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Abstract

Effective human learning depends on a wide se-
lection of educational materials that align with
the learner’s current understanding of the topic.
While the Internet has revolutionized human
learning or education, a substantial resource
accessibility barrier still exists. Namely, the
excess of online information can make it chal-
lenging to navigate and discover high-quality
learning materials in a given subject area. In
this paper, we propose an automatic pipeline
for building an educational resource discovery
system for new domains. The pipeline consists
of three main steps: resource searching, feature
extraction, and resource classification. We first
collect frequent queries from a set of seed doc-
uments, and search the web with these queries
to obtain candidate resources such as lecture
slides and introductory blog posts. Then, we
process these resources for BERT-based fea-
tures and meta-features. Next, we train a tree-
based classifier to decide whether they are suit-
able learning materials. The pipeline achieves
F1 scores of 0.94 and 0.82 when evaluated on
two similar but novel domains. Finally, we
demonstrate how this pipeline can benefit two
applications: prerequisite chain learning and
leading paragraph generation for surveys. We
also release a corpus of 39,728 manually la-
beled web resources and 659 queries from NLP,
Computer Vision (CV), and Statistics (STATS).

1 Introduction

People rely on the internet for various educational
activities, such as watching lectures, reading text-
books, articles, and encyclopedia pages. One may
wish to develop their knowledge in a familiar sub-
ject area or to learn something entirely new. Many
online tools exist that enable and promote indepen-
dent learning (Montalvo et al., 2018; Romero and
Ventura, 2017; Fabbri et al., 2018a; Li et al., 2019).
A subset of these platforms provide primary litera-
ture resources (e.g. publications), such as Google
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Scholar1 and Semantic Scholar2. As an alterna-
tive to these advanced materials, other educational
platforms such as MOOC.org 3 deliver free online
courses. Also, unstructured searching on the inter-
net is a popular method to discover other useful
resources, such as blog posts, GitHub projects, tu-
torials, lecture slides and textbooks. Rather than
diving into the technical details, these secondary
literature resources provide a broad overview of
the given domain, which is more valuable for be-
ginners. Still, sifting through this material can
be challenging and time-consuming, even if the
learner is simply looking for a general and reliable
introduction into a new subject area.

Publicly accessible data repositories that focus
on gathering a fixed number of educational re-
sources exist currently, such as scientific papers
(Tang et al., 2008, 2010), online platforms like
AMiner (Sinha et al., 2015) and Semantic Scholar.
Some archives also compile secondary literature
materials. TutorialBank (Fabbri et al., 2018a) is
a manually-collected corpus with over 6,300 NLP
resources, as well as related fields in Artificial In-
telligence (AI), Machine Learning (ML) and so on.
LectureBank (Li et al., 2020) is also a manually-
collected corpus and contains 1,717 lecture slides.
MOOCCube (Yu et al., 2020) is a large-scale data
repository containing 700 MOOC (Massive Open
Online Courses), 100k concepts and 8 million stu-
dent behaviours with an external resource. How-
ever, in their initial synthesis, these existing cor-
pora either heavily relied on manual efforts that
restricted in certain domains, or on a large volume
of existing courses sourced from a certain platform.
Such solutions are not practically extensible into
new or evolving domains. Moreover, according
to (Fabbri et al., 2018a), some web data such as
blog posts, tutorials and educational web pages are

1https://scholar.google.com/
2https://www.semanticscholar.org/
3https://www.mooc.org/
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Figure 1: Pipeline Overview. The pipeline contains three steps: query generation, feature extraction, and classifica-
tion & evaluation. We also show an application in this figure.

also suitable materials for learners. These rich web
data are ignored by existing educational platforms
such as google scholar and MOOCcube. In this pa-
per, we wish to ease the need for human annotators
by proposing a pipeline that automates resource
discovery to similar unseen domains through trans-
fer learning. Besides, such a pipeline deals with
multiple resource types to take advantage of web
data.

Our contributions can be summarized into three
parts. First, we present a self-sustaining pipeline
for educational resource discovery in close unseen
subject area or domain. We apply transfer learning
with a novel pre-training information retrieval (IR)
model, achieving competitive performances. We
show that this pipeline achieves 0.94 and 0.82 F1
scores for two arbitrary target domains on discov-
ering high-quality resources. Second, we demon-
strate an application that leverage resources discov-
ered by our pipeline, survey generation for leading
paragraph. Lastly, we release the core source code
of the pipeline, as well as the training and testing
datasets, comprised of 39,728 manually labelled
web resources and 659 search queries. 4

2 Educational Resource Discovery
Pipeline

We propose the Educational Resource Discovery
(ERD) pipeline that aims at automatically recogniz-
ing high-quality educational resources. We model
this problem as a resource classification task. Given
a resource r, where r can be any source type such
as web page, PDF, we can obtain a list of features
by feature engineering; based on these features, r
is classified positive if it is a high-quality resource,
otherwise negative. We illustrate the ERD pipeline
in Figure 1. It consists of data collection, feature
extraction and resource classification.

4https://github.com/IreneZihuiLi/
Educational-Resource-Discovery

2.1 Data Collection

2.1.1 Queries for search

In this step, we need to conduct a list of meaningful
and fine-grain search queries to start. These search
queries will then be applied to online search en-
gines for web resources. Queries can be borrowed
from external corpora or extracted from existing
seed documents (e.g., textbooks). We focus on
three domains: NLP (natural language processing),
CV (computer vision) and STATS (statistics). For
NLP queries, we utilize external topic lists pro-
vided by LectureBankCD (Li et al., 2021), in which
there are totally 322 NLP-based and 201 CV-based
topics from crowdsourcing. For STATS, we extract
a list of fine-grained terms from several seed doc-
uments, including several textbooks. These terms
contain frequent keywords and phrases that are ex-
tracted by TextRank (Mihalcea and Tarau, 2004), a
statistical method to keyword ranking. In total, we
end up with 322, 201 and 137 queries for NLP, CV
and STATS domain.

To craft our search engine queries, we leverage
advanced search conditions: filetype and site (web-
site). Specifically, we consider three file types:
PDF, PPTX/PPT, and HTML. Moreover, according
to the TutorialBank corpus (Fabbri et al., 2018b),
resources clustered by the components of their
URL possess highly correlated educational con-
tent. Thus, we prioritize restricting our queries to
websites that consistently provide high-quality re-
sources. We select the top sites from the manually-
created TutorialBank corpus and incorporate them
into our search queries, as exemplified in 1. We
also include the “.edu” top-level domain as a spe-
cial case for our search queries in order to capture
general educational resources. Finally, we combine
our query terms with the website and file-type con-
straints: e.g. “word embeddings filetype:pdf”. We
also augment the original query by generating a dis-
junction of its variations: e.g., “stochastic gradient
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towardsdatascience.com datahacker.rs
medium.com hackernoon.com
www.analyticsvidhya.com skymind.ai
www.kdnuggets.com maelfabien.github.io
machinelearningmastery.com rubikscode.net
paperswithcode.com research.googleblog.com

Table 1: Top sites found in the TutorialBank corpus
(Fabbri et al., 2018b).

descent” becomes “stochastic gradient descent OR
SGD”. Table 2 displays several sample queries.

Once the queries are generated, we leverage
three well-established online search engines: Duck-
DuckGo (https://duckduckgo.com/), Ya-
hoo (https://search.yahoo.com/) and
Bing (https://www.bing.com/) to obtain
our candidate resources. The top N URLs (where
N is determined from the domain, file type and
site type, varying from 20 to 100 to control the
total number of resources we want to collect) for a
given query are cached after checking their HTTP
response status and ensuring that a URL has not
already been collected as part of another query.
Moving forward, the documents pointed to by all
of these URLs were automatically downloaded and
parsed for their features. Certain features, such as
the number of authors were collected using heuris-
tics that accounted for most of the variability within
the diverse dataset. The ERD Pipeline’s parsers use
the pdfminer5 and grobid6 libraries for PDF files,
Apache Tika7 for PPTX/PPT and beautifulsoup8

for HTML.

2.1.2 Annotation
After collecting all resources, the next step is to
assign a binary label to each resource based on its
quality. Our annotators consist of 7 graduate and
senior college students with a solid background in
NLP, CV, and STATS. A resource is annotated as
positive if it is a high-quality one. Guidelines for a
positive resource are:

• Informative and relevant: introducing basic
knowledge about a specific topic. For ex-
ample, tutorials, introductions, explanations,
guides.

• Papers and lecture slides: papers and lecture
notes about a topic in the correct domain.

5https://github.com/pdfminer/
6https://github.com/kermitt2/grobid
7https://tika.apache.org/
8https://crummy.com/software/

BeautifulSoup/

NLP Sample Queries
“ morphological disambiguation ” filetype:pptx
“ word embeddings ” filetype:pdf
“ text classification tutorial ”
“ summarization nlp tutorial” site:edu

CV Sample Queries
“ computer graphics ” site:kdnuggets.com
“ texture classification ” filetype:pptx

STATS Sample Queries
“ conditional probability ” site:kdnuggets.com
“ multinomial distribution introduction ” filetype:html

Table 2: Sample queries in the three domains.

BERT/SciBERT/Longformer

machine translation <SEP> automatic <MASK> from ...

translation

Topic/Title Tokens Document Tokens

Predict
Masked
 Token

Figure 2: QD-BERT MLM pretraining.

• Other secondary literature articles: i.e., blog
posts with informative descriptions, defini-
tions and code blocks.

The annotation criteria for a poor resource are:

• Not informative: dataset/software/tool down-
load page without introductory descriptions,
such as a paper abstract page (not the paper
content), a download page with links.

• Irrelevant: not showing correct content, bro-
ken URLs, URLs with not enough or no text
(video or image only).

• No knowledge included: such as a course land-
ing page, a person’s personal website page.

• A list of resources/datasets: containing only
links to other pages.

Finally, to measure the inter-coder agreement
of the labels, we randomly picked 100 resources
and asked each annotator to provide labels indepen-
dently. Krippendorff’s alpha (Krippendorff, 2011)
on this sample evaluated to 0.8344, indicating a
high degree of consistency amongst all annotators.

We detail statistics about our collected dataset
in Table 2, providing the total counts by file type
and domain. From the three domains, we collected
39,728 valid resources using 659 distinct queries
and achieved a total positive rate of 69.05%.

31

https://duckduckgo.com/
https://search.yahoo.com/
https://www.bing.com/
https://github.com/pdfminer/
https://github.com/kermitt2/grobid
https://tika.apache.org/
https://crummy.com/software/BeautifulSoup/
https://crummy.com/software/BeautifulSoup/


NLP CV STATS Total

Query Num 322 200 137 659

PPTX 1,216 733 1,463 3,412
PDF 4,961 3,782 1,449 10,192
HTML 9,368 9,302 7,454 26,124
Total 15,545 13,817 10,366 39,728

Pos.Num 9,589 11,101 6,742 27,432
Pos.Rate 0.6169 0.8034 0.6501 0.6905

Table 3: Dataset statistics by domain and file type.
Pos.Num is the number of positive resources. Pos.Rate
is the fraction of resources that were labeled as positive.

2.2 Feature Extraction
To train a classifier to identify high-quality educa-
tional resources, we first focus on feature engineer-
ing. Specifically, we investigate the following three
groups of classification features and summarize
them in Table 4.

Group 1 Features Some of the meta-features of
a document that can characterize its quality are em-
bedded in its structure. The features encompassed
by Group 1 are high-level and coarse-grained, and
focus on aspects such as: the number of headings,
equations, outgoing links and authors in a given re-
source. Heuristically, some good tutorials may tend
to include more equations and paragraphs, with
many details included. We list all 8 such features
in Table 4, Group 1.

Group 2 Features These meta-features describe
the fine-grained but statistical details of the docu-
ment. The resource URL’s components, such as
the top-level domain name and subdomain name,
correlate resources from websites that deliver con-
sistent quality. The other Group 2 features are
centered around the characteristics of the free text.
For instance, NormalizedUniqueVocab (the size
of the vocabulary divided by the total number of
words) can estimate the vocabulary’s complexity
and PercentTypos (the percentage of words that are
incorrectly spelled) can approximate reliability. We
itemize such features in Table 4, Group 2.

Group 3 Features In addition to the above fea-
tures, we propose 9 features based on pretrained
language models. To achieve this, we first choose
three models9: BERT (Devlin et al., 2019), SciB-
ERT (Beltagy et al., 2019) and Longformer (Belt-
agy et al., 2020). BERT is a pretrained language
model that was pretrained on Wikipedia documents.
SciBERT is a BERT-based model trained on the sci-

9https://huggingface.co/transformers/
pretrained_models.html

Feature Name Explanation

Group 1

NumAuthor Number of authors
NumHeading Number of headings
NumFig Number of figures
NumEqu Number of equations
NumPara Number of paragraphs
NumSent Number of sentences
NumLink Number of outgoing links
BibLen Bibliography length

Group 2

Subdomain Subdomain of resource URL
SecondDomain Second-level domain of resource URL
TopDomain Top-level domain of resource URL
NumUrlSubdirs Number of URL subdirectories
NormalizedUniqueVocab Number of unique words

divided by total number of words
UniqueVocabMean Mean number of occurrences of a word
UniqueVocabStdev Stdev of number of occurrences of a word
WordLenMean Mean number of characters per word
WordLenStdev Stdev of number of characters per word
SentenceLenMean Mean number of words per sentence
SentenceLenStdev Stdev of number of words per sentence
PercentTypos Percentage of words that were misspelled
NumGithubLinks Number of links to GitHub

Group 3

bert BERT base model
scibert SciBERT base model
longformer Longformer base model
arXiv_bert BERT pre-trained on arXiv
arXiv_scibert SciBERT pre-trained on arXiv
arXiv_longformer Longformer pre-trained on arXiv
TB_longformer BERT pre-trained on TutorialBank
TB_bert SciBERT pre-trained on TutorialBank
TB_scibert Longformer pre-trained on TutorialBank

Table 4: Chosen features: we select 3 groups consist of
meta features and deep learning-based features.

entific domain, making it suitable for our use case.
Longformer is a BERT-based model that handles
longer input sequences.

Moreover, we introduce a novel pre-training ap-
proach: QD-BERT MLM (Query-document BERT
Masked Language Modeling). A query could be
a single word, phrase or a paper title, indicating
the topic or main idea of the document. We pair
the query term with the corresponding document
as the input and follow the Masked Language Mod-
eling (MLM) method of BERT (randomly masking
15% tokens and letting the model predict them), as
shown in Figure 2. We apply two external corpora
for pre-training to ensure the data quality: Tutorial-
Bank (TB) 10 and arXiv 11. The latest TutorialBank
has 15,584 topic-document pairs; and arXiv has
259,050 title-abstract pairs (computer science pa-
pers only). We enumerate all models in Table 4,
Group 3, naming dataset_modelname.

We propose an information retrieval-based scor-
ing function to combine features from deep models
with Group 1 and 2 features. This scoring function

10http://aan.how/download/
11https://www.kaggle.com/

Cornell-University/arxiv
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NLP→CV NLP→STATS
Features F1 Precision Recall F1 Precision Recall

Group 1 0.7238 0.5802 0.9617 0.6508 0.5405 0.8177
Group 1 + 2 0.8579 0.7772 0.9571 0.7990 0.8141 0.7845
Group 3, BERT Only* 0.7764 0.7522 0.8497 0.7923 0.7903 0.7944
Group 1 + 2 + 3 0.9402 0.9849 0.8994 0.8225 0.9965 0.7002

Table 5: Classification Results in two target domains: CV and STATS. For Group 3, BERT Only*, we report the
best model: CV (scibert), STATS (TB_scibert).

calculates a score of each resource, showing the rel-
evancy of the resource to all the searching queries.
Relevancy is one of the most indicators that the re-
source is annotated as positive. The score is higher
if it is more relevant to the queries. In Section 2.1.1,
we apply a list of queries (q ∈ Q) to download
resources, we compute a cosine-similarity based
ranking score scorer for resource r:

scorer =
∑

q∈Q
cosine (Vq, Vr)

where Vq and Vr are BERT-based model embed-
dings for the query term and resource respectively.
We compute scores on each pre-trained BERT mod-
els of each resource.

2.3 Resource Classification
Since there are various feature types, we conduct
prepossessing before applying the classifiers. Nu-
merical values are binned into groups, and cate-
gorical features are converted into integer codes.
We evaluate four traditional classifiers: Random
Forest (RF), Decision Tree (DT), Support Vector
Machine (SVM) and Logistic Regression (LR). We
find that RF performs the best and has a slight edge
over DT, but SVM and LR significantly lag behind.
Thus, we report the Random Forest’s performance,
summarized in Table 5. Specifically, we include
precision, recall and F1 scores on different feature
groups: Group 1, Group 1+2, and Group 1+2+3.
The last setting achieves the best performance. Ad-
ditionally, since it is also possible to solely apply
BERT models (Group 3) for the classification task,
we include a special setting: Group 3, BERT only.
While BERT’s results in isolation are good, Group
1+2+3 still remains the winner.

In general, performance on the CV domain is
better than on STATS. This is expected given that
the corpus distance between NLP and CV is smaller
than the one between NLP and STATS. We give
detailed data analysis in the next section.
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Figure 3: Top 20 features on two target domains.

3 Data Analysis

To better understand the collected data and our
classifier’s performance, we conduct a study on the
features and corpus differences between the three
experimental domains.

Feature Importance Score We take the best-
performed model of NLP→CV domain (Group
1+2+3), and take the Gini Index calculated by Deci-
sion Trees as the feature importance score. Overall,
we extract 8746 features in CV and 8525 features
of STATS after binning numerical values and en-
coding categorical features. In Figure 3, we list the
top 20 features of CV and STATS. Some Group 1+2
features rank in the top 5, since they are main indi-
cators that the resource is informative (i.e., more
heading numbers, longer contents). Additionally,
Group 3 features (starting with BERTScore) also
play an important role. In fact, all 9 BERT-based
feature scores rank top 20, suggesting that our scor-
ing function that adds these BERT-based semantic
features into the pipeline is very helpful when do-
ing classification for resource discovery.

Corpus Differences Our pipeline performs bet-
ter on CV topics, which can be attributed to cor-
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Domain Top 10 Sites

NLP www.cs.cmu.edu , web.stanford.edu , www.cs.toronto.edu , www.paperswithcode.com ,

maelfabien.github.io , www.academia.edu , courses.cs.washington.edu , nlp.stanford.edu, ocw.mit.edu ,

www.cs.cornell.edu

CV www.kdnuggets.com, maelfabien.github.io , www.paperswithcode.com , www.academia.edu ,

www.cs.toronto.edu , www.cs.cmu.edu , web.stanford.edu , courses.cs.washington.edu, cseweb.ucsd.edu,
www.cs.cornell.edu

STATS www.kdnuggets.com, maelfabien.github.io , www.paperswithcode.com , web.stanford.edu , ocw.mit.edu ,
online.stat.psu.edu, www.hackernoon.com, www.sjsu.edu, research.googleblog.com,www.cpp.edu

Table 6: Comparison of the top 10 sites. Gray means overlapped in both CV and STATS domain; Purple means
overlapping between NLP and CV; Blue means overlapping between NLP and STATS.
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Figure 4: Percentage of overlapping n-grams.

pus differences relative to NLP. In Figure 4, we
plot the percentage of overlapping n-grams of the
{NLP, CV} and {NLP, STATS} domain pairs. This
shows that NLP and CV have a larger overlap than
{NLP, STATS} with respect to all of the n-grams
(n ∈ {1, 2, 3, 4}). From this, we uphold that the
classifiers trained on semantic features based on
BERT models are valuable for bridging more dis-
tant domains with transfer learning.

To further contrast our findings, we enumerate
the top 10 URLs in Table 6. Although the web-
sites are ranked in different orders, there are still
common URLs across the domains (highlighted in
the table). Once again, CV shares a larger overlap
with NLP in comparison to STATS. Along with
the feature importance score, this cross-domain
consistency further illustrates that the URL meta-
features will benefit our model’s out-of-domain
classification. We show more feature statistics in
the Appendix.

Comparison With Similar Datasets We com-
pare a number of existing NLP educational datasets
in Table 7, emphasizing the resource type, human
effort for annotations, and corpus scale. Note that
in this table, we only concentrate on human annota-
tion efforts for free-text resources. This is because
these free-text resources are the primary goal of the
ERD Pipeline, as opposed to other tasks (e.g. learn-
ing concept relations, concept mining). We can see
that MOOCcube (Yu et al., 2020) has a massive

quantities of a single resource type (papers). They
obtained the metadata from a third-party platform,
AMiner, without a full round of human annotations.
TutorialBank (Fabbri et al., 2018b) has a larger
number of resources than LectureBank (Li et al.,
2020), and it consists of diverse resource types. Our
pipeline is very similar to TutorialBank in terms of
resource type, but ours extends to more resources
and subject areas, enabling us to research transfer
learning across domains.

4 Application: Survey Generation for
Lead Paragraphs

In this section, we demonstrate an interesting appli-
cation that applies the resources discovered using
our ERD Pipeline, Leading Paragraph Generation
for Surveys.

Novel concepts are being introduced and evolv-
ing at a rate that creates high-quality surveys for
web resources, such as Wikipedia pages, chal-
lenging. Moreover, such existing surveys like
Wikipedia still needs human efforts on collecting
relevant resources and writing accurate content on
a given topic. Researchers have been investigat-
ing automatic ways to generate surveys using ma-
chine learning and deep learning methods. Survey
generation is a way to generate concise introduc-
tory content for a query topic (Zhao et al., 2021).
While most of the existing work focuses on uti-
lizing Wikipedia to achieve this (Liu et al., 2018),
little has been done for the web content. Since
our ERD pipeline provides sufficient web data, we
propose a two-stage approach for generating the
lead paragraph that applies these web data selected
from the ERD pipeline.
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Name Resource Type (with texts) Domain Number Annotation Size

TutorialBank Lecture sides, papers, blog posts NLP only Manually 6,300
LectureBank Lecture sides only NLP only Manually 1,717
MOOCcube Papers only Multiple Scrape from third-party 679,790
ERD (ours) Lecture sides, papers, blog posts Multiple Manually 39,728

Table 7: Comparison with similar datasets.

ERD pipeline
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Summarization
(HierSumm, 

BART)

Query Topic
“knowledge graphs”

Generated Survey
Leading Paragraph:
    “In computer science, 
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a type of graphical 
representation of 
information about a 
system. Knowledge 
graphs are used in 
computer science to 
describe…”

Figure 5: Two-stage Survey Generation Method.

4.1 Two stage method

We illustrate the two stage method in Figure 5.
Given a query topic and high-quality web resources
selected by ERD pipeline, we wish to generate the
leading introductory paragraph for the query topic.
This approach consists of content selection (step
1) and abstractive summarization (step 2). Content
selection is the process of selecting the most rele-
vant materials (including documents or sentences)
according to the given query. Abstractive summa-
rization generates the accurate lead paragraph from
the selected materials.

Content Selection ERD pipeline is supposed
to identify massive resources with broad coverage
of the topics, so the first step is to select related
content with the query topic.

While there is no suitable pretrained data for this
task, and we do not collect survey data for training,
we utilize the WikiSum dataset (Liu et al., 2018).

Methods L=5 L=10 L=20 L=40
LSTM-Rank 39.38 46.74 53.84 60.42

Semantic Search 34.87 48.60 61.87 74.54
RoBERTa-Rank 64.12 72.49 79.17 84.28

(a) ROUGE-L (Lin, 2004) Recall scores for WikiSum content
selection, varying the number of paragraphs returned.

Methods R-1 R-2 R-L
HierSumm (Liu and Lapata, 2019) 41.53 26.52 35.76

BART (Lewis et al., 2019) 46.61 26.82 43.25

(b) ROUGE scores for intro generation.

Table 8: Two-stage method evaluation using WikiSum.

WikiSum contains 1.5 million Wikipedia pages,
their references and their associated Google Search
results. WikiSum includes many well-established
topics and comprehensive reference documents,
making it suitable for survey generation. We first
evaluate content selection models using WikiSum.
We experiment with three approaches in this step.
Liu and Lapata (2019) undertake query-based con-
tent selection as a regression problem of predict-
ing the ROUGE-2 recall of a given paragraph-topic
pair (LSTM-Rank). Reimers and Gurevych (2019)
fine-tune BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) to produce fixed-length vectors
which can be compared using cosine similarity.
We embed the topic of each Wikipedia page and
candidate paragraph using this method, and select
the paragraphs with the closest vectors to the ti-
tle (Semantic Search). Additionally, we train
RoBERTa in a similar manner as (Liu and Lap-
ata, 2019). Then, we compare the query topic
and paragraphs as sentence pairs and use the re-
sultant relevance scores to for the paragraph rank-
ing (RoBERTa-Rank). As shown in Table 8a,
RoBERTa-Rank is the highest-scoring content se-
lector, so we employ it for the abstractive summa-
rization’s input.

Abstractive Summarization This step is to gen-
erate summarization from the content selected pre-
viously. As a sequence-to-sequence task, there are
many existing pretrained models to use. We experi-
ment with BART (Lewis et al., 2019), a pre-trained
model for text generation, as well as HierSumm, a
hierarchical model from Liu and Lapata (2019). We
show the summarization results on the WikiSum
data in Table 8b, and observe that BART achieves
the higher performance.

Evaluation NLP CV STATS

Avg. Readability 3.45 2.90 2.75
Avg. Relevance 2.80 1.85 1.50

Avg. Non-redundancy 2.45 2.15 1.60

Table 9: Human Evaluation
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NLP: knowledge graphs
In computer science, knowledge graphs are a type of graphical representation of information about a system. Knowl-

edge graphs are used in computer science to describe the structure of a system, such as a graph of knowledge about a
particular system, ... or a list of items that can be used to describe a system ’s structure. For example, a knowledge
graph may contain information about an object ’s shape, its size, its shape relative to other objects, its orientation, and
its orientation relative to a point in space, or its position relative to another point in time, or any combination of these
things. Knowledge Graphs can also be used as a way of describing the structure and structure of systems, such that a
system can be described by a set of knowledge graphs that describe its structure and its properties.

CV: image retrieval
In computer science, a Convolutional neural network is a type of neural network used in image analysis and image

synthesis. It is a computer program that uses a neural network to learn from a large number of images, and can be used
to predict the appearance of a given image in real-world situations, such as the shape of a surface, or the color of an
object in a 3D environment such as an image of a person’s face. It can also be used for image synthesis and image
analysis, as well as image processing and image processing for computer vision and image recognition. It has been
used in a number of applications such as computer vision, image processing, image recognition, and computer vision
for image recognition and image rendering.

STATS: normal distributions
In physics, normal distributions are a family of mathematical models that describe the distribution of normal

distributions. They are used in the fields of statistics, physics , and computer science, and have been used in
a wide variety of applications, including computer vision, image analysis, computer graphics, computer vision,
computer graphics processing units (CPGs), as well as in the field of computer vision. They have also been used to
study the visual appearance of real-world surfaces, such as the Phong Reflection Model, the Oren-Nayar model, the
Koenderink et al. representation, and the Shading of the Sphere Model, and in the study of light sources and light
sources in OpenGL and OpenGL-based graphics renderers.

Table 10: Examples of generated leading paragraphs.

4.2 Human Evaluation and Case Studies
So far we have shown that applying RoBERTa-
Rank and BART as a two-step method gives promis-
ing results evaluated on the WikiSum dataset. We
connect our pipeline with this method to gener-
ate the leading paragraph. We choose 10 queries
randomly as survey topics in each domain, for ex-
ample, “sentiment analysis ”in NLP. A full query
topic list is in the Appendix. Since we do not have
ground truth, we conduct human evaluation and
case studies.

We evaluate the model outputs on a 1-5 Likert
scale based on the following qualities:

• Readability: attains a maximum score of 5 if
the output is readable with a high degree of
fluency and coherency.

• Relevancy: attains a maximum score of 5 if
the output is perfectly relevant to the current
topic with no hallucinations.

• Non-redundancy: attains a maximum score
of 5 if the output has no repeating
phrases/concepts.

We report average scores among 2 human judges
of all topics by domain, shown in Table 9. The
scores of NLP are the highest for all qualities, and
STATS performed most poorly. This discrepancy
may be caused by data collection bias, as more
NLP resources were included.

We randomly pick one case study from each
domain in Table 10. The model is able to generate
leading paragraphs in a similar Wikipedia article
style by giving a definition of a certain concept,
following by descriptions of possible applications.
Overall, while these surveys contains some facts,
the quality can still be improved. For instance,
the STATS paragraph exhibits some redundancy
(e.g., “computer graphics”,“computer vision”). As
an initial experiment, we have demonstrated the
opportunities of extending our ERD Pipeline to
produce survey paragraphs. In the future, we aim to
enhance the generated lead paragraphs and extend
the model for generating complete surveys.

5 Conclusion

In this paper, we proposed a pipeline for automatic
knowledge discovery in novel domains. We applied
transfer learning with a novel MLM pre-training
method and achieved competitive classification per-
formances. Moreover, we demonstrated two appli-
cations that take advantage of resource discovered
by our pipeline. Finally, we released our source
code and the datasets that we collected, including
the 39,728 manually labelled web resources and
659 search queries. We plan to make this pipeline
an online live educational tool for the public.
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A Chosen topics for Human Evaluation in
Survey Generation

Table 11 shows the randomly selected topics for
survey generation, 10 from each domain.

NLP
adam optimizer
lstm model
dropout neural networks
recursive neural network
convolutional neural network
automatic summarization
sentiment analysis
attention mechanism deep learning
Pre-trained Language Models NLP
knowledge graphs

CV
transfer learning
convolutional neural network
image retrieval
image classification
feature learning
seq2seq
transformers
visual question answering
conditional probability
k means

STATS
linear regression
hypothesis testing
conditional probability
multinomial distribution
probability density
density estimation
normal distributions
bernoulli distribution
standard deviation
z-score

Table 11: Topics selected for human evaluation.

B More Sample Queries

We list more sample queries in Table 12, such
queries are applied in the Data Collection step of
the proposed pipeline.

NLP Sample Queries
“markov decision processes" site:.edu filetype:.pdf
“sentiment analysis" site:.edu filetype:.pptx
“unlexicalized parsing" site:kdnuggets.com filetype:.html
“semantic parsing" site:.edu filetype:.pdf
“information retrieval" site:.edu filetype:.pptx
“monte carlo methods" site:rubikscode.net filetype:.html
“natural language processing intro" site:.edu filetype:.pdf
“sequence to sequence" site:.edu filetype:.pptx
“naive bayes" site:paperswithcode.com filetype:.html
“latent dirichlet allocation" site:.edu filetype:.pdf

CV Sample Queries
“epipolar geometry" site:.edu filetype:.pptx
“particle filters" site:hackernoon.com filetype:.html
“image registration" site:.edu filetype:.pdf
“reflectance model" site:.edu filetype:.pptx
“shading analysis" site:skymind.ai filetype:.html
“imaging geometry and physics" site:.edu filetype:.pdf
“texture classification" site:.edu filetype:.pptx
“gibbs sampling" site:kdnuggets.com filetype:.html
“image thresholding" site:.edu filetype:.pdf
“region adjacency graphs" site:.edu filetype:.pptx

STATS Sample Queries
“linear regression" site:rubikscode.net filetype:.html
“hypothesis testing" site:.edu filetype:.pdf
“heteroscedasticity" site:.edu filetype:.pptx
“random event" site:paperswithcode.com filetype:.html
“maximum liklihood" site:.edu filetype:.pdf
“granger causality" site:.edu filetype:.pptx
“probability" site:hackernoon.com filetype:.html
“random sampling" site:.edu filetype:.pdf
“correlation coefficient" site:.edu filetype:.pptx
“chi-squared statistic" site:skymind.ai filetype:.html

Table 12: More sample queries used in the three selected
domains, varying site and file type.

C BERT models for Group 3 features

The three main deep features were extracted using
the following pre-trained models:

BERT-base
https://huggingface.co/
bert-base-uncased.
SciBERT
https://huggingface.co/allenai/
scibert_scivocab_uncased.
Longformer
https://huggingface.co/allenai/
longformer-base-4096.
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D More Data Statistics

In Table 13, we show token-level and sentence-
level statistics of our collected data.

NLP CV STATS

Token Number/per sentence
Mean 18.28 26.37 23.28
Median 12 19 18
Max 2,302 458,363 20,066

Sentence Number
Mean 161.60 122.49 107.32
Median 55 46 52
Max 5,929 21,301 52,793

Table 13: Free text statistics by domain.

E Meta-Feature Distributions

In the following pages, we show the histograms
of the 18 quantitative meta-features collected for
each data point. Recall from Table 4 that these
features were segregated into two groups. Group
1 features are higher-level and generally pertain to
the document layout. Group 2 features focus on
more specific aspects of the resource’s URL and
free text.
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Figure 7: NumHeading Distribution
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Figure 10: NumPara Distribution
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Figure 13: BibLen Distribution
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Figure 14: NumUrlSubdir Distribution
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Figure 15: NormalizedUniqueVocab Distribution
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Figure 16: UniqueVocabMean Distribution
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Figure 17: UniqueVocabStdev Distribution
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Figure 18: WordLenMean Distribution
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Figure 19: WordLenStdev Distribution
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Figure 20: SentLenMean Distribution
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Figure 21: SentLenStdev Distribution

0 2 4 6 8 ≥ 10

0

2,000

4,000

6,000

Percentage of words that are mispelled

Fr
eq

ue
nc

y

0 2 4 6 8 ≥ 10

0

2,000

4,000

6,000

Percentage of words that are mispelled

Fr
eq

ue
nc

y

0 2 4 6 8 ≥ 10

0

2,000

4,000

6,000

Percentage of words that are mispelled

Fr
eq

ue
nc

y

Figure 22: PercentTypo Distribution
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Figure 23: NumGithubLink Distribution
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