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Abstract

Large-scale pre-trained language models such
as GPT-3 have shown remarkable performance
across various natural language processing
tasks. However, applying prompt-based meth-
ods with GPT-3 for Grammatical Error Cor-
rection (GEC) tasks and their controllability re-
mains underexplored. Controllability in GEC is
crucial for real-world applications, particularly
in educational settings, where the ability to tai-
lor feedback according to learner levels and
specific error types can significantly enhance
the learning process. This paper investigates
the performance and controllability of prompt-
based methods with GPT-3 for GEC tasks us-
ing zero-shot and few-shot setting. We explore
the impact of task instructions and examples
on GPT-3’s output, focusing on controlling as-
pects such as minimal edits, fluency edits, and
learner levels. Our findings demonstrate that
GPT-3 could effectively perform GEC tasks,
outperforming existing supervised and unsuper-
vised approaches. We also showed that GPT-3
could achieve controllability when appropriate
task instructions and examples are given.

1 Introduction

Grammatical Error Correction (GEC) is an essen-
tial application of Natural Language Processing
(NLP) in educational settings, as it significantly
enhances learners’ language skills and writing per-
formance (Kaneko et al., 2022). In real-world appli-
cations, controlling specific GEC settings, such as
minimal and fluency edits and learner level-based
corrections, is crucial to address diverse learning
needs and scenarios (Napoles et al., 2017; Bryant
et al., 2019; Flachs et al., 2020). Although recent
GEC approaches based on supervised learning have
achieved remarkable progress, they heavily rely on
large training datasets comprising both genuine and
pseudo data (Xie et al., 2018; Ge et al., 2018; Zhao
et al., 2019; Lichtarge et al., 2019; Xu et al., 2019;
Choe et al., 2019; Qiu et al., 2019; Grundkiewicz

et al., 2019; Kiyono et al., 2019; Grundkiewicz
and Junczys-Dowmunt, 2019; Wang and Zheng,
2020; Zhou et al., 2020; Wan et al., 2020; Koyama
et al., 2021a). Collecting such data for each specific
setting is challenging and time-consuming, which
limits the scalability of these methods in various
learning situations.

Prompt-based methods utilize large-scale pre-
trained language models (PLMs), such as GPT-3,
and have demonstrated promising results in nu-
merous NLP downstream tasks. These tasks in-
clude natural language inference, question answer-
ing, and summarization (Brown et al., 2020; Rad-
ford et al., 2019). Given the demand for control in
GEC tasks across various settings, prompt-based
methods are appealing because they deliver excep-
tional performance without needing extensive la-
beled data. Despite the success of prompt-based
methods in multiple NLP tasks, their application
to GEC remains under-explored. Although Coyne
and Sakaguchi (2023) and Fang et al. (2023) have
recently assessed prompt-based methods on select
GEC benchmarks, a comprehensive analysis has
yet to be conducted. This study aims to bridge
this gap by concentrating on in-depth analyses of
prompt-based methods and their controllability, as-
pects that have not been thoroughly investigated in
previous research.

Our research seeks to address the following ques-
tions: 1) To what extent can PLMs using prompt-
based methods solve GEC tasks? and 2) Is it possi-
ble to control GEC settings with prompts written
in natural language using prompt-based methods?

In this work, we demonstrate that prompt-based
methods with GPT-3 (Brown et al., 2020) achieve
outstanding performance in GEC tasks (Section 3).
In addition, the approach provides better control
over the GEC process using task instructions and
examples (Section 5). We conduct analyses to ex-
amine the impact of different types of task instruc-
tions on GPT-3’s performance in both zero-shot
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and few-shot setting, which emphasizing the im-
portance of appropriate task instructions for GEC
tasks (Section 4.1). Additionally, we investigate
the effect of varying the number of examples in
few-shot setting, and reveal that performance im-
proves as the number of examples increases, albeit
not strictly linearly (Section 4.2).

Furthermore, we explore the model’s control-
lability in various GEC scenarios, more specifi-
cally, its ability to concentrate on either minimal
or fluency aspects (Section 5.1) and edits based on
learner levels (Section 5.2). Experimental results
indicate that task instructions alone may be suffi-
cient to control editing without examples. How-
ever, we found that combining task instructions
with examples resulted in more effective control-
ling performance. This indicates the importance
of both task instruction and examples for better
control of GEC settings using prompt-based meth-
ods, although the example set tends to have more
importance.

2 Overall Experimental Settings

In this study, we designed a series of experiments
using the prompt-based method with GPT-3 to
evaluate the performance in GEC tasks. We uti-
lized the GPT-3 model (text-davinci-003)
through the API provided by OpenAI1. Our exper-
iments were conducted in two settings: zero-shot
and few-shot.

Zero-shot In the zero-shot setting, we assessed
GPT-3’s ability to perform GEC tasks without any
prior examples. We employed the following tem-
plate for prompts in the zero-shot setting:

{task instruction}: {input text};
output:___

Few-shot For the few-shot setting, we imple-
mented in-context learning as described by Brown
et al. (2020). We provided the model with a few ex-
amples to guide its understanding of the GEC task.
We randomly sampled pairs of examples from the
training (or validation) sets of each experimental
setting to serve as examples for the model. De-
tails on the number and source of examples used in
each experiment are described in the corresponding
sections below. The template for prompts in the
few-shot setting is as follows:

{task instruction}

1https://openai.com/blog/openai-api

{example 1}
...
{example N}
{input text}; output:___

Prompt We used natural language text prompts
for all our experiments. The task instruction
within the prompt serves as a directive that
informs the model about the desired outcome
of each task. We varied the task instructions in
both zero-shot and few-shot setting to examine
the model’s adaptability to different phrasings
(refer to Section 4.1). The instruction candidates
employed in our prompt analyses are listed in
Appendix A. Examples of task instructions include:
Correct the grammatical errors
in the following sentence, Revise
mistakes in this text, and Rewrite
the following text with proper
grammar.

3 General Performance

To address research question 1) mentioned in Sec-
tion 1, we investigated the overall performance of
the prompt-based method with GPT-3 in GEC tasks.
This investigation is particularly relevant given the
increasing prevalence of GPT-3 in various NLP
applications and the need to assess its potential
capabilities for GEC tasks specifically.

3.1 Settings
We evaluated the performance of GPT-3 on
three GEC test sets: JFLEG (Napoles et al.,
2017), CoNLL2014 (Ng et al., 2014), and
W&I+LOCNESS (Bryant et al., 2019; Granger,
1998) using both zero-shot and few-shot settings
with 16 examples. We used examples from the
training set of JFLEG, NUCLE (Dahlmeier et al.,
2013), and W&I+LOCNESS as examples in the
few-shot setting when evaluating with JFLEG,
CoNLL2014, and W&I+LOCNESS test sets, re-
spectively.

We compared our prompt-based methods to
baselines, including supervised and unsupervised
approaches. For the supervised approach, we
trained a Transformer (big) using the settings de-
scribed in Vaswani et al. (2017) and employed an-
notated data from multiple training sets. These
sets included W&I+LOCNESS, FCE corpus (Yan-
nakoudakis et al., 2011), Lang-8 Corpus of Learner
English (Mizumoto et al., 2012), and NUCLE. Af-
ter removing uncorrected sentence pairs, the train-
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Method JFLEG CoNLL2014 W&I+LOCNESS
Transformer (big) 53.22 51.11 51.36
Grundkiewicz and Junczys-Dowmunt (2019) 56.18 44.23 47.89
Grundkiewicz et al. (2019) – 26.76 –
ChatGPT zero-shot with CoT (Fang et al., 2023) 61.40 51.70 36.10
GPT-3 zero-shot 64.51 56.05 53.07
GPT-3 16-shot 67.02 57.06 57.41

Table 1: Comparison of GPT-3’s performance using both supervised and unsupervised approaches on the JFLEG,
CoNLL2014, and W&I+LOCNESS test sets in zero-shot and few-shot settings, with 16 examples. The upper block of
the table shows the results for the supervised approach, while the middle block shows the results for the unsupervised
approaches. The scores are GLEU scores for JFLEG, F0.5 scores for CoNLL2014, and W&I+LOCNESS.

ing data used to train the Transformer model was
approximately 600K pairs. For unsupervised ap-
proach, we compared our methods to previous
work in the literature including Grundkiewicz and
Junczys-Dowmunt (2019) and Grundkiewicz et al.
(2019) where models were pre-trained with syn-
thetic data. We also compared with the result of
ChatGPT performance in zero-shot with chain-of-
thought (CoT) reported in Fang et al. (2023).

3.2 Results

Table 1 shows the GLEU scores for JFLEG, F0.5

scores for CoNLL2014, and W&I+LOCNESS.
From the table, GPT-3 performed competitively
in the GEC tasks in both zero-shot and few-shot
settings, outperforming the Transformer model in
all test sets. In the zero-shot setting, GPT-3 sur-
passed the Transformer, with gains of about 11, 5,
and 2 percentage points on JFLEG, CoNLL2014,
and W&I+LOCNESS, respectively. The few-shot
setting with 16 examples further improved GPT-3’s
performance, indicating the model’s capability to
adapt to the task with minimal examples quickly.

When comparing GPT-3 to unsupervised meth-
ods, we observe that GPT-3 outperforms other ap-
proaches in all test sets consistently. This com-
parison demonstrates the advantage of GPT-3 over
existing unsupervised methods, even in the zero-
shot setting. When comparing the performance of
ChatGPT in the zero-shot setting with CoT, GPT-3
outperforms ChatGPT CoT in all three test sets.
These results indicate GPT-3 is a more effective
model for GEC tasks, especially in unsupervised
settings.

4 Investigation on Prompt

In this section, we analyze the impact of different
factors in prompt on the performance of GPT-3 in

GEC tasks. We focus on two factors: (1) the type
of task instructions used and (2) the number of ex-
amples used in the few-shot settings. Our primary
objective is to comprehend the influence of various
factors in prompts to the models’ output, which
will enable us to optimize GPT-3 more effectively
for GEC tasks.

4.1 Effect of Task Instruction
In this section, we examine the effect of various
types of task instructions on GPT-3’s performance
in GEC tasks. We conduct evaluations using differ-
ent task instructions in both zero-shot and few-shot
settings.

4.1.1 Settings
We created three types of task instructions, with
ten candidates per type, following related work
on natural language inference task (Webson and
Pavlick, 2022). The types of task instructions are
as follows (See Appendix A for details). We used
the JFLEG validation set in this experiment.

Instructive instructions explicitly request
the model to correct grammatical errors in the
given text, such as Correct grammatical
errors in this sentence and Revise
grammatical mistakes in the
following text.

Misleading instructions do not directly ask
for grammar correction but instead require
paraphrasing or rewriting, such as Paraphrase
the following sentence and Rewrite
the following text to make it
clearer.

Irrelevant instructions are unrelated to gram-
mar correction, such as Translate the
following sentence and Write a news
headline about this sentence.
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Figure 1: Comparison of GPT-3’s performance using
different types of task instructions (Instructive, Mislead-
ing, and Irrelevant) in zero-shot and few-shot settings
on GEC tasks.

4.1.2 Result

Figure 1 shows the summary of the results when us-
ing different types of instructions in both zero-shot
and few-shot settings. The findings reveal that task
instructions significantly affect the performance of
GPT-3 in GEC tasks.

In the zero-shot setting, instructive instructions
produced the highest average score (65.54), while
irrelevant instructions resulted in the lowest aver-
age score (17.05), clearly demonstrating that the
type of task instruction impacts the model’s perfor-
mance. Misleading instructions fell in the middle,
with an average score of 43.45.

In few-shot settings, instructive instructions still
outperformed the other two types, but the perfor-
mance gap between instructive and misleading in-
structions decreased as the number of examples
increased. The variance of the scores decreased
with an increasing number of examples, suggest-
ing that the model’s performance becomes more
consistent as it receives more examples.

When comparing the different few-shot settings,
we observed a clear trend of increasing perfor-
mance as the number of examples increased. The
standard deviation also decreased as the number
of examples increased, indicating that the model’s
performance became more consistent with more
examples.

4.2 Effect of Number of Examples

In this section, we examine the impact of the num-
ber of examples used in few-shot settings on GPT-
3’s performance. Our objective is to understand
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Figure 2: Effect of the number of examples on GPT-
3’s performance in few-shot settings, evaluated on the
JFLEG test set with a fixed task instruction.

how providing varying numbers of examples to the
model influences its performance. By maintaining
a fixed instruction and focusing solely on varying
the number of examples, we aim to better compre-
hend their effect on the model’s performance.

4.2.1 Settings
We conducted experiments on the JFLEG test set
to examine the effect of the number of training
examples on the model’s performance. The task
instruction was kept consistent across all experi-
ments. To perform the experiments, we randomly
sampled examples from the training set of the JF-
LEG dataset. We tested the model with 2, 4, 8, 16,
32, and 64 examples, limiting the maximum num-
ber of examples to 64 due to the maximum input
length of the model employed in our study.

4.2.2 Result
The results obtained from each experimental set-
ting are presented in Figure 2. Our experiments
revealed a clear trend: performance improved as
the number of examples increased. Our analysis
further indicated that the models benefit from hav-
ing more examples during the few-shot learning
process. The highest score of 69.25 was achieved
with 64 examples, suggesting that providing more
examples can offer better guidance and context for
the models to understand and effectively perform
the task.

However, it is important to note that performance
improvement is not strictly linear with the increase
in the number of examples. For instance, the score
slightly dipped from 67.11 to 66.67 when the num-
ber of examples increased from 16 to 32. This
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Figure 3: Comparison of GPT-3’s controllability for minimal and fluency edits using CoNLL2014 and JFLEG test
sets, respectively, measured in GLEU scores.

deviation from linearity could be attributed to the
quality of the examples or the inherent variability in
the models’ performance. Further investigation is
required to understand better the factors contribut-
ing to these fluctuations and identify the optimal
number of examples needed to maximize perfor-
mance.

5 Controllability through Prompt

In this section, we explore GPT-3’s controllability
for GEC tasks through prompt-based methods. Our
experiments focus on two settings: (1) comparing
the model’s performance when instructed to make
minimal edits versus emphasizing fluency, and (2)
tailoring the editing to different learner levels, in-
cluding beginner, intermediate, advanced, and na-
tive speakers. We aim to gain insights into GPT-3’s
flexibility and controllability under various condi-
tions. We also analyze the relative influence of task
instruction and examples to identify the factor that
significantly impacts the model’s output.

5.1 Minimal vs. Fluency Edits

5.1.1 Settings
We evaluated controllability for minimal and flu-
ency edits using the CoNLL2014 and JFLEG test
sets, respectively. CoNLL2014 is a widely-used
benchmark for GEC tasks, while JFLEG focuses
on fluency-based evaluation. We conducted
experiments in zero-shot and 16-shot settings.
We used different task instructions to control the
settings in the prompts, such as ’Revise the
following sentence with proper
grammar’ for minimal edits and ’Revise
the following sentence to improve
fluency’ for fluency edits.

We assessed the models using performance-
based evaluation and edit distance-based evalua-
tion. Performance-based evaluation measures the
model’s error correction or fluency improvement
ability, while edit distance-based evaluation quan-
tifies the difference between original and revised
sentences, offering insights into the extent of edit-
ing performed.

5.1.2 Results
Performance-based Evaluation Figure 3 com-
pares scores in performance-based evaluation for
minimal and fluency edit instructions. In the zero-
shot setting, minimal edit instructions perform bet-
ter on the CoNLL2014 test set, while both instruc-
tions yield comparable scores on the JFLEG set. In
the few-shot setting, higher scores are observed
when using corresponding task instructions for
each test set, emphasizing the effectiveness of text
prompts in controlling editing settings. The dis-
crepancy between zero-shot and few-shot settings
might be due to the model’s limited understanding
of the task in the zero-shot setting. Additional ex-
amples in the few-shot setting enable the model to
comprehend the task’s objective better and adjust
its output accordingly.

Additionally, we also compared the prompt-
based method with a supervised controlling method
that uses special tokens as in Johnson et al. (2017),
where different special tokens were used to control
target languages in multilingual translation. We
trained a Transformer (Big) encoder-decoder with
annotated data tagged with special tokens indicat-
ing minimal and fluency edits settings. Despite
using more training data, this supervised method
failed to control specific settings while achieving
higher scores on both test sets with fluency edit
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Figure 4: Edit distance distributions for minimal and
fluency edits on CoNLL2014 and JFLEG test sets, re-
spectively, as part of the edit distance-based evaluation
for controllability of prompts.

tokens, as in Figure 3. This finding highlights the
potential advantages of the prompt-based approach.

Edit Distance-based Evaluation Figure 4
presents edit distance distributions for each setting
as part of edit distance-based evaluation. A shift to
the right indicates more edits performed with flu-
ency edit instructions. In the few-shot setting, the
difference in edit distance distributions between
minimal and fluency edits is smaller than in the
zero-shot setting, which can be attributed to the
influence of the examples presented in the prompt.
The model’s ability to generalize from examples in
the few-shot setting may diminish the difference
in edit distance between the two settings, further
emphasizing the importance of carefully selected
examples.

In summary, the prompt-based method using
GPT-3 can effectively control GEC task outputs
for either minimal or fluency edits. Controllabil-
ity is more evident in few-shot settings, where
additional examples help the model adapt its be-
havior according to the given instructions. The
edit distance-based evaluation further supports the
model’s ability to adjust its editing behavior based
on the prompt, showcasing its potential for practi-
cal applications.
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Figure 5: Impact of task instructions with vary-
ing additional information on GPT-3’s performance
in GEC tasks, evaluated on the validation sets of
W&I+LOCNESS. The experiment features three set-
tings: No Info, Positive Info, and Negative Info. The
x-axis represents different CEFR levels (A, B, C) and
native speakers (N) included in the validation set.

5.2 Learner Level-based Correction
5.2.1 Settings
In this section, we examine GPT-3’s adaptability to
diverse GEC task requirements and contexts by ana-
lyzing the impact of varying additional information
in task instructions. We conducted experiments in
both zero-shot and few-shot (16-shot) settings. We
utilized the W&I+LOCNESS validation sets, com-
prising text from various CEFR levels (A: Beginner,
B: Intermediate, C: Advanced) and native speakers
(N) as evaluation sets. We devised an experiment
with three settings based on the following types of
additional information (refer to Appendix B):

No Info: No extra information is provided.

Positive Info: Information that supports the
input sentence’s characteristics, such as the number
of errors to be revised. Example: "Revise
mistakes in the following text
written by a beginner learner
with a lot of mistakes."

Negative Info: Information that contrasts with
the input sentence’s characteristics, e.g., a text
written by a beginner learner with many errors
but described as having few. Example: "Revise
mistakes in the following text
written by an advanced learner
with only a few mistakes."

5.2.2 Results
Figure 5 shows the results of controlling task in-
struction with additional information on learner lev-
els. In the zero-shot setting, positive information
improved performance, while negative information
adversely impacted output across most learner lev-
els. This demonstrates the influence of additional
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information in task instructions. In the few-shot
setting, task instructions without additional infor-
mation (No Info) achieved comparable scores to
cases with Positive Info, suggesting that the model
effectively utilizes examples to understand the de-
sired correction level. However, with Negative
Info, performance dropped for most learner levels
compared to No Info and Positive Info cases.

5.3 Effect of Task Instruction vs. Examples

In this section, we present an experiment to ex-
amine the relative effect of task instruction and
examples on GPT-3’s performance in controllabil-
ity, in few-shot settings. Our primary objective
is to determine which of these two components,
task instruction and example, has a more signifi-
cant impact on the model’s outputs. Moreover, we
extend our investigation to explore the influence
of examples on the editing process of the output,
providing a more comprehensive understanding of
the interplay between these variables in the context
of few-shot learning.

5.3.1 Settings
To investigate the relative influence of task instruc-
tions and examples independently, we designed two
experiments, each featuring distinct conditions:

Varied Task Instruction with Fixed Examples
(VIFE) We modified the task instructions while
maintaining a constant set of examples. This ap-
proach allows us to assess the influence of task
instructions on the model’s performance.

Fixed Task Instruction with Varied Examples
(FIVE) We utilized a single task instruction and
altered the set of examples. This condition helps
us evaluate the impact of examples on the model’s
performance.

In this experiment, we employed the JFLEG
and CoNLL2014 test sets. We assessed the per-
formance using F0.5 score for CoNLL2014 and
GLEU for JFLEG. For the VIFE condition, we pre-
pared a fixed set of examples and a varied set of
task instructions for each dataset, similar to the ap-
proach in Section 5.1. We used task instructions
that requested the model to perform minimal edits
on the CoNLL2014 test set and fluency edits on
the JFLEG test set. For the FIVE condition, we
prepared fixed task instructions and varied exam-
ples from the training sets of NUCLE and JFLEG,
which correspond to minimal and fluency edits,
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Figure 6: Comparison of the impact of task instructions
and number of examples in few-shot settings. VIFE
condition examines the effect of varied task instructions
with fixed examples, while FIVE condition evaluates the
impact of fixed task instructions with varied examples.

Test set
Example from

JFLEG NUCLE
Fluency Edits

JFLEG 0.1569 0.1893
CoNLL2014 0.4443 0.4058

Minimal Edits
JFLEG 0.2283 0.3038
CoNLL2014 0.4158 0.3768

Table 2: Impact of example set on GPT-3’s perfor-
mance in few-shot settings evaluated on JFLEG and
CoNLL2014 test sets, measured by Jensen-Shannon dis-
tance. Diagonal entries show closer alignment between
model output and corresponding example set.

respectively. We conducted experiments in this
section with 16-shot setting.

5.3.2 Results
Figure 6 summarizes the results regarding the per-
formance scores. In both CoNLL2014 and JFLEG,
we observed performance gaps between the two
settings, minimal and fluency edits. However, the
gaps were more drastic when changing the exam-
ple set compared to varying the task instruction.
These results suggest that examples play a more
critical role in controlling the model’s behavior
than task instructions, as changing the example set
leads to more significant differences in achieving
the desired output. This is likely because exam-
ples provide specific and contextual information,
while task instructions can be abstract and open
to interpretation. This highlights the importance
of carefully selecting examples to optimize model
performance.

We further investigated the example set’s impact
on model output, using Jensen-Shannon distance to
compare edit distance distributions in both minimal
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and fluency edits settings. Lower Jensen-Shannon
distance indicates a more similar edit distribution
between the example set and model output. Results
in Table 2 show lower distances in diagonal entries,
signifying closer alignment between the model out-
put and corresponding example set. This highlights
the importance of carefully selecting examples to
guide the model in generating outputs with desired
characteristics.

6 Related Work

Supervised learning approaches have predomi-
nantly driven GEC research, resulting in state-of-
the-art performance. Encoder-decoder models are
commonly employed in GEC using supervised
learning. Yuan and Briscoe (2016) first applied
an encoder-decoder model to GEC, inspiring sub-
sequent researchers to propose various encoder-
decoder-based GEC models (Ji et al., 2017; Chol-
lampatt and Ng, 2018; Junczys-Dowmunt et al.,
2018; Zhao et al., 2019; Kaneko et al., 2020; Ya-
mashita et al., 2020). These methods typically rely
on large training datasets containing parallel sen-
tences with and without grammatical errors (Kiy-
ono et al., 2019). However, scalability remains
challenging, as labeled data is required for each
specific situation, such as grammar correction style
or input text domain.

Unsupervised GEC approaches aim to reduce
dependency on labeled data by leveraging unsuper-
vised learning techniques, including PLMs, hand-
crafted rules, denoising autoencoders, or unsuper-
vised machine translation (Grundkiewicz et al.,
2019; Grundkiewicz and Junczys-Dowmunt, 2019;
Flachs et al., 2019; Solyman et al., 2021; Koyama
et al., 2021b). However, these methods necessitate
creating large-scale pseudo data for model train-
ing, making it difficult to generate pseudo-data and
train models for different learning scenarios. Some
studies have proposed unsupervised GEC methods
using PLMs (Alikaniotis and Raheja, 2019; Ya-
sunaga et al., 2021), but they have not focused on
prompt-based methods with PLMs.

Recently, the GPT-3 model (Brown et al., 2020)
has demonstrated remarkable performance across
various NLP tasks, although its GEC performance
remains limited. Schick et al. (2022) employed a
simple zero-shot prompt for GEC, while Dwivedi-
Yu et al. (2022) conducted a more comprehensive
analysis using diverse zero-shot prompts. Coyne
and Sakaguchi (2023) and Fang et al. (2023) com-

pared the latest GPT-3 model’s performance (text-
davinci-003) and ChatGPT against GEC leader-
board models and reference edits, finding that these
prompt-based methods exhibited strong GEC per-
formance. However, automatic metrics and human
evaluations occasionally disagreed on the relative
quality of corrections.

Controlling GEC model generation is crucial
but remains underexplored. Hotate et al. (2019)
proposed a GEC method that controls the degree
of correction by tagging input with the correction
level, but it requires supervised learning with par-
allel data. Additionally, Hotate et al. (2020) sug-
gested a beam search method to control GEC cor-
rection diversity by dynamically updating search
tokens within the beam based on the likelihood
of predicting source sentence tokens. While this
method enables model control without additional
training, it falls short in accommodating specific
learner requests, such as minimal and fluency edits.

GEC model evaluation methods have been pro-
posed based on learner levels and correction styles.
To account for differences in correction styles
and domains, Maeda et al. (2022) introduced a
method to train evaluation models using only paral-
lel data. Takahashi et al. (2022) created proficiency-
annotated data to train evaluation models and de-
veloped an evaluation method that considers pro-
ficiency by fine-tuning PLMs (Yoshimura et al.,
2020).

7 Conclusion

In conclusion, this study demonstrates the poten-
tial of using prompt-based methods with GPT-3
for GEC tasks, achieving competitive performance
compared to traditional supervised and unsuper-
vised methods. By carefully crafting task instruc-
tions and examples, we show that GPT-3 can be
effectively controlled to focus on different aspects
of the GEC process and adapt to diverse learning
needs. Our findings highlight the importance of
optimizing task instructions and example selection
to enhance the performance and controllability of
GPT-3, paving the way for further research on refin-
ing prompt engineering techniques and exploring
their applicability to other NLP tasks and language
models.
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8 Educational Implications and
Community Benefits

Our study provides valuable implications for edu-
cation. The controllability of large-scale language
models in GEC tasks can be leveraged to design
personalized language instruction. It allows edu-
cators to provide feedback that matches individual
students’ proficiency levels and focuses on spe-
cific areas for improvement. For learners, instant,
tailored feedback can enhance their language learn-
ing process. Moreover, our findings can improve
intelligent tutoring systems, making them more re-
sponsive to individual needs. Beyond education,
our research can enhance language-based interfaces
and AI communication systems, offering more ac-
curate and context-specific language corrections.
This study lays the groundwork for future explo-
ration into how large language models can improve
language education and literacy.

9 Limitation

While our study provides valuable insights into
the use of prompt-based methods with GPT-3 for
GEC tasks and its controllability, several limita-
tions should be acknowledged.

Focus on GPT-3: This study exclusively exam-
ines GPT-3 as the language model for GEC tasks.
While GPT-3 has shown remarkable performance
in various NLP tasks, other pre-trained language
models, such as GPT-4, may offer different re-
sults. A broader investigation that includes other
language models would provide a more comprehen-
sive understanding of the applicability of prompt-
based methods in GEC tasks.

Limited evaluation metrics: The evaluation of
GPT-3’s performance and controllability in our ex-
periments mainly relies on quantitative metrics,
such as edit distance and task scores. These metrics
may not fully capture the nuances of grammatical
error correction or the model’s ability to adapt to
different learning scenarios. Additional qualitative
analysis, along with more diverse evaluation met-
rics, could provide a richer understanding of the
model’s performance and controllability.

Variability in examples: While our study high-
lights the importance of example selection in few-
shot settings, we do not thoroughly explore the
impact of example quality or diversity. The effect

of using different types of examples or a more di-
verse set of examples remains to be investigated,
which could further inform the design of effective
example sets for prompt-based GEC tasks. By ad-
dressing these limitations in future research, we
can further advance our understanding of the per-
formance and controllability of prompt-based meth-
ods with GPT-3 and other language models in GEC
tasks and beyond.

Potential fine-tuning on test data: There is a
possibility that GPT-3 has been fine-tuned (instruc-
tion tuning) on the test data we are using, which
might explain the higher evaluation scores com-
pared to previous research. As this information has
not been disclosed, we are unable to verify it at this
time. This point should be taken into consideration
when interpreting our results.
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A Prompts for Investigation on
Instruction Effect

All instructions used for experiments described in
Section 4.1 are listed in Table 3.

B Prompts for Learner’s Level-based
Control

All instructions and additional information used for
experiments described in Section 5.2 are listed in
Table 4.
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Type Task Instruction

Instructive Correct grammatical errors in this sentence
Revise grammatical mistakes in the following text.
Edit this paragraph for grammar mistakes.
Find and fix any errors in this sentence.
Rewrite this sentence to correct its grammar.
Identify and correct the grammar errors in this
text.
Make any necessary grammar corrections to this
passage.
Correct the grammar in this sentence without
changing its meaning.
Find and correct the errors in this paragraph.
Proofread this text and correct any grammar mis-
takes.

Misleading Paraphrase the following sentence.
Rewrite the following text to make it clearer.
Revise this paragraph to improve its clarity.
Clarify the meaning of this sentence by rephrasing
it.
Make this sentence more concise without chang-
ing its meaning.
Improve the readability of this text by rewording
it.
Reconstruct this sentence to enhance its clarity.
Paraphrase this text to make it more comprehensi-
ble.
Rewrite this paragraph to convey the same infor-
mation in a clearer way.
Edit this sentence to improve its coherence and
flow.

Irrelevant Translate the following sentence in to Japanese.
Write a news headline about this sentence.
Create a meme based on the following text.
Write a short story based on this sentence.
Compose a poem using the words in this para-
graph.
Write a summary of this text.
Analyze the use of metaphor in this sentence.
Explain the historical context of this passage.
Write a tweet about this text.
Write a letter to your future self based on the fol-
lowing sentence.

Table 3: Prompts for Instruction Effect Investigation, showing three types of task instructions with ten candidate
prompts each. The types include Instructive, Misleading, and Irrelevant prompts.
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Info Task Instruction
Beginner
No Info Revise mistakes in the following text
Positive Info Revise mistakes in the following text written by a

beginner learner with a lot of mistakes
Negative Info Revise mistakes in the following text written by

an advanced learner with only a few mistakes
Intermediate
No Info Revise mistakes in the following text
Positive Info Revise mistakes in the following text written by

an intermediate learner with some mistakes
Negative Info Revise mistakes in the following text written by a

native speaker
Advanced
No Info Revise mistakes in the following text
Positive Info Revise mistakes in the following text written by

an advanced learner with only a few mistakes
Negative Info Revise mistakes in the following text written by a

beginner learner with a lot of mistakes
Native
No Info Revise mistakes in the following text
Positive Info Revise mistakes in the following text written by a

native speaker
Negative Info Revise mistakes in the following text written by a

beginner learner with a lot of mistakes

Table 4: All prompts used in experiments investigating the controllability of learner level-based edits.
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