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Abstract

In intelligent language tutoring systems, stu-
dent dashboards should display the learning
progress and performance and support the navi-
gation through the learning content. Designing
an interface that transparently offers informa-
tion on students’ learning in relation to specific
learning targets while linking to the overarch-
ing functional goal, that motivates and orga-
nizes the practice in current foreign language
teaching, is challenging. This becomes even
more difficult in systems that adaptively ex-
pose students to different learning material and
individualize system interactions. If such a sys-
tem is used in an ecologically valid setting of
blended learning, this generates additional re-
quirements to incorporate the needs of students
and teachers for control and customizability.

We present the conceptual design of a student
dashboard for a task-based, user-adaptive in-
telligent language tutoring system intended for
use in real-life English classes in secondary
schools. We highlight the key challenges and
spell out open questions for future research.

1 Introduction

Language learning is a complex, multidimensional
process. It is therefore desirable to provide scaf-
folding support to learners during practice. Intelli-
gent Tutoring Systems (ITS) can implement means
for this purpose in an adaptive way and provide
students with insights on their progress and perfor-
mance (Phobun and Vicheanpanya, 2010).

ITS can accommodate individual differences
through macro-adaptive exercise selection and pro-
vide micro-adaptive support while working on a
selected exercise (Slavuj et al., 2017). Macro-
adaptive systems therefore automatically determine
the order in which learning content is presented,
usually based on a static domain model by match-
ing it to learner characteristics such as proficiency
and learning styles (Hafidi and Bensebaa, 2014).
Each student receives different learning material

which they process at their own pace. The num-
ber of exercises a student practices is initially un-
known and estimated dynamically after each exer-
cise based on ad-hoc calculations of the student’s
mastery of the learning object (Rus et al., 2014).
Micro-adaptivity, on the other hand, implies that
there is no static learning content. Instead, the exer-
cise contents such as hints are dynamically adjusted
in order to gradually and individually guide each
student towards the correct answers (Lim et al.,
2023). Thus, adaptivity improves learning out-
comes by adapting to the students’ individual needs
(Phobun and Vicheanpanya, 2010). Most imple-
mentations assign profiles to learners which they
generate from training data. Fully adaptive sys-
tems then take over all decisions, including struc-
turing and adjusting the learning material based
on the learner’s profile. This can, however, inhibit
them from developing their own learning strategies
(Howell et al., 2018). Enabling students to actively
engage in the learning decision making process
is important to facilitate self-regulation and thus
can foster motivation and improve learning out-
comes (Lim et al., 2023). Self-regulation can be
understood as the students’ ability to organize and
monitor their own learning behavior and goals by
actively managing and shaping their learning envi-
ronment, such as selecting the next practice target
(Schunk and Zimmerman, 2013).

For users to make informed decisions, it is im-
portant to show them their personal learning state,
according to their interactions with the learning ma-
terial. Student dashboards generally aim to display
information relevant to the student in order to allow
them to observe and regulate their learning pro-
cess. In addition, they provide means to navigate
through the learning content (Bull and Kay, 2010).
Navigational support is especially relevant and fea-
sible in adaptive systems that incorporate systemat-
ically generated, highly variable exercises, such as
those following the implementation by Heck and
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Meurers (2022). Both information presentation and
navigational structure should be provided in a com-
prehensible and accessible way. This is particularly
important when tailoring a system towards young
learners, who are still developing their graphical
literacy skills, the ability to understand information
presented in graphical form (Roberts and Brugar,
2017).

In order to embed individualized adaptive prac-
tice with an ITS into real life, task-oriented lan-
guage learning classrooms put an important addi-
tional focus of the student dashboard on linking
practice exercises to their overarching functional
goal (Andersen, 2019) and integrating with the cur-
riculum the students follow (Phillips et al., 2020).

In systems used for blended learning in school
settings, student dashboards must navigate through
the content in a way that aligns with the curricu-
lum, through the systems’ default sequence or a
sequence defined by the teacher, while maintaining
enough flexibility to adjust to students’ learning
preferences.

In addition, teachers need control over certain
aspects of the learning material to satisfy the needs
of teacher-guided instruction and successfully com-
bine with the classroom-based teaching (Burstein
et al., 2012). Controlling the practiced exercises
to a certain extent enables them to refer to the ma-
terial seen by all of their students in subsequent
classroom sessions (Feng et al., 2014). Teachers
also want to be able to assign deadlines by which
students need to complete practice of certain topics
(Hertz, 1992).

Since a curriculum-aligned, structured view of
the entire learning content conflicts with the adap-
tive, dynamic content tailored to the student, it
is not straightforward to combine both in a sin-
gle system. We present an approach to address
this challenge by supporting multiple navigational
strategies and proposing metrics to display progress
and performance overviews which take into ac-
count the issues faced by traditional metrics with
respect to the demands imposed by adaptivity. Spe-
cially tailored towards foreign language learning,
our dashboard is co-designed with teachers to keep
real life implications in mind and support educa-
tional practices when integrated into an Intelligent
Language Tutoring System (ILTS) for the use in
English classes of secondary schools in Germany.

2 Related work

An increasing number of ITS integrate student dash-
boards in form of Open Learner Models (OLM) to
expose the users to their learning statistics gath-
ered by the system (Bull et al., 2016). This ap-
proach has mainly been applied to higher educa-
tion (Schwendimann et al., 2017), thus not focus-
ing on the particular requirements of systems used
in blended learning settings of secondary school
teaching. A noticeable exception constitutes the
implementation by Rudzewitz et al. (2019) which,
however, does not incorporate a task-oriented em-
bedding of the learning content and lacks sufficient
simplicity of the visualizations necessary to guide
young learners in their self-regulated learning pro-
cess.

Since most schools nowadays use task-based
teaching approaches for language learning (An-
dersen, 2019), it is necessary to further adapt stu-
dent dashboards and OLMs to this concept. In
order to represent student progress for the vari-
ous skills practiced in preparation for the func-
tional target task (Ellis, 2016; Mislevy et al., 2002),
the dashboard needs to make these task-essential
skills explicit to students. Criterion-referenced
feedback, which measures performance against pre-
defined criteria, has been successfully explored and
evaluated to this purpose (Mirmakhmudova, 2021;
Alawar and Abu-Naser, 2017) and later been inte-
grated into an existing ITS by Colling et al. (2022).
Their implementation is tailored towards secondary
school children by making the visualizations more
accessible for the target age group and incorporat-
ing task orientation into the dashboard. To this
avail, they highlight the functional goal and group
exercises and their performance metrics based on
curricular units. This contrasts OLMs, which con-
sider the learning domain as a whole (Bull and Kay,
2010). However, their system is not user-adaptive
apart from providing scaffolding feedback so that
the student dashboard does not consider the require-
ments introduced by adaptivity.

Integration of macro-adaptive features into a
student dashboard depends on the macro-adaptive
strategy the system implements. Knowledge Trac-
ing (KT) approaches keep detailed learner mod-
els representing the students’ progress for various
skills within the practiced domain (Liu et al., 2021)
and therefore have the benefit of providing progress
metrics for the skills which can be made trans-
parent to students in the form of progress bars
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(Effenberger, 2018). They do, however, require
large amounts of exercises completed by students
to train the underlying model (Chen et al., 2018).
Since training data for our target group is not read-
ily available, we cannot reliably determine precise
progress values. Other approaches use fixed lengths
for exercise sequences with incorrect exercises re-
peated at the end and merely adapt the required
complexity of the exercises to select (e.g., Musa
and Mohamad, 2017). The progress bar is then
only updated when an exercise is solved correctly.
While all macro-adaptive systems adaptively de-
termine exercise sequences within a learning ob-
ject, they pursue varied strategies to determine the
order of learning objects. Depending on the de-
gree of self-regulation a system incorporates, it
either (a) dictates the entire learning path for the
topic to be practiced (Brusilovsky, 1992), (b) re-
quires the learner to choose the next learning object
themselves (Twigg, 2003), or (c) provides naviga-
tion support without directly enforcing any specific
order (Brusilovsky, 2000). As micro-adaptivity
changes the exercise content dynamically while
students work on it, assigning fixed complexity
scores to exercises becomes unreasonable. Macro-
adaptive systems therefore typically do not focus
on micro-adaptive strategies, apart from providing
scaffolded feedback on all exercises.

The body of research on student-facing progress
and performance visualizations applicable in adap-
tive ITS is growing (e.g., Xia et al., 2019; Loboda
et al., 2014; Bull and Kay, 2007). Yet, most of
these target higher education and thus do not con-
sider the particular needs of teachers and students
in schools. Notable exceptions can be found in the
domain of mathematics education (e.g., Long and
Aleven, 2017). However, to the best of our knowl-
edge, research on student dashboards in adaptive
ILTS especially focusing on the demands and needs
of ecologically valid K-12 second language learn-
ing classrooms is lacking.

With our user-centered design we want to ad-
dress this gap and offer an approach for a task-
oriented student dashboard supporting different
navigational strategies in a system simultaneously
implementing macro- and micro-adaptivity and
used for secondary school English teaching.

3 Dashboard design

Our student dashboard, illustrated in Figure 1, ex-
tends a task-oriented dashboard view so that it can

be used in an adaptive ILTS supporting teachers
in a blended learning context. Where task orien-
tation and adaptivity requirements clash, special
considerations are required. The implementation
is based on the assumption that most students use
the system on a tablet device in landscape mode.
This assumption is backed by observations from
real life classrooms. The new dashboard features
have been co-designed with English teacher practi-
tioners to ensure initial validity. Following the first
three stages of the LATUX workflow (Martinez-
Maldonado et al., 2015), based on a needs analysis
and iterative interviews with teachers using a low-
fidelity prototype, we identified requirements on
adaptive ILTS used in blended learning with sev-
enth graders and created a high-fidelity prototype
with mock learner data for the proposed learner
dashboard. The resulting dashboard is described in
the following.

Structure The dashboard (see Figure 1) depicts
learning content represented in learning units. In
accordance with task-based language teaching
(Van den Branden, 2016), each unit contains mul-
tiple learning targets for grammar or vocabulary
practice (e.g., Simple Past) which the students need
to acquire in order to successfully complete the
final communicative target task and its functional
goal. In our system, teachers can self-assemble
these learning targets into learning units to align
with a curriculum, thus supporting different text-
books. Additionally, teachers can define and de-
scribe the communicative goal and target task of
each learning unit (e.g., Storytelling: Write a Story!
Start with events in the past, describe the present,
and then look into the future.), which will be pre-
sented in the dashboard header. Making this link
transparent for the students in this way strength-
ens the connection to the functional target and pur-
pose of practice. Within each learning target of a
learning unit, a range of pedagogically motivated
realizations of the learning target are listed. Yes/no
questions, for instance, constitute a realization of
the learning target simple past. The realizations
represent the task-essential language. The system
inherent domain model maintains a static, peda-
gogically motivated order of the learning targets,
as well as of the realizations within each target,
that have been manually determined by an expert
teacher. This structure of the content into coarse
and fine-grained content containers makes interme-
diate acquisition goals visible at different levels
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Figure 1: Student dashboard for a user-adaptive, task-oriented ILTS

towards the overarching functional target, which
is present at all times, and thus incorporates task-
orientation into a student dashboard.

The domain model in our system is based on
the curriculum of seventh grade German academic
track schools and currently contains 14 grammati-
cal targets, mainly focusing on tenses (i.e., Simple
Present, Simple Past, Present Perfect, Past Progres-
sive, Will-Future, Going-to-Future), and their pair-
wise comparisons, as well as conditional clauses,
relative clauses, and comparative forms.

Navigation Traditional systems expect high self-
regulation from students by requiring them to them-
selves navigate through the practice material (Sun
et al., 2023). Especially for weaker students, these
decisions surpass their abilities so that they do bet-
ter with adaptive systems (Vandewaetere and Clare-
bout, 2010). In order to support heterogeneous
classrooms with both strong and weak students
with different navigational preferences, we inte-
grate a hybrid approach, providing options for less
and more learner control over the learning con-
tent to practice. In the adaptive practice phase,
neither students nor teachers choose distinct ex-
ercises, this is done by the adaptive exercise se-
quencing algorithm. The scope of adaptivity varies

depending on the entry point a student chooses.
Highly self-regulated students may navigate more
autonomously and by themselves select a realiza-
tion for which the algorithm adaptively sequences
exercises. Less self-regulated students, on the other
hand, may let the system globally choose both the
learning target realization and the exercise.

Although the order displayed via the interface
reflects the static order of the pedagogically moti-
vated domain model, the fully adaptive sequence
may skip practice of certain realizations for strong
students if that realization is also practiced together
with other realizations in the same learning target.
In the example given in Figure 1, this could for in-
stance be the case for negative statements which are
also practiced in affirmative + negative. Whether
a student belongs to the group of strong students
for whom realizations are skipped, is based on the
student’s language proficiency level, which is de-
termined by C-tests periodically administered via
the system.

Progress and performance metrics A student
dashboard serves not only to navigate to the next
exercise but also to visualize the student’s progress
and performance. Given the lack of sufficient train-
ing data for our target domain, we cannot use
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KT model-based progress representations as com-
monly used in adaptive systems. In traditional sys-
tems, progress can be as simple as displaying the
ratio of completed exercises out of all exercises
(Duan et al., 2010). This is not suitable for macro-
adaptive systems, where the number of completed
exercises can easily be determined, yet the number
of all exercises is unknown before the student has
achieved mastery. Bull and McEvoy (2003) suggest
an alternative approach which displays the numbers
of successfully and unsuccessfully acquired con-
cepts.

We build our progress metric on this idea, but
only display successfully acquired linguistic prop-
erties for each realization in a pie chart in order to
further increase simplicity. Linguistic properties
such as regular verb forms are defined at a fine-
grained linguistic level. Exercises are linguistically
analyzed with the annotation pipeline introduced in
Rudzewitz et al. (2018) using the Unstructured In-
formation Management Architecture (UIMA, (Fer-
rucci and Lally, 2004)) and standard natural lan-
guage processing (NLP) tools, i.e., segmentation,
part-of-speech tagging and dependency parsing
with ClearNLP (Choi and Palmer, 2012), lemma-
tization with Morpha (Minnen et al., 2001) and
morphological analysis with the Sfst tool (Schmid,
2005). Based on these basic linguistic analyses
of the exercise content, including the target an-
swer and any linguistic co-text such as prompts but
excluding exercise instructions, the exercise anno-
tations are extended with more specific linguistic
constructions (e.g., regular verb forms with infini-
tive ending in -y) they cover. This second step uses
a rule-based approach with UIMA Ruta (Kluegl
et al., 2016) as described by Quixal et al. (2021).
The domain model hierarchically associates linguis-
tic constructions with properties, and properties
with realizations. Thus, it indirectly links anno-
tated exercises to realizations for which they act
as options for adaptive practice. Acquisition of
these properties represents discrete steps towards
progress completion for a realization. Progress
completion is calculated based on interactions with
the exercises and pre-defined accuracy thresholds
per property. Students’ attempts on exercise items
are analyzed with respect to correctness, therefore
a student’s answer is compared to the underlying
exercise’s target answer. Given that the exercise
carries annotations of linguistic property, the inter-
actions with items in the exercise result in either

positive or negative evidence for property acquisi-
tion.

Micro-adaptive adjustments while a student
works on an exercise, for instance reducing the
number of distractors, are not explicitly shown in
the dashboard. They are implicitly incorporated
in the progress metric as the adaptive algorithm
takes the support a student needs into account by
weighting the student’s attempts respectively.

In existing ITS, the performance achieved for a
realization is often indicated based on a single exer-
cise, be it the most recent (e.g., Harindranathan and
Folkestad, 2019; Britain, 2020) or the best one per
realization-inherent difficulty level (e.g., Colling
et al., 2022). In our adaptive system, neither of
the two makes much sense. Displaying the per-
formance on a single exercise only makes sense if
all exercises target similar properties. Since in our
implementation, each realization practices various
linguistic properties which are distributed over mul-
tiple exercises, a single exercise cannot be repre-
sentative of a student’s current performance. Other
systems use average performance over all exercises
(Keleş et al., 2009). In this approach, performance
visualizations of 100% can only be achieved if all
answers are correct. However, students might ini-
tially provide incorrect answers based on learning
gaps or misconceptions which they can overcome
in the practice phase. Displaying average perfor-
mance of all exercises carries the risk of demoti-
vating or even frustrating students as they cannot
receive a perfect performance once given a single
incorrect answer. In our system, we want to en-
courage students to also attempt exercises that they
cannot master at first try, to benefit from the scaf-
folding feedback. Pushing students to only work on
exercises where they are certain to get everything
correct, in order to have a perfectly polished dash-
board with 100% in all performance metrics, would
be counter-productive for the purpose of learning
and practicing in the zone of proximal development,
which describes the space of what a learner can ac-
quire when supported (Vygotsky, 1978). Moreover,
average performance is not comparable across stu-
dents and learning target realizations as it does not
account for the amount of practice. A metric based
on three exercises would put more weight on incor-
rect solutions than a metric based on 50 exercises.
Average values, given in percentages, in general
make it less transparent and less intelligible for low
literate students to connect the exercise submission
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to the performance metrics.
To account for compatibility, transparency and

taking learners improvement over time into ac-
count, we determine performance by including the
most recent ten items instead of focusing on a sin-
gle submission or an average for an aggregated
visualization. As exercises in our system consist
of five items, this represents the performance on
the last two exercises. Performance is displayed
as criterion-referenced performance in a stacked
bar chart, giving discrete numbers of items solved
correctly at first try, correctly after feedback, and
incorrect or not attempted items. This performance
display proposed by Colling et al. (2022) shows in-
dependent, exam-like as well as scaffolded success
and has been evaluated in terms of comprehensibil-
ity for seventh graders.

Mastery criterion In order to complete the entire
learning target, students need to master all its real-
izations. Mastery is assessed through specific exer-
cises, which we call diagnostic exercises. These are
manually created by teachers and didacticians and
tailored to align well with the practice exercises
and the German seventh grade curriculum. Fol-
lowing Colling et al. (2022)’s approach of parallel
exercises, there are multiple comparable instances
of diagnostic exercises for each realization. This
allows students to re-attempt the readiness check
after failing a diagnostic exercise. The current di-
agnostic exercise for a realization is accessible via
the Check readiness button and assesses the
abilities needed to support the functional goal and
thus the student’s readiness for the target task re-
garding the particular realization. It takes into ac-
count that no support is provided in the commu-
nicative task and therefore evaluates only the stu-
dent’s unassisted attempts without providing scaf-
folding feedback. When a student achieves mas-
tery for a realization by successfully completing
its diagnostic exercise, that realization is assigned
a trophy symbol. In traditional ITS, readiness to
attempt the diagnostic exercise would correspond
to having completed all practice exercises of the
realization. As there is no predefined sequence of
exercises in a macro-adaptive system, in our ap-
proach, the adaptive algorithm evaluates, while the
student progresses through the adaptive sequence,
if the student has practiced all linguistic properties
that underlie the realization and if the student’s ac-
curacy is at the required proficiency level. Only
then can the system reliably predict that the stu-

dent will give a correct solution in the diagnostic
exercise. Predicted readiness is made salient by
a shiny border around the Check readiness
button in addition to the full progress pie chart. If
a student chooses to work on a diagnostic exercise
before the system deems them ready, the system
advises them to first practice some more, yet with-
out forcing them to do so. Students are thus guided
and scaffolded in the understanding of the provided
analytics, in form of progress and performance met-
rics. This enables students to make sense of their
statistical data (van Leeuwen et al., 2022) and as a
result identify the next steps towards their learning
goal.

Permanency of mastery Since traditional ILTS
have static exercise sequences, mastery is a per-
manent attribute. In adaptive systems, however,
forgetting needs to be incorporated (Zaidi et al.,
2020). In order to consider this in the student dash-
board, our trophies "gather dust" once the adaptiv-
ity algorithm ascertains that mastery has expired,
as demonstrated in Figure 2. This happens if a
student hasn’t actively – as part of a gap in a gap-
filling exercise – or passively – as part of the gaps’
co-text – practiced the realization for a set time,
which is adjusted based on a student’s retention
capacities tracked in the learner model. By revis-
ing a realization through clicking on the Check
readiness button – after optionally completing
additional practice exercises –, students can prove
their maintained proficiency to the system and to
themselves. The trophy then regains its shiny ap-
pearance.

Figure 2: Mastery trophy transition from shiny, i.e.,
active mastery of respective competence, to dusty, i.e.,
indicating potential forgetting

Homework assignment Teachers who use an
ITS as assistant tool for classroom teaching often
desire to assign specific exercises to their students
which they can then discuss with the entire class
(Singh et al., 2011). This is no problem in tradi-
tional systems where all exercises are listed and
can directly be accessed by the students. In macro-
adaptive systems, however, the algorithm dynam-
ically determines the concrete exercise instance
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which a student practices. Additionally, in micro-
adaptive systems each student receives individually
tailored exercises. Consequently, no list of all exer-
cises that is shared amongst all students is available.
In order to still facilitate the presented scenario,
our system allows teachers to specify mandatory
exercises which all students have to complete. By
thus giving teachers certain control over the learn-
ing content, they can ensure that all students have
been exposed to a specific set of hand-selected ex-
ercises. The adaptivity algorithm automatically in-
tegrates these mandatory exercises into the exercise
sequence at the appropriate position according to
their associated learning target realizations and the
individual student’s learning state. However, some
students might wish to specifically practice these
exercises, either because their slow progress pre-
vents them from reaching the mandatory exercises
within the adaptive sequence in a feasible amount
of time, or because they do not see the need for ad-
ditional practice as they might already be proficient
in the respective realization. We therefore also ex-
plicitly list the mandatory exercises with the option
to open them directly. Similarly to the behavior
when attempting a diagnostic exercise, if a student
chooses to practice a mandatory exercise for which
they are not yet proficient enough according to the
adaptivity algorithm, the system recommends to
first practice more. Students can always decide to
ignore these recommendations and proceed to the
selected mandatory exercise.

These considerations allow the system to provide
common student dashboard features of task-based
ITS while also integrating user-adaptivity.

4 Discussion

Since research on simultaneous integration of a
task-oriented student dashboard and user-adaptivity
in systems applied at secondary school level is very
limited, alternative approaches can be considered
in some cases and some concepts still lack empiri-
cal validation. We therefore discuss potential issues
with and alternatives for some of our proposed im-
plementations.

Diagnostic exercises In our approach, students
can attempt diagnostic exercises by clicking the
Check readiness button either next to a learn-
ing target realization or globally for the entire learn-
ing target comprising all its realizations. On the one
hand, this global entry point is in line with the adap-
tive approach requiring low self-regulation. On the

other hand, students using the global button receive
all diagnostic exercises in succession so that they
do not directly follow the exercises which prepare
for them. This decouples the diagnostic exercises
for a realization from their scaffolding practice ex-
ercises. If the global Check readiness button
was removed, the question would remain whether
all students should proactively attempt the diagnos-
tic exercises themselves – which would potentially
result in the same dilemma for students following
the adaptive sequence, as they would not be assisted
in when to attempt which diagnostic exercise. A so-
lution could be to integrate the diagnostic exercises
into the adaptive exercise sequence and saliently
flag them for students. Students should then get the
choice to attempt the exercise or practice more.

Transparency The subject of mandatory exer-
cises leaves an additional question to be addressed.
While displaying them globally for the entire learn-
ing target avoids the issue of being inaccessible on-
demand, it also removes visual assignment to any
realization. Since the aim of explicitly listing the
realizations is to also foster meta-linguistic knowl-
edge (Godwin-Jones, 2021), neglecting this aspect
for mandatory exercises is questionable. More-
over, this would make it harder for students to au-
tonomously reconstruct progress and performance
updates from exercise submissions, thus resulting
in higher mental load. The lack of transparency in
linking exercises to realizations is also an issue for
exercises accessed via the global adaptivity buttons
More practice and Check readiness for
the entire learning target. This could potentially be
addressed by highlighting the associated realization
upon opening the exercise.

Performance visualization A further discussion
point concerns the visualization of student perfor-
mance. While we have presented an approach to
display it as criterion-referenced performance on
the most recent items, multiple alternative aggre-
gations and visualizations are envisionable. Repre-
senting mastery estimates of concepts (Tong et al.,
2022), taking the average performance over mul-
tiple exercises, adding up the scores for a de-
fined number of items or only displaying those
of the most recent exercise are all valid options
(Van Labeke et al., 2007; Harindranathan and
Folkestad, 2019). Instead of aggregating multiple
exercises, the student dashboard could also visu-
alize all completed exercises for a student individ-
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ually. This would also make it possible to mark
mandatory exercises. However, if a student prac-
tices a lot, the dashboard could quickly become
crowded and therefore poorly accessible on small
displays (Bull and Kay, 2016). Reducing the ex-
ercises to dot representations might increase man-
ageability. Criterion-referenced performance for
each exercise could then be displayed on demand
after clicking on a dot. In order to increase the
discriminability of dot representations, different
colors could indicate certain properties of the exer-
cises such as the exercise type, the exercise dimen-
sion, or the proficiency level. Making the exercise
type salient could for example address varying com-
plexities as for example gap-filling exercises are
considered more complex than multiple-choice ex-
ercises (Medawela et al., 2018), or varying foci on
language dimensions (Grellet, 1981, p. 5) inherent
to different exercise types. It would, however, still
fail to consider differences in exercise complex-
ity within each exercise type, for instance based
on the number of distractors in multiple-choice
exercises (Heck et al., 2022). Using the exercise
dimensions of receptive, interactive and produc-
tive types (Vetter, 2012) instead would reduce the
number of categories and thus increase heterogene-
ity within each category. Since macro-adaptivity
aims to gradually increase exercise complexity, the
different categories would for both options inad-
vertently display scores at different stages of the
learner’s progress, which might not be transparent
to students. The alternative approach to associate
exercises with the learner’s proficiency level at the
time of completing them translates continuous pro-
ficiency scores of a KT model into concrete cate-
gories. Considering the small number of categories,
this is also feasible with KT models of moderate
accuracy. However, since a student’s progress is
not always linear (Shirai, 1990) nor are there clear
thresholds between the levels, this approach might
not give helpful insights either. A compromise
between representing all exercises and using a sin-
gle global aggregation could alternatively collapse
exercises with similar colors into a single dot rep-
resentation with the number of collapsed exercises
indicated inside the dot. This would, however, lose
the benefits of the non-collapsed representation of
highlighting mandatory exercises and providing
anchors for criterion-referenced performances per
exercise.

Progress visualization Although we choose to
base our progress measure on linguistic properties,
this does not necessarily have to be the case. The
categories of exercise type, exercise dimension, and
exercise complexity suggested for a performance
metric can also be considered for progress. How-
ever, categorical progress units, which increase
in discrete steps, incorporate ranges of continu-
ous values so that progress does not necessarily
increase after each exercise. While KT in principle
facilitates continuous and constantly perceivable
progress updates, we have already argued that the
model’s estimates are not accurate enough with
insufficient training data.

Customized learning units Finally, an adap-
tive system that supports multiple curricula allows
teachers to compile their own learning units. Ide-
ally, teachers can also exclude certain linguistic
properties which they do not (yet) wish to prac-
tice. Since they may later decide to include these
properties, students who have already received a
trophy might not fulfill the requirements anymore
when also considering the newly included prop-
erties. Withdrawing the trophy could be discour-
aging and the underlying reasoning might not be
intuitive to students. A possible solution could
use the mechanism of gathering dust so that the
trophy would still be visible but inactive. Addi-
tionally, the progress pie chart for the realization
would have to change accordingly. Making these
changes transparent and intelligible for students is
not trivial, especially considering that young learn-
ers’ graphical literacy skills may still be developing
(Roberts and Brugar, 2017). It becomes even more
of a challenge if multiple learning units practice
the same learning target, thus sharing the same
pool of exercise candidates. This is especially rel-
evant for teachers who want to incorporate a re-
vision learning target, e.g., having one learning
unit where students first learn simple past, maybe
not including all linguistic properties, but also in-
cluding simple past as a revision when introducing
conditionals type 2 in another learning unit. The
question then arises whether performance should
be calculated separately within each learning unit
– which would hinder the adaptivity algorithm as
it would not be able to globally track the students’
learning progress – or synchronize progress across
the units. Synchronizing progress for realizations
where different linguistic properties have been ex-
cluded is, however, unfeasible. On the other hand,
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disallowing teachers to exclude different properties
for different units might also not result in the de-
sired functionalities, especially if teachers intend to
practice complementary properties of a realization
in different learning units. From a student’s per-
spective, working on a learning target realization
in one learning unit but receiving a performance
update in another unit as well might lead to misun-
derstandings, demotivation, or distrust in the tech-
nology due to the poor user experience (Franconeri
et al., 2021). In the worst case, it could even result
in negative learning outcomes. From a teacher’s
perspective, interpreting and assessing duplicates
of identical performance history items in multiple
units might be challenging and tedious. Especially
the display of mandatory exercises in synchronized
learning targets constitutes an open issue.

5 Conclusion

We presented the design of a student dashboard for
an ITS which integrates curriculum-driven, task-
based language teaching and user-adaptivity and
has been designed in a co-participatory approach
with teachers. We outlined an implementation
based on practices and insights from these two
instructional approaches that takes into account
the opportunities, but also the requirements and
restrictions of both. Taking this design as starting
point, we critically discussed potential limitations
and alternative approaches. Such conceptual and
theoretical discussions will guide future work in
terms of implementation and evaluation of the dash-
board in authentic settings. In a next step, to pilot
the design and decide on some open alternatives
before fully implementing the dashboard into the
system, we plan to evaluate the high-fidelity pro-
totype in a user study with teachers to ascertain
efficacy of the design. In this user study we will
obtain first quantitative measures on usability and
intelligibility. Based on these findings, the refined
student dashboard will be implemented using re-
cent front-end development libraries like REACT1

and build into the modular architecture of the ILTS
FeedBook (Parrisius et al., 2022), connecting the
dashboard with FeedBook’s existing micro-service
landscape, including the adaptivity micro-service,
the one for NLP processing and the learner model
micro-service. The fully implemented dashboard
integrated into the ILTS will then be evaluated in
a large-scale field study with student participants

1https://react.dev/

using the system in a blended learning setting over
an extended period of a school year. The data
collected in that study will allow us to identify
different learning paths and map them to student
characteristics such as high and low self-regulation
and navigational preferences such as globally adap-
tive, realization adaptive or completely self-guided
sequencing. Furthermore, the study will yield valu-
able insights into the practicability and acceptabil-
ity of the design in real-world usage.
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