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Abstract

As in other NLP tasks, Automatic Short An-
swer Grading (ASAG) systems have evolved
from using rule-based and interpretable ma-
chine learning models to utilizing deep learning
architectures to boost accuracy. Since proper
feedback is critical to student assessment, ex-
plainability will be crucial for deploying ASAG
in real-world applications. This paper proposes
a framework to generate explainable outcomes
for assessing question-answer pairs of a Data
Mining course in a binary manner. Our frame-
work utilizes a fine-tuned Transformer-based
classifier and an explainability module using
SHAP or Integrated Gradients to generate lan-
guage explanations for each prediction. We
assess the outcome of our framework by cal-
culating accuracy-based metrics for classifica-
tion performance. Furthermore, we evaluate
the quality of the explanations by measuring
their agreement with human-annotated justifica-
tions using Intersection-Over-Union at a token
level to derive a plausibility score. Despite
the relatively limited sample, results show that
our framework derives explanations that are, to
some degree, aligned with domain-expert judg-
ment. Furthermore, both explainability meth-
ods perform similarly in their agreement with
human-annotated explanations. A natural pro-
gression of our work is to analyze the use of our
explainable ASAG framework on a larger sam-
ple to determine the feasibility of implementing
a pilot study in a real-world setting.

1 Introduction

Assessment is fundamental to any educational pro-
cess as an evaluation system reflecting individual
performance and a way to compare results across
populations (Harlen et al., 1992). Two key ele-
ments to consider when designing an assessment
are question type and grading method (Gardner,
2012). While questions may come in various forms,

such as multiple-choice questions, short answers,
or essays, the grading method can be either manual
grading performed by domain experts or automatic
grading by computational methods (Broadfoot and
Black, 2004).

Previous research has established that assessing
free-text short answers is a process that, besides
being time-consuming, may lead to inequalities
due to the difficulties in applying consistent evalua-
tion criteria across answers (Page, 1994; Gardner,
2012). Data from several studies suggest that teach-
ers dedicate approximately 25% to 30% of their
time grading written examinations (Broadfoot and
Black, 2004; Sukkarieh et al., 2003). Moreover,
manual grading requires concentration for long pe-
riods of time, which could lead to differences in
grading for answers with similar quality, creating
inequities in the assessment process and its out-
come (Whittington and Hunt, 1999; Burrows et al.,
2015).

In the literature, automatic short answer grading
(ASAG) is defined as the task of assessing short
natural language responses to objective questions
using computational methods (Page, 1994; Whit-
tington and Hunt, 1999). ASAG techniques have
evolved from traditional rule-based models to state-
of-the-art systems utilizing deep learning-based nat-
ural language processing (NLP) models (Sukkarieh
et al., 2003; Leacock and Chodorow, 2003; Gal-
hardi and Brancher, 2018). Researchers have been
able to build supervised learning models based on
assessment questions, answers provided by stu-
dents, and the corresponding grades assigned by
teachers (Burrows et al., 2015; Willis, 2015). The
objective is, therefore, to predict which label score
a new question-answer pair should achieve.

Over the past five years, researchers have lever-
aged the power of novel deep learning architectures
such as the Transformer (Vaswani et al., 2017) to
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improve accuracy for ASAG models (Sung et al.,
2019a). Nevertheless, the performance improve-
ment has come at the cost of models becoming less
understandable for stakeholders, and their opaque-
ness has become an obstacle to their deployment
in the educational domain (Belle and Papantonis,
2020; Arrieta et al., 2020). Consequently, Explain-
able Artificial Intelligence (XAI) has emerged as a
relevant research field aiming to develop methods
that allow stakeholders to understand the outcome
of deep learning-based systems (Gunning et al.,
2019; Arrieta et al., 2020). As such, several lines
of evidence suggest that providing insights into
models’ inner workings might be helpful in build-
ing trust in these systems and detecting potential
biases (Belle and Papantonis, 2020; Arrieta et al.,
2020; Jacovi and Goldberg, 2021).

A great deal of previous research into XAI
methods for explaining NLP models has focused
on building reliable associations between the in-
put text and output label and quantifying how
much each element (e.g., word or token) con-
tributes to the final prediction (Danilevsky et al.,
2020). Such XAI methods can usually be divided
into feature importance-based explanations (Si-
monyan et al., 2013), perturbation-based explana-
tions (Zeiler and Fergus, 2014), explanations by
simplification (Ribeiro et al., 2016) and language
explanations (Lei et al., 2016). Previous studies
have indicated that rationales or language expla-
nations are easier to understand and use since they
are verbalized in human-comprehensible natural
language (Lei et al., 2016; DeYoung et al., 2019).

This study focuses on explaining binary text clas-
sification for student responses gathered from a
Data Mining course exam. As such, the main objec-
tive is to generate a framework that predicts binary
grades and simultaneously produces associated ra-
tionales in order to justify the predicted grade of
a given student response. By doing so, we intend
to enrich the insights given by previous research,
by presenting a framework that demonstrates how
recent progressions of deep learning architectures
and XAI can be combined in order to address the
problem of ASAG. As such, we aim to set an ex-
ample for how future research can incorporate XAI
in the educational domain. Conclusively, our main
contributions are as follows:

1. Suggesting a framework for creating sentence-
level and word-level attributions by utilizing
token-level relevancy scores.

2. Evaluating contemporary explainability meth-
ods by measuring the Intersection-Over-
Union of our language explanations and hu-
man rationales.

3. Applying a fine-tuned Transformer model to
perform ASAG on data-scientific question-
answer pairs by utilizing collected data from
a course in Data Mining.

2 Related Work

Large Language Models (LLMs) such as Trans-
former models have been increasingly applied in
the domain of ASAG (Haller et al., 2022). Given
a limited amount of examples, Transformer mod-
els such as BERT have proven their capability
to achieve state-of-the-art performance within the
field of ASAG (Sung et al., 2019b). The ability to
handle single short documents, such as question-
answer pairs, makes BERT a suitable model for var-
ious downstream tasks (Devlin et al., 2018). Most
previous research and implementations focus on
the model’s effectiveness using standard classifi-
cation metrics such as F1 and accuracy, precision,
and recall (Haller et al., 2022). However, there is a
limited amount of research addressing why certain
predictions are being made. As a consequence, a
lack of trust and understanding of the model pre-
dictions remains an issue. Thus, our work explores
the use of explainability techniques as a tool for
ASAG, in order to increase the understanding of
the predictions being done.

Rationale extraction refers to a post-hoc explain-
ability method for NLP models in which the goal
is to create deep learning-based NLP solutions ex-
plainable by uncovering part of an input sequence
that the prediction relies on the most (Lei et al.,
2016; DeYoung et al., 2019). Most previous re-
search on rationale extraction has been carried out
using an encoder-decoder architecture. In such
a setting, the encoder works as a tagging model,
where each word in the input sequence receives a
binary tag indicating whether it is included in the
rationale. The decoder then only accepts the input
highlighted as a rationale and maps it to the target
labels (Zaidan et al., 2007; Bao et al., 2018; Narang
et al., 2020).

Previous studies have proposed a multi-task
learning approach for rationale extraction utilizing
two models and training them jointly to minimize a
composite cost function (Lei et al., 2016; Bastings
et al., 2019; Paranjape et al., 2020). Unfortunately,
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one of the main drawbacks of multi-task learning ar-
chitectures for rationale extraction is that it is chal-
lenging to train the encoder and decoder jointly un-
der instance-level supervision (Zhang et al., 2016;
Jiang et al., 2018). Pipelined models are a simpli-
fied version of the encoder-decoder architecture in
which the encoder is first trained to extract the ratio-
nales. Then the decoder is fit to perform prediction
using only the rationale (Zhang et al., 2016; Jain
et al., 2020). It is important to note that no param-
eters are shared between the two models and that
rationales extracted based on this approach have
been learned in an unsupervised manner since the
encoder is deterministic by nature.

There is little consensus on what makes a good
machine-generated rationale and how to evaluate
a rationale for benchmarking. Most researchers in-
vestigating rationale evaluation have utilized proxy-
based methods, where rationales are assessed based
on automatic metrics that attempt to measure de-
sirable properties (Carton et al., 2020). One of the
most common methods for evaluating rationales is
to measure how well they agree with explanations
provided by human annotators (DeYoung et al.,
2019). In the context of explainable NLP, this prop-
erty is referred to as plausibility. As such, it is
usually evaluated based on the token overlap be-
tween human annotations and machine-generated
rationales. Using such an approach, researchers
have been able to derive token-level precision, re-
call, and F1 scores using Intersection-over-Union
(IOU) at token level (Paranjape et al., 2020; Chan
et al., 2021; Guerreiro and Martins, 2021).

3 Explainable Autograding Framework

The explainable framework is illustrated in Figure
1, consisting of an encoder responsible for gener-
ating explanations and a decoder responsible of
performing the binary classification.

3.1 Encoder

The encoder is built using two main components,
where the first component corresponds to the ex-
plainability method of use, and the second com-
ponent corresponds to the ranking and processing
of the given attributions created by the used ex-
plainability method. The two mentioned compo-
nents result in a ranking for each sentence in a
student’s answer based on its importance in end
classification. Thus, the concept of the framework
itself is not dependent on the individual explain-

ability methods presented in this study. As such,
with minor adjustments according to the outputs
of the used method, the concept of the presented
framework should be considered generalizable and
possible to implement in conjunction with other
token-based methods of attribution. Subsequently,
the following paragraphs will introduce the explain-
ability methods being used in this study.

3.2 Explainability methods

As the complexity of a model increases, the model
itself cannot longer be used as a method for expla-
nation. As such SHAP utilizes cooperative game
theory and Shapley values to explain a model’s
output prediction (Lundberg and Lee, 2017). By
doing so, SHAP creates an interpretable approxi-
mation of the original model, which is refered to
as the explanation model. In essence, SHAP is a
model-agnostic explainability method that captures
the importance value of an input feature by pertur-
bating the input feature and observing the change
in the model’s prediction output. By observing the
resulting output of the perturbation, SHAP makes it
possible to assign each input feature an importance
value. In practice, SHAP utilizes additive feature
attributions, which in essence can be defined as a
mapping of the original input features to simplified
features. As such, it achieves the aforementioned
interpretable approximation of the original model.
In the task of ASAG, the tokens included in the
answer correspond to the input features. Conse-
quently, each and every token in the answer will be
given a relevancy value.

Similarly, each input feature is assigned an attri-
bution value with Integrated Gradients (IG). IG
is an explainability method based on two main
axioms; Sensitivity and Implementation Invari-
ance (Sundararajan et al., 2017). IG measures the
attribution value by comparing the model’s out-
put function of the input with the model’s output
function of an uninformative baseline. The uninfor-
mative baseline could correspond to a black image
in an object recognition task, while for text clas-
sification, the baseline could correspond to a zero
embedding vector. The integrated gradients can
then be defined as ’the path integral of the gradi-
ents along the straight line path from the baseline
to the input‘ (Sundararajan et al., 2017). For a
text classification task, the integrated gradients are
calculated by interpolating between the baseline
and the original output for k number of steps. This
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Figure 1: Explainable Framework for Automatic Short Answer Grading.

gives insight into each feature independent of the
others and its impact on the output prediction. Fur-
thermore, Gradient-based explanations are known
to be robust and efficient (Nielsen et al., 2022).

The reason why SHAP and IG are used in this
experiment is that SHAP can handle interactions
between features when explaining (Nielsen et al.,
2022). In contrast, IG only considers each feature’s
individual contribution, making it suitable to ob-
serve both effects. Both post-hoc explainability
methods have a reputation for being robust, and
neither has an effect on the end classification ac-
curacy (Vale et al., 2022; Lakkaraju et al., 2020)
hence, making it reasonable to apply to ASAG
tasks.

3.2.1 Sentence Level Explanations
Since Transformer models usually represent singu-
lar words as multiple tokens, explainability meth-
ods such as SHAP and IG will return attributions
at a token level when used in combination with
Transformers. In this framework, attributions are
grouped per sentence, creating Sentence Level At-
tributions (SLAs). The SLAs are all based on Word
Level Attributions (WLAs), which in turn are based
on the original Token Level Attributions (TLAs)
generated by the explainability methods.

We define the WLAs as the sum of all the TLAs
representing a single word. Furthermore, as includ-
ing stopwords in the SLA could lead to very neutral
attribution values of sentences with a considerable
amount of stopwords, we define the SLAs as the
mean attribution of all non-stopwords contained in
a sentence. As such, stopwords are assumed not

to be highly determining for the end classification.
Thus, they are completely ignored in the calculation
of SLA. Furthermore, as a consequence of the par-
tially arithmetic characteristics of the data set and
Transformers’ inability to handle such arithmetics,
any non-alphabetical characters are removed before
calculating the SLAs.

3.3 Decoder

The components of the decoder are a Transformer
model fine-tuned on a exams from a data mining
course, where the characteristics of the data set are
further detailed in section 4.1.

The model For the classification of the text, we
use SciBERT (Beltagy et al., 2019), as it is a pre-
trained model based on the architecture of BERT,
which uses a corpus of 1.14 million papers instead
of the original pre-training data found in BERT.
Of these 1.14 million papers, 18% of the papers
in the corpus comes from the domain of computer
science. In terms of representing language, the vo-
cabulary of the SciBERT model only overlaps the
vocabulary of the BERT model by 42% (Beltagy
et al., 2019). As such, this difference in vocabulary
illustrates the differences between scientific text in
comparison to general text. Furthermore, it also
highlights the importance of choosing the appropri-
ate model and associated vocabulary depending on
the domain of the given task. Given that SciBERT
can be considered to be of a somewhat computer
scientific
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3.4 Evaluation
Classification Performance For evaluating the
classification performance of the used model, we
calculate precision, recall, and F-1 score against
the given test set.

Plausibility For calculating the quality of the
model rationales, we calculate the Inter-Annotator
Agreement (IAA) (Zaidan et al., 2007; Carton et al.,
2020) as the Intersection-Over-Union (IOU). The
use of IOU is to calculate the overlap of the model
rationales and the human rationales. Before calcu-
lating this overlap, we first ensure that the model
rationales and the human rationales are in a com-
parable format. To achieve this, both of them are
processed in a standardized manner.

As the explanation models used generates at-
tribution scores for all text in the given response,
the generated attributions needs to be filtered in
order to conduct a fair comparisson with human
rationales (as they do not usually contain all of the
text in a given response). As such, the sentences
can be ranked by their respective attribution value.
Following such a ranking, the top k attributions cor-
responding to the given grade could be picked out
for comparisson with the human rationales, where
k is defined by the number of rationales annotated
by the human. As such, the top k sentences with
the highest SLA are selected for comparison with
the human rationales if the label is “Satisfactory”,
where k = the number of sentences in human ra-
tionales. However, if the label of the answer is
"Non-satisfactory", the k sentences with the lowest
SLA are selected for comparison with the human
rationales.

In order to compare the sentences, both set
of sentences are split into non-stopword tokens.
From these sets of tokens, empty strings and non-
alphabetic characters are removed. Finally, the two
sets of tokens will represent the model and human
rationales when calculating the IAA.

4 Data, Experiments and Results

4.1 Data set
As part of a project in automatically grading exams
at Stockholm University, the data selected in this
study was selected in order to partly evaluate the
potential of using automatically grading systems
on low-resource data. As such, the selected data
set used in this experiment is an English data set
consisting of 1131 question-answer pairs collected
from graded exams of a Data Mining course at

Stockholm University. As such, the data has been
collected from a limited amount of course itera-
tions. In total, there are 31 unique questions, with
an average of 36,5 answers per question. Given
the amount of question answers pairs, the adjust-
ments and changes that have been applied to the
questions inbetween the given iterations, and the
amount of answers per question, it is reasonable to
deem the data set to be of a low-resource charachter.
In essence, this poses a fundamental challenge for
building grading systems, where the amount of ex-
aminatory data can be limited due to a multitude
of factors such as limited data collection, frequent
adjustments to questions or course content, or due
to the course being new. As such, utilizing such a
data set, will help evaluate the potential of build-
ing automatically grading systems on low-resource
data.

The data set also features a lot of scenario-based
questions, where the student is often asked to pro-
vide a solution for a scenario-based problem. This
type of response generally involves complex rea-
soning about the problem and as a consequence,
the answers are usually long compared to answers
in data sets previously used, with an average length
of 155 words per answer across the whole data
set. Given this, it could be argued that the task
of grading these answers could be seen as a more
elaborate version of the ASAG task that a lot of pre-
vious research has been focusing on (Haller et al.,
2022). Furthermore, some of the question-answer
pairs involve small amounts of arithmetics. Given
the amount of available data and varying class rep-
resentation, the scales of grading have been con-
verted from the original scales (0-5, 0-8, and 0-10)
to binary labels (0-1). From the original scales, bi-
nary labels were derived by assessing every answer
that achieved 50% or more of the original maxi-
mum grade as a satisfactory(1) answer and every
answer that achieved less than 50% of the original
maximum grade as a non-satisfactory answer(0).
Following the conversion, there are 667 satisfactory
answers and 464 non-satisfactory answers.

4.2 Data annotation

Before performing the annotation, we developed
an annotation scheme and guidelines to facilitate la-
beling question-answer pairs (Krippendorff, 2004).
The scheme is based on the rubric associated with
each question defined by Stockholm University lec-
turers. As mentioned before, we focused on binary
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text classification. Consequently, we asked our
annotators to label each item as “Satisfactory” or
“Non-Satisfactory” based on whether they would
assign at least 50% or more of the total maximum
grade for each question. To illustrate, an answer
graded 10 points to a question worth 20 points
would be satisfactory, while an answer graded 9
points to the same question would be labeled as
non-satisfactory. However, since our goal is to pro-
vide richer annotations that support grading, we
also asked our annotators to select phrases and sen-
tences to justify their labeling decisions (Zaidan
et al., 2007; DeYoung et al., 2019; Guzman et al.,
2022). The annotation guidelines and examples of
our dataset are available upon request.

Since annotations of the original dataset was not
available, the annotation of the corpus was com-
pleted by two annotators aged above 25 years old
with degrees in Data Mining and Computer Sci-
ence from Stockholm University. Considering how
domain-specific our research is and the data pri-
vacy constraints of our dataset, we decided against
crowd-sourcing the annotation. During the annota-
tion process, the annotators were encouraged to ask
questions over online sessions to facilitate feedback
and ensure high-quality human rationales (Nowak
and Rüger, 2010). In order to avoid any bias or
preconceptions being passed on from the authors
to the annotators during the feedback sessions, the
annotations were carried out prior to the creation
of any model rationales. Furthermore, in order to
avoid being directly involved in any of the exam-
ples, we highly encouraged the annotators to ask
questions of a conceptual character rather than to
showcase specific examples from the dataset.

To validate our annotation guidelines, we ran-
domly selected 20 question-answer pairs and asked
our annotators to label them independently using
LightTag (LightTag, 2018) as the annotation plat-
form. This preliminary validation helped the an-
notators to familiarize themselves with the scope
of the task and to understand how to use LightTag.
The trial run enabled us to obtain constructive feed-
back on the annotation scheme and guidelines (Zou
et al., 2021).

We assessed the quality of the annotations using
the F1 score as IAA metric (Zaidan et al., 2007;
Carton et al., 2020). Considering the aim of our
research, we computed IAA at the level of binary
labels and rationales (Krippendorff, 2004). Consid-
ering the annotations of our most senior annotator

(A1) as the gold standard, we obtained a micro-
averaged F1 score of 0.94 for the 20 items in the
trial run.

As mentioned before, measuring exact matches
between rationales is likely too strict. Similarly to
what we described as one of the evaluation metrics
for the encoder, we used IOU at a token level (DeY-
oung et al., 2019). For rationales’ IAA, the IOU
is the size of the token overlap of the two human-
generated explanations, divided by the size of their
union (Carton et al., 2020). We counted it as a
match if the IOU exceeds a user-defined threshold.
Following (Zaidan et al., 2007), we utilized 0.5
as the threshold and derived a micro-averaged F1
score of 0.81 for rationales in the trial run.

Several lines of evidence suggest that reaching a
high IAA for rationale labeling is still challenging,
mainly because of the complexity of the annota-
tion task itself and the subjective nature of the hu-
man rationales (Lei et al., 2016; Strout et al., 2019;
Carton et al., 2020). Nevertheless, we observed a
fair agreement between our annotators compared
with previous work on rationales for binary text
classification (Zaidan et al., 2007; DeYoung et al.,
2019). Consequently, we sampled 200 items from
our dataset and asked each annotator to label 100
question-answer pairs to consolidate the rationale-
annotated dataset to evaluate our explainable frame-
work.

Our annotators labeled almost two-thirds of the
200 question-answer pairs as “Satisfactory” (134
items). The human rationales for the “Satisfactory”
label were, on average, 55 words-length with a
standard deviation of 12 words. The rationales as-
signed to the “Non-Satisfactory” class were slightly
shorter, with an average of 48 words and a standard
deviation of 18 words.

4.3 Experiments

For the classification experiment, the data was split
using stratification into a training set consisting of
757 examples and a test set consisting of 374 ex-
amples. Using the training and test set, the model
was evaluated both with fine-tuning on the train-
ing set and without any fine-tuning. The aim of
this method is to demonstrate the difference that
fine-tuning can make in classification performance
when the amount of data is limited (for results with
no fine-tuning, see Appendix A).

Given the previously described question-answer
pairs, the models were fine-tuned for 3 epochs with
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a batch size of 8. For optimization, AdamW was
used with a learning rate of 2e-5 and a weight decay
of 0.01.

For evaluating the performance of the classi-
fication model, a total amount of 1131 question-
answer pairs were used. From these 1131 exam-
ples, 757 examples were used for fine-tuning the
model, while 374 examples were used for testing
the model. The metrics for measuring the perfor-
mance of the classification model were precision,
recall, and F1-score on a micro-level as well as on
a macro-level, for both of the labels, which can be
seen in Table 1.

For evaluating the performance of the explain-
ability framework, a sample of 5 questions was
chosen for this experiment. The sampling of ques-
tions was based on factors such as label distribu-
tion, the average length of answers, the number
of answers per question, and the amount of arith-
metics involved in the question. Since the data
set was very limited in terms of the number of an-
swers per question, we made sure that both of the
class labels were represented in each of the sam-
pled questions. Having this in mind, we also made
sure not to include questions that were relatively
high in arithmetical answers. The support of the
individual questions ranges from 35 answers per
question to 50 answers per question, with a mean
of 41 answers per question. In total, the selected
data set for evaluating the sentence explainability
framework consisted of 200 question-answer pairs.
Thus, given the limited annotation budget of the
project, the explainability framework is only evalu-
ated on a subset of the data set used for evaluating
the classification task. As such, the questions with
the most lengthy answers were also rejected as a
part of the evaluation process.

5 Results

5.1 Classification results

Table 1 shows the classification performance of
the model used in the explainability experiments,
where the classification performance is evaluated
using precision, recall, and F1-score. As seen in
the table, there is a difference in classification per-
formance between the two given labels. The differ-
ence in performance could be expected as a conse-
quence of the imbalance in the data set.

Table 2 shows F1-score and recall based on a
varying threshold and the number of matches be-
tween the human rationales and the model ratio-

Precision Recall F1-score
Label 0 0.74 0.67 0.70
Label 1 0.79 0.84 0.82
Macro Avg 0.77 0.76 0.76

Table 1: Overall classification performance metrics of
fine-tuned SciBERT, where Label 0 = Non-satisfactory
and Label 1 = Satisfactory.

nales generated by IG. Where a match is registered
if the IAA calculated as the IOU between the model
rationales and the human rationales exceeds the
given threshold. As mentioned in section 3, the
calculation is carried out using two sets of tokens
representing the human and model rationales. In
this scenario, the ground truth will always be a
match, which means that the recall will represent
the number of matches made out of all possible
matches. Given a Threshold of 0.5, the results
show an F1-score of 0.62 and a recall of 0.45. This
means that out of all possible matches, the IAA
exceeds the 0.5 threshold in 45% of all answers.

Threshold F1 Recall
0.1 0.95 0.91
0.2 0.92 0.85
0.3 0.82 0.70
0.4 0.75 0.60
0.5 0.62 0.45

Table 2: Overall performance metrics for IG, based on
a threshold and the number of matches.

Table 3 shows the F-1 score and Recall based
on a varying threshold and the number of matches
between the human rationales and the model ratio-
nales generated by SHAP. If the IAA calculated as
the IOU exceeds the threshold of 0.5 for a given
answer, we calculate it as a match. Given a Thresh-
old of 0.5, the results show an F1-score of 0.63
and a recall of 0.46. Which is similar to the results
achieved by IG. This means that out of all possible
matches, the IAA exceeds the 0.5 threshold in 46%
of all answers.

6 Discussion

When comparing the F1-score and recall of the
SHAP method with the F1-score and recall of the
IG method there seems to be little to no difference
in their respective IAA with the human annotators.
However, both of the methods seem to do well
given the complexity of the data as well as the lim-
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Threshold F1 Recall
0.1 0.96 0.92
0.2 0.89 0.81
0.3 0.83 0.70
0.4 0.77 0.62
0.5 0.63 0.46

Table 3: Overall performance metrics for SHAP, based
on a threshold and the number of matches.

ited amount of data that was used for fine-tuning.
Given the SciBERT model and these accompany-
ing explainability methods, it seems to be possible
to generate representative explanations as well as
explanations that could be valuable for a human
annotator.

Given that the data set used is not only consider-
ably smaller but also considerably more complex
in terms of answer length than most data sets previ-
ously used in the task of ASAG, a slight decrease in
classification performance is expected compared to
previous research. Furthermore, one implication of
the classification results is that Transformer models
seem to require a very small amount of question-
specific data in order to substantially improve its
performance in classification, even when given rel-
atively complex data. However, such solutions
may not replace human expertise. Rather, using
a combination of these models and the presented
explainability methods, this performance can in-
crease confidence in the given explanations and as
a consequence, it could help aid and assist human
experts in grading when data is very limited.

7 Conclusion and Future Work

NLP tools hold immense potential for scoring free-
text answers from students and augmenting teach-
ers’ evaluation capabilities in a scalable manner.
Transformer-based models can help identify pat-
terns from students’ responses and prioritize solu-
tions that need further checking. However, their
black-box nature becomes an obstacle when de-
ploying these models in real-world educational ap-
plications. To bridge this knowledge gap, we in-
troduce an explainable ASAG framework that pro-
duces competitive predictions along with human-
understandable natural language explanations. Our
framework leverages LLMs capabilities combined
with post-hoc explainability methods that do not
require training, reducing the number of question-
answer pairs needed to achieve state-of-the-art re-

sults.
Furthermore, the classification performance

proves that LLMs can achieve competitive ASAG
performance on complex questions with a low num-
ber of answers per question when given domain-
specific training, indicating a low threshold for ap-
plying domain-specific ASAG. As a consequence,
the resulting performance could give a certain de-
gree of confidence when assisting teachers with
valuable explanations.

Further work needs to be done to establish
whether incorporating human-generated rationales
during training can boost the model’s predictive
performance and the quality of its generated ex-
planations (Strout et al., 2019; Lei et al., 2016).
Our future work aims to incorporate them using
a multi-task learning approach and evaluate ratio-
nales beyond the plausibility dimension covered in
the presented article.

Finally, we hope our framework and initial re-
sults can help promote research on explainability
in ASAG systems.

8 Limitations

Given that the WLAs are calculated as the sum of
all the TLAs representing one single word, it is
possible that there could be an underlying prefer-
ence for longer words in the framework. However,
multiple tokens in a word could also have conflict-
ing attributions, so it is not entirely clear how this
affects the framework. Given the results of this
implementation, it could be reasonable to try and
calculate the WLAs as the mean of all TLAs in-
stead.

Furthermore, it is reasonable to discuss the con-
sequences of the preprocessing steps being carried
out in the experiment. Although such preprocess-
ing steps might increase the IAA measured between
the human rationales and model rationales, it is rea-
sonable to question what these preprocessing steps
actually result in and their possible value in real-
world applications. In cases where the use case is
to identify and highlight certain important words,
such preprocessing steps might bring a consider-
able amount of value. However, if the end goal
is to represent the model’s attention as precisely
as possible, these preprocessing steps might skew
the representation of the model’s attention. Conse-
quently, one could argue that there exists a trade-off
between usable model explanations, which can be
used as an assisting or guiding tool for the human
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expert, and explanations that are fair representa-
tions of the model’s inner workings. In the case of
ASAG, explanations such as the ones created by
the presented framework could likely be used as
an assisting tool in helping human expert graders
find important words or sentences. Given such a
framework, the speed of grading could likely be
increased without removing the trust of having a
human grader making the end decision.

Lastly, it is worth noting that the use of top k
sentences should only be seen as a means of cal-
culating IAA. However, in a real-world inference
setting, the number of relevant sentences might be
dependent on the task as well as the subject. In
the case of assisting a human expert in grading, the
number of top k sentences might be a parameter
controlled by the human expert in order to show-
case only the most relevant sentences marked by
the model annotations, where the number of rele-
vant sentences might be dependent on the length of
the student answer as well as the complexity of the
given question.
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A Classification without fine-tuning

Precision Recall F1-score
Label 0 0.49 0.46 0.47
Label 1 0.65 0.68 0.66
Macro Avg 0.57 0.57 0.57

Table 4: Overall classification performance metrics of
SciBERT with no fine-tuning on question-answer pairs,
where label 0 = Non-satisfactory and label 1 = Satisfac-
tory.
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