
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), pages 220–231
July 13, 2023 c©2023 Association for Computational Linguistics

A Closer Look at k-Nearest Neighbors Grammatical Error Correction

Justin Vasselli and Taro Watanabe
Nara Institute of Science and Technology

{vasselli.justin_ray.vk4, taro}@is.naist.jp

Abstract

In various natural language processing tasks,
such as named entity recognition and machine
translation, example-based approaches have
been used to improve performance by lever-
aging existing knowledge. However, the ef-
fectiveness of this approach for Grammatical
Error Correction (GEC) is unclear. In this work,
we explore how an example-based approach af-
fects the accuracy and interpretability of the
output of GEC systems and the trade-offs in-
volved. The approach we investigate has shown
great promise in machine translation by using
the k nearest translation examples to improve
the results of a pretrained Transformer model.
We find that using this technique increases pre-
cision by reducing the number of false positives,
but recall suffers as the model becomes more
conservative overall. Increasing the number of
example sentences in the datastore does lead to
better performing systems, but with diminish-
ing returns and a high decoding cost. Synthetic
data can be used as examples, but the effec-
tiveness varies depending on the base model.
Finally, we find that finetuning on a set of data
may be more effective than using that data dur-
ing decoding as examples.

1 Introduction

Grammatical Error Correction (GEC) is the task of
identifying and correcting grammatical mistakes
in ungrammatical text. While it can be used to
assist native speakers as well, it is frequently ap-
plied to text written by language learners, and can
be used pedagogically to help them improve their
writing skills. Providing feedback on grammatical
errors in a learner’s writing allows them to learn
from their mistakes and improve their writing over
time. For this feedback to be effective, it must be
interpretable to the learner.

GEC models are often based on neural machine
translation (NMT) models and treated as similar
to sequence-to-sequence (seq2seq) tasks (Junczys-

Dowmunt et al., 2018; Kiyono et al., 2019). Unfor-
tunately, Transformer-based seq2seq models pro-
duce corrections that are uninterpretable, because
they simply output a corrected sentence without
any indication of how or why elements of the sen-
tence were corrected. This lack of interpretability
can make it difficult for learners to understand the
nature of their mistakes and how to avoid them in
the future. In contrast, example-based approaches
to GEC can provide a motivating example for each
correction, making the results more interpretable
and therefore more helpful for learners. This can
make the difference between a learner simply cor-
recting a mistake and actually understanding why
it is a mistake and how to avoid it in the future.

Example-based, or instance-based, methods
have recently been applied to tasks across the field
such as named entity recognition (Ouchi et al.,
2020), summarization (Cao et al., 2018), and ma-
chine translation (Khandelwal et al., 2020). In their
recent work, Kaneko et al. (2022) presented their
findings on the interpretability of GEC corrections
using human evaluation and three example selec-
tion methods: token-based retrieval, BERT-based
retrieval, and their example-based grammatical er-
ror correction (EB-GEC) system. The study found
that presenting examples is more useful to learners
than providing none, with EB-GEC providing the
most useful examples for language learners’ under-
standing and acceptance of the model corrections.

EB-GEC is based on the k-nearest neighbors
approach to machine translation proposed by Khan-
delwal et al. (2020). This method uses a datastore
constructed from a set of example sentence pairs
during the decoding of the vanilla Transformer. At
each timestep, the vector being passed into the fi-
nal feedforward network of the decoder is used
to locate the k nearest neighbor examples in the
datastore. This vector represents the translation
context, which is composed of the ungrammatical
sentence plus the prefix of the output. The datas-

220

tore itself is constructed from a corpus, authentic or
synthetic, of training examples. One entry into the
datastore is made for each token of the corrected
sentence of each example pair, using the encoded
translation context as the key, and the ground-truth
token as the value. During inference, the retrieved
values of the k nearest contexts form a distribution
of target tokens. The distribution of target tokens
collected from the datastore is then interpolated
with the distribution from the base Transformer. In
this way, the output of the vanilla Transformer is
influenced by the most similar examples from the
datastore, and motivating examples are returned for
each token of the output.

Khandelwal et al. (2020) reports high BLEU
score gains in resource-rich languages with large
databases, but less impressive performance in
low-resource languages. Treating GEC as a low-
resource machine translation task was proposed
by Brockett et al. (2006) and has resulted in many
high performing systems (Junczys-Dowmunt et al.,
2018). However, there are key differences between
grammatical error correction and machine trans-
lation. GEC is a monolingual task, where both
input and output share a vocabulary, and a large
number of tokens from the input sentence remain
unchanged in the output sentence. This difference
may very well affect the viability of using k-nearest
neighbors for grammatical error correction.

Kaneko et al. (2022) found that their EB-GEC
system improved the F0.5 score on three out of
four test sets, relative to the vanilla Transformer.
However, there are several factors to consider about
these results. The three test sets that performed bet-
ter using EB-GEC came from datasets with training
splits used for both training the vanilla Transformer
and as the datastore of example sentences. The
fourth test set that performed better with the vanilla
Transformer did not have any representation in the
datastore or the training. This may indicate that
EB-GEC is not generalizable, as in a way, the three
test sets with better scores can be thought of as in-
domain, because they had similar sentences used in
the datastore. It is possible that using example sen-
tence pairs produced in a different context would
produce lower scores on the test sets. It is worth
investigating how using different data for the ex-
ample corrections than during training affects the
results.

The reported scores of this system are lower
than those reported by Kiyono et al. (2019), using a

vanilla Transformer pretrained on synthetic data. It
is unclear whether applying the same kNN method
to a higher performing Transformer would yield
the same gains. A detailed analysis of the costs
and benefits of using the k-nearest neighbor ap-
proach to grammatical error correction as proposed
by Kaneko et al. (2022) has yet to be carried out,
but the results of the initial experiments are worth
investigating further.

This work aims to address some outstanding
questions about the effectiveness of k-nearest
neighbors for grammatical error correction (kNN-
GEC). Specifically, we seek to determine whether
kNN-GEC always improves the performance of
the base Transformer, or whether the impact varies.
Additionally, we investigate how the size of the
datastore affects performance, and whether syn-
thetic data can be used to bolster the datastore. We
also explore whether using synthetic data produces
the same level of interpretability. Furthermore, we
examine how the choice of data for the datastore
impacts the effectiveness of the model on test sets.
Finally, we compare the effectiveness of finetuning
a Transformer on a set of data versus using that
data as the datastore for kNN-GEC.

We found that the effectiveness of kNN-GEC
varies depending on the base Transformer. Higher
performing Transformers show little to no improve-
ment. Using synthetic data does not appear to im-
pact the interpretability of the corrections, and can
be used to increase the size of the datastore. How-
ever, very large datastores may not improve the
system’s performance enough to warrant the in-
crease in computational cost. Bolstering the datas-
tore with error-targeted example sentences does not
seem to be a viable way of improving the system’s
performance on those error types or in general. We
also found that finetuning a Transformer on a set
of in-domain data can be more effective than using
kNN-GEC for in-domain data.

2 Prior Work

2.1 Example-based machine translation

First proposed by Nagao (1984), using examples to
anchor text generation has been explored in many
other tasks from summarization (Cao et al., 2018)
to response generation (Weston et al., 2018). In
machine translation, this process requires two steps:
retrieving a relevant translation example, and using
that to guide the translation of a new sentence.

Retrieving relevant example pairs is most often

221

done by comparing the source sentence to a datas-
tore of source-target example pairs, and retrieving
the k nearest neighbors of the source sentence. Dis-
tance may be calculated with edit-distance (Bulte
and Tezcan, 2019; Hossain et al., 2020; Zhang et al.,
2018), sentence embeddings (Tezcan et al., 2021;
Wu et al., 2019), or a combination of both (Xu et al.,
2020).

There is variety in how the retrieved example is
used to produce the output sentence. Once the near-
est examples are retrieved, they must be integrated
into the generation. A common approach is to train
a Transformer with a concatenated input of the in-
put text and one or more retrieved target sentences
(the input sentences for the translation examples
are only used in retrieval) (Bulte and Tezcan, 2019;
Tezcan et al., 2021; Hossain et al., 2020). This
method finds the most similar examples up front,
and uses a standard encoder decoder to generate
the hypothesis.

Other methods involve using retrieved exam-
ples to alter the probability distribution of tokens
during the autoregressive decoding. Zhang et al.
(2018) proposed increasing the probabilities of the
n-grams found in the output of the translation exam-
ple at each timestep of decoding. Khandelwal et al.
(2020) proposed an approach that could use a pre-
trained seq2seq Transformer and improve it’s per-
formance by retrieving examples during decoding.
The nearest neighbor machine translation (kNN-
MT) system uses the decoder of a pre-trained Trans-
former model to generate translation context vec-
tors for each target token of the example sentences.
The translation context is the source sentence and
the partially generated target sentence. The vector
that is passed into the final feedforward network
of the decoder is considered to represent the full
translation context at each time step. This vector
serves as the key with the target token as the value
in an example datastore of key-value pairs.

The system translates new pieces of text by con-
sulting the datastore at each decoding step and
finding the k nearest neighbors of the vector and
weighting the possible output tokens by the L2 dis-
tance to the nearest neighbor keys. The authors
reported significant gains using this method, espe-
cially on language pairs with a considerable num-
ber of example sentences, such as DE-EN, ZH-EN,
and EN-ZH with datastore sizes of 5.56, 1.19, and
1.13 billion translation context-token pairs respec-
tively.

2.2 Example-based grammatical error
correction

Kaneko et al. (2022) applied kNN-MT to gram-
matical error correction in their EB-GEC system.
The authors conducted a study using human eval-
uation to demonstrate that the example sentences
retrieved through the decoding process improve the
interpretability of the results for language learners
as compared to the closest sentence pairs using edit
distance or BERT-based retrieval.

EB-GEC showed mixed results compared to the
vanilla Transformer model. The authors report im-
proved performance using the k nearest neighbors
at inference time on CoNLL14 (Ng et al., 2014),
the test data of the BEA2019 shared task (Bryant
et al., 2019), and FCE (Yannakoudakis et al., 2011),
but not JFLEG (Napoles et al., 2017). As JFLEG
is the only one of these test sets to focus on flu-
ency, these results are interpreted to mean that the
approach is successful at increasing accuracy of
error corrections, but may not be as effective at
improving the fluency of the sentence. An alter-
nate explanation could be that the three test sets
that performed better using EB-GEC had training
splits that were used to train the model and also
that contributed to the datastore of example sen-
tences. JFLEG, which performed better with the
vanilla model, did not have any representation in
the datastore or the training.

Despite the improved accuracy on most of
the test sets, EB-GEC did not perform strongly
compared to the state-of-the-art tagging-based ap-
proaches to GEC. One possible reason for this
may be the size of the datastore being insufficient.
With only 600,000 sentences generating 17 million
key-value pairs for the datastore, there may not be
enough examples for the kNN system to retrieve
from.

2.3 Synthetic examples

While most kNN-MT systems reuse bilingual train-
ing data for the datastore, it is possible that using
different data or even synthetic data for translation
examples could yield better results. Deguchi et al.
(2022) showed that using a larger back-translated
monolingual corpus for the datastore can outper-
form a smaller training data corpus. The reason
for this has yet to be explored thoroughly. It may
be simply due to the larger number of examples
for the system to draw from, or it may be because
the Transformer has already learned from the train-

222

C4+BEA+CWEB EB-GEC Base PretLargeSSE
BEA-train (Bryant et al., 2019) finetuning/datastore training/datastore finetuning/datastore
CWEB (Flachs et al., 2020) finetuning - -
JFLEG (Napoles et al., 2017) finetuning - -
gec-pseudodata (Kiyono et al., 2019) - - pretraining
C4200M (Stahlberg and Kumar, 2020) pretraining/datastore datastore datastore

Table 1: How each dataset used for training, finetuning, or as the datastore was used across the three models.

ing examples and the synthetic data provides novel
translation examples.

3 Experiments

3.1 The Vanilla Transformers

In order to investigate whether the impact of kNN-
GEC varies depending on the base transformer, we
applied this approach to three base models trained
differently on different data: C4+BEA+CWEB,
EB-GEC Base, and PretLargeSSE.

C4+BEA+CWEB was trained from scratch
using a combination of synthetic and authen-
tic data with the base Transformer architecture.
It was first pretrained on the synthetic corpus
C4200M (Stahlberg and Kumar, 2020), which is
a cleaned version of the Common Crawl. The
source sentences were corrupted from the tar-
gets using a tagged seq2edits corruption method.
C4+BEA+CWEB was then finetuned on BEA-
train, which is composed of the training split of the
First Certificate in English corpus (FCE), Lang-8
Corpus of Learner English (Tajiri et al., 2012), Na-
tional University of Sinagpore Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013), and
the training split of Write & Improve + LOCNESS
(Bryant et al., 2019).

C4+BEA+CWEB was also finetuned on the de-
velopment split of JFLEG (Napoles et al., 2017),
and CWEB (Flachs et al., 2020). JFLEG is a flu-
ency oriented corpus which contains larger sen-
tence edits than BEA-train. CWEB is a corpus of
edits made to websites and contains much fewer
and smaller sentences edits than BEA-train.

The second Transformer, EB-GEC Base was
trained directly on BEA-train, with no synthetic
pretraining. It was trained using the data and set-
tings outlined in Kaneko et al. (2022)1.

The third Transformer, PretLargeSSE was pre-
trained on the gec-psuedodata synthetic data Kiy-
ono et al. (2019)2. It was then fine-tuned on BEA-

1https://github.com/kanekomasahiro/
eb-gec

2https://github.com/butsugiri/
gec-pseudodata

Datastore name Sentences Tokens
BEA-train 1.3M 16-17M
Synthetic 2M 2M 55-78M
Synthetic 20M 20M 547-777M
Synthetic 40M 40M 1-1.6B
Synthetic Full 147M 4-7B

Table 2: The size of the datastores as measured by
number of example pairs and number of resulting entries
in the datastore, which is equivalent to the number of
tokens of the target sentences.

train.
We provide a summary of the datasets used,

which are listed in Table 1, and the detailed hyper-
parameters of all three base models in Appendix A.

3.2 Evaluation

Testing was done on the CoNLL-2014 test data
(Ng et al., 2014) using M2 (Dahlmeier and Ng,
2012), the BEA-2019 shared task test data (Bryant
et al., 2019) and FCE test data (Yannakoudakis
et al., 2011) using ERRANT (Bryant et al., 2017),
and JFLEG (Napoles et al., 2017) using GLEU
(Napoles et al., 2015). M2 and ERRANT report
F0.5 scores.

3.3 Datastores

We conducted experiments using datastores made
from BEA-train and subsets of different sizes from
C4200M to understand how datastore size affects
performance, and whether synthetic data can im-
prove performance. The data was preprocessed
using the same method as the training data of
the respective model, which leads to different
sizes of each datastore depending on the vocab-
ulary size used for subword tokenization, which
varies between the three base models. The data-
store ranges for the systems are noted in Table
2. C4+BEA+CWEB has a larger vocabulary size
(128k), resulting in smaller datastores. The other
baselines have a vocabulary size of 8k and larger
datastores.

The vector that is passed into the final feedfor-
ward network of the decoder is considered to be the
hidden state of the context and is used as the key

223

https://github.com/kanekomasahiro/eb-gec
https://github.com/kanekomasahiro/eb-gec
https://github.com/butsugiri/gec-pseudodata
https://github.com/butsugiri/gec-pseudodata

CoNLL14 BEA2019 FCE JFLEG
M2 F0.5 ERRANT F0.5 ERRANT F0.5 GLEU

C4+BEA+CWEB 47.84 47.51 41.51 49.47
+ BEA-train 44.55 48.89 42.77∗ 48.84
+ Synthetic 2M 49.47 50.67 44.32∗∗∗ 50.88∗∗∗

+ Synthetic 20M 51.73∗∗∗ 53.15 43.90∗∗∗ 51.83∗∗∗

+ Synthetic 40M 52.09∗∗∗ 54.92 45.63∗∗∗ 51.98∗∗∗

+ Synthetic Full 54.17∗∗∗ 55.69 45.67∗∗∗ 52.49∗∗∗

EB-GEC Base 50.01 48.44 40.18 55.65
+ BEA-train 49.68 51.40 42.00∗∗∗ 56.26
+ Synthetic 20M 48.75 47.77 42.26∗∗∗ 52.80
PretLargeSSE 62.11 65.17 51.73 60.99
+ BEA-train 61.73 66.44 53.76∗∗∗ 60.99
+ Synthetic 2M 61.79 60.90 53.08∗∗∗ 59.94
+ Synthetic 20M 62.46 61.82 53.50∗∗∗ 60.15
+ Synthetic 40M 62.07 65.97 53.86∗∗∗ 60.02

Table 3: Results on test sets using λ of 0.5. The best result of each system is bolded. p values were calculated
on CoNLL14, FCE, and JFLEG between each kNN-GEC datastore and the base model using paired bootstrap
resampling. p < 0.05 is denoted with ∗, p < 0.01 is denoted with ∗∗, and p < 0.001 is denoted with ∗∗∗. BEA2019
test set is not released publicly, so we did not calculate the resampling for this data.

Computers is are the most important inventions in our life lives.

is → are invention → inventions life → lives

Trees is are the most spiritually
advanced living beings on the
Earth who are constantly in a
deflative meditative state, and
substile subtle energy is what
they speak like as a language.

Bitcoin it is one of the most
important inventions along in
all of human history.

They’re the carrying begin-
nings of AI everywhere in our
life lives.

Table 4: An example of a sentence correction and the examples used to justify each correction from the synthetic
datastore Synthetic 40M.

vector in the datastore, with the target token used
as the value. The datastores were indexed using
FAISS (Johnson et al., 2019)3, with a training size
of 5,242,880 and a chunk size of 10,000,000. Prod-
uct quantization was applied to split the vectors
into 64 subspaces and quantize each subspace. In
addition, the vectors were clustered using k-means
clustering into 131,072 clusters to speed up search.

During decoding, the k nearest vectors to the hid-
den state passed to the final feedforward network
in the decoder are retrieved from the datastore. In
this work, k is set to 16 and "nearest" is defined by
shortest Euclidean distance.

Using the full synthetic datastore is computa-
tionally expensive, and the results on our initial
experiments show marginal improvement from the
next smaller datastore (40M). For this reason, the
results of using the full synthetic datastore for kNN-
GEC were not calculated for the other two systems.
The results of each system are listed in Table 3.

Synthetic data was most effective when used
with C4+BEA+CWEB. Even the smallest synthetic

3https://github.com/facebookresearch/
faiss

datastore improved the score compared to the non-
synthetic datastore, and larger datastores resulted
in even higher scores. However, the same gains
were not seen by PretLargeSSE, which was the
highest scoring base model. PretLargeSSE showed
mixed results with the authentic datastore, and the
synthetic datastore was less effective. It took at
least 20M sentences for the synthetic datastore to
perform as well as the much smaller authentic one.

3.4 Interpretability

One advantage of kNN-GEC is that it can provide
motivating examples from the datastore for the cor-
rections it makes. Kaneko et al. (2022) showed that
the examples sentence pairs used during decoding
provided more relevant models for learners than
those retrieved by word overlap or BERT embed-
dings. As we investigate the effectiveness of us-
ing synthetic sentences in the datastore to improve
the quality of model corrections, it is important to
ensure that synthetic sentences can also serve as
effective models for learners. To accomplish this,
our code generates the kNN examples for each to-

224

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

C4+BEA+CWEB

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP
FP

EB-GEC Base

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP
FP

PretLargeSSE

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP
FP

Figure 1: The number of true positives and false positives in the FCE test set for different values of λ using the
BEA-train datastore.

C4+BEA+CWEB

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP
FP

EB-GEC Base

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP
FP

PretLargeSSE

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP
FP

Figure 2: The number of true positives and false positives in the FCE test set for different values of λ using the
Synthetic 20M datastore.

ken in the corrected sentence. In a post-processing
step, we align the source sentence and corrected
sentence using ERRANT (Bryant et al., 2017) and
extract the nearest example for each corrected to-
ken. To explore the interpretability of the synthetic
datastore, we present a randomly selected sentence
correction with motivating examples in Table 4.

In this single example, the synthetic datastore
provides reasonable examples for three corrections.
A larger study measuring the effectiveness of syn-
thetic data on the quality of the examples provided
by the model is left for future work.

3.5 Impact of kNN on corrections

To investigate the effects of kNN-GEC on the mod-
els, we adjusted the hyperparameter λ. This pa-
rameter regulates the proportion of the probability
distribution for the next token that comes from the
datastore. kNN-GEC uses a linear interpolation
between the output of the kNN token distribution,
pkNN, and the vanilla decoder, pGEC, as follows:

P (yi|x, y1:i−1) = λpkNN(yi|x, y1:i−1)

+ (1− λ)pGEC(yi|x, y1:i−1) (1)

The hyperparameter λ in equation 1 is used to bal-
ance the probability distribution generated by the
example sentences and that generated by the base
Transformer. Setting λ to 0 is equivalent to using
the vanilla Transformer without kNN-GEC. The

larger the λ, the more the system will use the re-
trieved examples when generating the next token.
However, using only the examples can lead to er-
rors, so we did not calculate λ of 1. Figure 1 shows
the number of true positives and false positives gen-
erated in the FCE test data by each system using
the BEA-train datastore.

In general, the use of kNN-GEC does not in-
crease the number of corrections made until λ val-
ues exceed 0.5. In all three systems, using the
BEA-train datastore leads to a more conservative
approach to corrections, which results in fewer in-
correct changes being made. One possible expla-
nation is that the method of retrieving example
sentence pairs returns pairs that have similar mean-
ings or are on similar topics but may not necessarily
contain the same errors. In the absence of an error,
GEC will copy from the input sentence to the hy-
pothesis sentence. If the k retrieved sentence pairs
do not contain the error, kNN-GEC may copy more
and correct less.

Figure 1 and Figure 2 show how λ affects the
number of true positives and false positives in the
FCE test set. These figures show that the gain in
F0.5 score below λ = 0.5 is due to an increase in pre-
cision resulting from a decrease in false positives,
rather than an increase in true positives. While the
number of true positives does not decrease rapidly,
the number of false positives does, leading to better
model performance despite the decrease in recall.

225

-40

-20

0

20

40

60

80

M
:ADJ

M
:ADV

M
:C

O
N

J

M
:DET

M
:N

O
U

N

M
:O

TH
ER

M
:PART

M
:PREP

M
:PRO

N

M
:PU

N
C

T

M
:VERB

M
:VERB:FO

RM

M
:VERB:TEN

SE

R:ADJ

R:ADV

R:C
O

N
J

R:DET

R:M
O

RPH

R:N
O

U
N

R:N
O

U
N

:N
U

M

R:O
RTH

R:O
TH

ER

R:PART

R:PREP

R:PRO
N

R:PU
N

C
T

R:SPELL

R:VERB

R:VERB:IN
FL

R:VERB:SVA

R:VERB:TEN
SE

R:W
O

U
:ADJ

U
:ADV

U
:C

O
N

J

U
:DET

U
:N

O
U

N

U
:PART

U
:PREP

U
:PRO

N

U
:PU

N
C

T

U
:VERB

U
:VERB:FO

RM

U
:VERB:TEN

SE
TP
FP

Figure 3: The difference in the number of true positives (TP) and false positives (FP) generated using the corre-
sponding targeted datastore compared to the vanilla Transformer.

Interestingly, the number of true positives in-
creases when using the synthetic datastore with
C4+BEA+CWEB, as shown in figure 2. However,
this effect doesn’t transfer to PretLargeSSE. This
may be because C4+BEA+CWEB is already a very
conservative model and performs poorly in com-
parison to PretLargeSSE. C4+BEA+CWEB may
not be as effective at producing corrections as Pret-
LargeSSE, and having more example sentences to
use improves the results. Further work is needed to
determine the reason for this difference.

All systems exhibit an increase in false positives
when λ > 0.5, with the synthetic datastore demon-
strating this most dramatically. Generally, using
λ = 0.4 resulted in the best balance of precision
and recall. However, as many papers use 0.5 as the
balancing point between the kNN distribution and
the vanilla Transformer, the rest of the experiments
in this work use λ = 0.5.

3.6 Error type targeted datastores

To observe how changing the error distribution in
the datastore impacts the effectiveness of the model
on that error type, as well as the performance of
the system as a whole, we conducted experiments
using datastores that contained examples with a
single error type. We extracted 10,000 sentences
from synthetic data for most4 of the ERRANT error
tags. The ERRANT error tags consist of an error
category and error type. The error categories are
Missing (M), Replacement (R), and Unnecessary
(U). The error types include Adjective (ADJ), Ad-
verb (ADV), Morphology (MORPH), Orthography
(ORTH), and more. There are a total of 54 error
tags, of which 8 didn’t have enough data to generate
a targeted datastore. For each of the remaining 46

4Some errors were very rare and did not occur more than a
handful of times in the data.

Datastore TP FP P R F0.5

None 1,896 1,548 55.05 41.68 51.73
BEA 1,819 1,273 58.83 39.99 53.76
+30K 1,355 921 59.53 29.79 49.62

Table 5: A comparison of different datastores, BEA-
train+30K includes 10K synthetic example pairs each
of Missing Adjectives, Missing Particles, and Replacing
Verb Inflections corrections

error tags, a datastore was constructed with 10,000
sentences that contained only that error. We used
the target datastore with PretLargeSSE and tested
it on FCE-test with a λ value of 0.5.

Using much smaller targeted datastores alone
lowers both precision and recall compared to the
base Transformer and performs much worse than
the BEA-train datastore. Instead of looking at the
overall performance, we examine how the number
of true positives and false positives changes within
the targeted error type compared to the base Trans-
former. Figure 3 illustrates the difference in the
number of true or false positives between using the
targeted datastore and the vanilla Transformer.

Using an error-targeted datastore tends to in-
crease the number of false positives for a partic-
ular error, likely due to the system overapplying
the correction. Surprisingly, for many error types,
the targeted datastore does not increase the num-
ber of true positives. However, it does increase
the accuracy of correcting missing determiners
(M:DET), incorrect prepositions (R:PREP), verb
tense (R:VERB:TENSE), and unnecessary punctu-
ation (U:PUNCT). The number of false positives
often increases much more than the number of true
positives, resulting in lower precision. Replacing
incorrect punctuation (R:PUNCT) is an exception,
as it can increase precision without significantly
increasing false positives.

It is reasonable to assume that a datastore con-

226

CoNLL14 BEA2019 FCE JFLEG
Finetuned 62.11 65.17 51.73 60.99
kNN-GEC 56.34 58.58 47.06 61.92

Table 6: Results of finetuning a Transformer on BEA-
train compared to using kNN-GEC with BEA-train as
the datastore.

taining only one type of error will perform poorly
on a test set with many diverse errors, since there
are no examples for any of the other types of correc-
tions to use as a model. However it’s not immedi-
ately obvious if targeted datastores could be used to
supplement a base datastore in order to compensate
for low performance with a particular error type.
Preliminary experiments suggest that this approach
may not be effective for all error types. Table 5
presents the results of adding 30,000 synthetic pairs
to the BEA-train datastore to address three types
of low-performing errors: missing adjectives, miss-
ing particles, and incorrect verb inflections. These
three types were selected because using kNN-GEC
with the BEA-train datastore alone did not produce
any more true positives than the base Transformer,
but each of these three types saw a slight increase
in true positives in their respective categories when
the targeted datastore was used.

Adding the 30,000 new sentence pairs decreased
the number of false positives, but it also signifi-
cantly reduced the number of true positives, mak-
ing the overall system more conservative. This
resulted in an increase in precision. Unfortunately,
the decrease in recall lowered the overall F0.5 score
to less than that of the vanilla Transformer.

3.7 Finetuning vs kNN-GEC

To determine the effectiveness of finetuning a
Transformer on data versus using that data as a
kNN-GEC datastore, we tested using a check-
point of PretLargeSSE before the finetuning phase
(Kiyono et al., 2019). We applied the kNN-GEC
method with this pretrained-only model, using
BEA-train as the datastore. The results of this
experiment are shown in Table 6.

The Transformer model that was finetuned out-
performed the pretrained-only model using kNN-
GEC on three of the four test sets. The three
datasets that performed better with finetuning
(CoNLL14, BEA2019, and FCE) all have train-
ing sets used in the finetuning or kNN-GEC. This
suggests that finetuning is more effective for in-
domain test sets.

4 Discussion

Overall, kNN-GEC makes a base GEC system
more conservative about making corrections, which
lowers its recall. This is likely due to the fact that
the chosen examples may not contain a similar er-
ror to the one being corrected, but are closer in
content to the example pair. The retrieval method
involves comparing embedded vectors from the
decoder, which contain a mixture of information
about the syntax and semantics. As a result, there
can be times when the closest sentence pair to the
one being decoded overlaps more heavily on se-
mantics than syntax. It is likely that the tendency
to retrieve example sentence pairs that are similar in
content but not grammatically incorrect promotes
more copying, or more conservative corrections, as
the target word may not even be incorrect in the
example pair.

This is a key difference between the tasks of ma-
chine translation and grammatical error correction.
Machine translation must generate the appropri-
ate content words for the translation, while GEC
mostly uses the content words from the source sen-
tence, or a different form of the existing word. MT
may benefit from the influence of the kNN proba-
bility distribution on word choice because success
in MT often includes selecting the correct content
word for the context. In the case of GEC, however,
example sentence pairs may not contain the same
grammatical errors as the query sentence, which
leads to more copying and less correcting.

5 Conclusion

In this work, we investigate how using training
examples during decoding with the kNN-GEC
method affects the precision and recall of grammat-
ical error correction. We used three different base
models and found that the effectiveness of kNN-
GEC varies greatly depending on the base model.
In general, this method makes models more conser-
vative in making corrections, improving precision
but lowering recall. Synthetic data can be used to
increase the size of the datastore, but its effective-
ness depends on the base model. While kNN-GEC
using authentic or synthetic datastores increases
the interpretability of corrections for learners, this
comes with the trade-off of fewer corrections made
and a longer decoding time. We also explored the
effect of the hyperparameter λ on the performance
of the kNN-GEC method. A value of 0.4 tended
to produce the best balance of precision and recall,

227

though many papers use a value of 0.5. Finally, we
compared the effectiveness of finetuning a Trans-
former on a set of data versus using that data as the
datastore for kNN-GEC. Our results showed that
finetuning the Transformer on the data generally
outperformed using the data as a datastore.

Given that the more conservative corrections in-
dicate that kNN-GEC is retrieving examples that
are more semantically similar than those contain-
ing similar corrections, a future direction for kNN-
GEC could be selecting the k nearest neighbors
based on similarity of errors rather than similarity
of content. This would require a target output that
expresses the difference between the input sentence
and the hypothesis sentence. During decoding, the
necessary edits would be applied to change the ex-
ample source to the example target token to the
input. Future work could involve separating the
syntax from the semantics of the encoded input
sentence to retrieve the nearest neighbors with syn-
tactically similar example sentences. This would
help overcome the limitations of the kNN system
with regards to making new corrections.

Limitations

The three base models used for the experiments
were trained with different settings. As a result,
it is challenging to understand the exact source
of discrepancies between the results. Addition-
ally, each of the three models used different sub-
word tokenizations, resulting in variable datastore
sizes. Although we have some hypotheses about
why kNN affects GEC differently from MT, more
experiments need to be conducted to confirm them.

References
Chris Brockett, William B. Dolan, and Michael Gamon.

2006. Correcting ESL errors using phrasal SMT
techniques. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 249–256, Sydney, Australia. Asso-
ciation for Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error

types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Bram Bulte and Arda Tezcan. 2019. Neural fuzzy re-
pair: Integrating fuzzy matches into neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1800–1809, Florence, Italy. Association for
Computational Linguistics.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. 2018.
Retrieve, rerank and rewrite: Soft template based
neural summarization. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 152–161,
Melbourne, Australia. Association for Computational
Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In Pro-
ceedings of the Eighth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
22–31, Atlanta, Georgia. Association for Computa-
tional Linguistics.

Hiroyuki Deguchi, Kenji Imamura, Masahiro Kaneko,
Yuto Nishida, Yusuke Sakai, Justin Vasselli,
Huy Hien Vu, and Taro Watanabe. 2022. Naist-nict-
tit wmt22 general mt task submission. In Proceed-
ings of the Seventh Conference on Machine Trans-
lation, pages 244–250, Abu Dhabi. Association for
Computational Linguistics.

Simon Flachs, Ophélie Lacroix, Helen Yannakoudakis,
Marek Rei, and Anders Søgaard. 2020. Grammati-
cal error correction in low error density domains: A
new benchmark and analyses. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8467–8478,
Online. Association for Computational Linguistics.

Nabil Hossain, Marjan Ghazvininejad, and Luke Zettle-
moyer. 2020. Simple and effective retrieve-edit-
rerank text generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2532–2538, Online. Association
for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

228

https://doi.org/10.3115/1220175.1220207
https://doi.org/10.3115/1220175.1220207
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P19-1175
https://doi.org/10.18653/v1/P19-1175
https://doi.org/10.18653/v1/P19-1175
https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/P18-1015
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
https://aclanthology.org/2022.wmt-1.16
https://aclanthology.org/2022.wmt-1.16
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.acl-main.228
https://doi.org/10.18653/v1/2020.acl-main.228

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595–606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Masahiro Kaneko, Sho Takase, Ayana Niwa, and Naoaki
Okazaki. 2022. Interpretability for language learners
using example-based grammatical error correction.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7176–7187, Dublin, Ireland.
Association for Computational Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Nearest neigh-
bor machine translation. CoRR, abs/2010.00710.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error cor-
rection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1236–1242, Hong Kong, China. Association for Com-
putational Linguistics.

Makoto Nagao. 1984. A framework of a mechanical
translation between japanese and english by analogy
principle.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 588–593, Beijing, China. Asso-
ciation for Computational Linguistics.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 229–234, Valencia,
Spain. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

Hiroki Ouchi, Jun Suzuki, Sosuke Kobayashi, Sho
Yokoi, Tatsuki Kuribayashi, Ryuto Konno, and Ken-
taro Inui. 2020. Instance-based learning of span

representations: A case study through named entity
recognition. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6452–6459, Online. Association for Computa-
tional Linguistics.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:
Sequence transduction using span-level edit opera-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5147–5159, Online. Association for
Computational Linguistics.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 198–202, Jeju Island, Korea. Association for
Computational Linguistics.

Arda Tezcan, Bram Bulté, and Bram Vanroy. 2021. To-
wards a better integration of fuzzy matches in neural
machine translation through data augmentation. In-
formatics, 8(1).

Jason Weston, Emily Dinan, and Alexander Miller.
2018. Retrieve and refine: Improved sequence gener-
ation models for dialogue. In Proceedings of the
2018 EMNLP Workshop SCAI: The 2nd Interna-
tional Workshop on Search-Oriented Conversational
AI, pages 87–92, Brussels, Belgium. Association for
Computational Linguistics.

Jiawei Wu, Xin Wang, and William Yang Wang. 2019.
Extract and edit: An alternative to back-translation
for unsupervised neural machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 1173–1183, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jitao Xu, Josep Crego, and Jean Senellart. 2020. Boost-
ing neural machine translation with similar transla-
tions. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1580–1590, Online. Association for Computational
Linguistics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA. Association for
Computational Linguistics.

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Gra-
ham Neubig, and Satoshi Nakamura. 2018. Guiding
neural machine translation with retrieved translation
pieces. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1325–1335,

229

https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/2022.acl-long.496
https://doi.org/10.18653/v1/2022.acl-long.496
http://arxiv.org/abs/2010.00710
http://arxiv.org/abs/2010.00710
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097
https://aclanthology.org/E17-2037
https://aclanthology.org/E17-2037
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://aclanthology.org/P12-2039
https://aclanthology.org/P12-2039
https://doi.org/10.3390/informatics8010007
https://doi.org/10.3390/informatics8010007
https://doi.org/10.3390/informatics8010007
https://doi.org/10.18653/v1/W18-5713
https://doi.org/10.18653/v1/W18-5713
https://doi.org/10.18653/v1/N19-1120
https://doi.org/10.18653/v1/N19-1120
https://doi.org/10.18653/v1/2020.acl-main.144
https://doi.org/10.18653/v1/2020.acl-main.144
https://doi.org/10.18653/v1/2020.acl-main.144
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120

New Orleans, Louisiana. Association for Computa-
tional Linguistics.

230

A Hyperparameters

The detailed hyperparameters of the base Transformers and the settings used for generation.

C4+BEA+CWEB EB-GEC Base PretLargeSSE
Architecture Transformer Base Transformer Big Transformer Big
Optimizer Adam (β1 = 0.9, β2 = 0.98, ϵ = 1× 10−8) Pretrained with Adam, Fine-

tuned with Adafactor
Learning Rate Schedule Inverse square root decay Inverse square root decay Fixed
Warmup Steps 4,000 4,000 -
Dropout 0.2 0.3 0.1
FFN size 2096 4096 4096
Gradient Clipping 1.0 0.0 0.0
Label Smoothing ϵls = 0.1 ϵls = 0.1 None
Layers Encoder 6, Decoder 4 Encoder 6, Decoder 6 Encoder 6, Decoder 6
Mini-batch Size 4096 tokens 4096 tokens unknown
Number of Updates 10,800 steps 20 epochs unknown

Table 7: Hyperparameters of the vanilla Transformers.

Generation settings
Length Penalty 1.0
Beam Size 5
Temperature 100
λ 0.5

Table 8: Settings for the kNN generation

231

