of product reviews?
In addition to assessing the existence of domain
shift in our task, we are also interested in investigat-
ing the extent to which domain shift differed across
various categories of product review data. Table 2
shows that the category "software" product review,
which is more relevant to the peer review domain,
yields better results than the "automotive" review.
For example, when using the same 2000 labeled
data, training on the “software” category yields
55.1% accuracy with the supervised learning base-
line, while only 43.83% accuracy is achieved on the
“automotive” category. After applying our proposed
approach, we achieve 68.52% accuracy on “soft-
ware” over 48.80% on “automotive” data. Hence,
we conclude that source domain data with differ-
ent relevance to the peer review data will result in
varying degrees of the distributional gap, which is
a crucial factor in domain-adaptation tasks.
RQ3: Does self-training mitigate domain shift
by leveraging unlabeled data from the target
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Amazon “Software” data Amazon “Automotive” data

500 labeled data 2000 labeled data 500 labeled data 2000 labeled data

Supervised Learning 6034% 55.1% 41.02% 43.83%

Self-training 60.67% 66.64% 42.31% 43.3%

Our Approach 63.05% 68.52% 52.54% 48.61%

Table 2: Accuracy scores of the proposed approach on various source domain labeled datasets

domain?
Examining the second row of Table 2, fairly good
improvements can be observed by applying self-
training. In addition to an average improvement
of 3.16% in accuracy across all datasets, the great-
est improvement of 11.54% is achieved with 2000
labeled “software” reviews. This convincingly
demonstrates the benefits of learning from unla-
beled target-domain data, even in the absence of
labeled information. The results indicate consider-
able effectiveness of using self-training to tackle
domain shift issues.
RQ4: Is our proposed approach able to enhance
the performance of self-training?
We aim to assess whether our proposed approach
is able to improve performance and overcome the
limitations of the self-training baseline. The third
row of Table 2 shows that our approach, which
incorporates knowledge distillation and noise in-
jection, outperforms the self-training baseline. We
achieved the best accuracy score of 68.52%, the
greatest improvement of 10.42%, and an average
improvement of 4.95% over the self-training base-
line. These results demonstrate that by incorporat-
ing knowledge distillation and noise injection, the
student model learns more effectively and outper-
forms the teacher model.
RQ5: Does the effectiveness of the proposed ap-
proach depend on the size of the source-domain
labeled dataset?
We perform experiments using different sizes of
labeled datasets from the source domain. As pre-
sented in Table 2, the "software" dataset shows
better performance with 2000 labeled reviews com-
pared to 500 labeled reviews. Surprisingly, we find
that for the "automotive" reviews, training with
only 500 labeled reviews outperforms even 2000
labeled reviews. We hypothesize that with a less
relevant source domain dataset, a larger labeled
dataset can result in more misleading training due
to a larger distributional gap. Furthermore, our pro-

“Software”
labeled data

“Automotive”
labeled data

Self-training +
kd

67.14% 44.87%

Self-training +
noise

68.9% 43.03%

Our proposed
approach 68.52% 48.61%

Table 3: Comparison of the accuracy scores by applying
KD and noise injection respectively with self-training.

posed approach shows a greater improvement over
the self-training baseline with 500 labeled reviews
than with 2000 labeled reviews of both categories.
This indicates that our approach is more effective
in improving self-training, given that only limited
data can be gleaned from the source domain.

4.4 Ablation Study
In addition to the results presented in Table 2, we
also examine the effect of each individual com-
ponent in our proposed approach on the overall
performance. We conduct extensive experiments
by using only knowledge distillation or noise in-
jection. The results are evaluated with the 2000
labeled reviews from both categories, which are
shown in Table 3.

The table reveals some intriguing findings. We
unexpectedly achieve a better result than our pro-
posed approach by using only the noise injection,
trained on the “software” labeled data. This in-
dicates that using both components together may
cause a performance drop. Similarly, we observe
that using KD alone leads to better performance
compared to noise injection alone, for the “auto-
motive” review dataset. This contrasts with our
finding for the “software” data. In the future, we
plan to explore ways to optimize the use of both
components and make them mutually beneficial.
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5 Conclusion

This study first highlights the pedagogical signifi-
cance of predicting helpful reviews in peer assess-
ment to benefit student learning, and then considers
the challenge of collecting labeled data to build a re-
liable prediction model. We explore a solution via
domain adaptation to reduce the need of collecting
labeled data. Our primary contribution is proposing
self-training as an optimal domain-adaptation tech-
nique to address the domain-shift issue that com-
monly arises when transferring knowledge between
domains. Furthermore, we incorporate knowledge
distillation and noise injection into self-training to
improve performance. The experimental results
exhibit promise in utilizing self-training and show
the effectiveness of our proposed approach. In ad-
dition, we discuss future work in optimizing the
integration of knowledge distillation and noise in-
jection.
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