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Abstract

Writing high-quality test questions (items) is
critical to building educational measures but
has traditionally also been a time-consuming
process. One promising avenue for alleviat-
ing this is automated item generation, whereby
methods from artificial intelligence (AI) are
used to generate new items with minimal hu-
man intervention. Researchers have explored
using large language models (LLMs) to gen-
erate new items with equivalent psychomet-
ric properties to human-written ones. But can
LLMs generate items with improved psychome-
tric properties, even when existing items have
poor validity evidence? We investigate this us-
ing items from a natural language inference
(NLI) dataset. We develop a novel prompting
strategy based on selecting items with both the
best and worst properties to use in the prompt
and use GPT-3 to generate new NLI items. We
find that the GPT-3 items show improved psy-
chometric properties in many cases, whilst also
possessing good content, convergent and dis-
criminant validity evidence. Collectively, our
results demonstrate the potential of employing
LLMs to ease the item development process
and suggest that the careful use of prompting
may allow for iterative improvement of item
quality.

1 Introduction

AI is having increasingly profound impacts on ed-
ucational and psychological measurement (Chen
et al., 2020; Tavast et al., 2022). Technologies built
on AI and machine learning, including educational
data mining (Romero and Ventura, 2020), intelli-
gent tutoring systems (Mousavinasab et al., 2021),
deep item response theory (Cheng et al., 2019), and
deep knowledge tracing (Piech et al., 2015), among
others (Asfahani, 2022, inter-alia) are transforming
educational and psychological measurement, and
this trend seems likely to continue.

One promising educational application of large
language models (LLMs) is for the automatic gen-

eration of test items (AIG). Writing high-quality
test items is critical to building effective educa-
tional assessments, but has also traditionally been
a time-consuming process, as items must be devel-
oped by experts and undergo numerous rounds of
review (Bandalos, 2018). There has been signifi-
cant research interest in using AIG to create high-
quality items with minimal intervention to speed
up the test development process (Prasetyo et al.,
2020). Prior work has demonstrated that LLMs can
generate items with at least face validity (i.e, they
appear valid based on item content) for both non-
cognitive (Götz et al., 2023) and cognitive (Attali
et al., 2022) constructs. Careful psychometric anal-
ysis of items generated from such models has also
revealed that they are just as valid and reliable as
their human written counterparts (Lee et al., 2023).
Although promising, this research has largely fo-
cused on generating items for constructs that have
been well-studied, using items already known to
have strong validity evidence. Suppose an educator
wishes to develop a test for a new construct where
existing items may have only undergone pretest-
ing. Or suppose the educator wishes to use a new
type of item for a well-established domain (e.g, a
test of algebraic reasoning that uses a novel item
format). In either case, the items will likely have
limited validity evidence, and much time would
need to be spent revising the items to improve their
psychometric properties before they can be used.

In this work, we ask: can LLMs be used to gener-
ate valid and reliable items even in these scenarios
where existing items have only limited validity ev-
idence? If so, LLM-based AIG could be used to
iteratively improve the psychometric properties of
items, explore the underlying construct space, and
shed light on what makes a good item.

We explore this using GPT-3 (Brown et al., 2020)
and focus on generating items that test for natural
language inference (NLI) (Dagan et al., 2006; Bow-
man et al., 2015). NLI is an important cognitive
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construct in NLP research which, to our knowledge,
has only undergone limited psychometric analysis
in human participants (Laverghetta Jr. et al., 2021).
We develop a novel prompting strategy that uses
the psychometric properties of items, calculated
using prior human responses, to select the most
informative examples to send to the model to maxi-
mize the quality of the generated examples. Our
main contributions are as follows:

1. We develop a novel prompting strategy for
generating items by selecting items to include
as context based on the psychometric proper-
ties they possess, focusing primarily on item
discrimination.

2. Using GPT-3 we test our approach using the
GLUE broad coverage diagnostic (Wang et al.,
2018), a popular cognitive task in NLP re-
search. We perform an extensive analysis of
the psychometric properties of the generated
items and find that those from GPT-3 show
stronger evidence for validity and reliability
than those written by humans in most cases.

2 Related Work

2.1 Automated Item Generation
Psychometricians have explored how to automate
item generation for decades (Prasetyo et al., 2020).
Early attempts focused on developing item models,
which are systems that can interchange certain key-
words in the item while keeping other parts of it
constant (Bejar et al., 2002). While item models
are theoretically justified and very likely to produce
psychometrically valid items, developing them re-
quires a great deal of manual effort, as both the
item stem and other components must still be man-
ually written. Furthermore, item models are limited
in the diversity of content they can generate. These
drawbacks have motivated recent work to investi-
gate using LLMs as the item generator. von Davier
(2018) was one of the first to explore this and used
recurrent neural networks to generate items for a
personality assessment. The advent of the trans-
former (Vaswani et al., 2017; Devlin et al., 2019;
Brown et al., 2020) led to the creation of LLMs
which could generate much more coherent and se-
mantically accurate text, leading to further interest
in LLM-based AIG. Götz et al. (2023) generated
a large number of personality items using GPT-2
(Radford et al., 2019), and showed that at least
some of these items passed face validity checks.

Maertens et al. (2021) developed a test for mis-
information susceptibility, using LLM-generated
items. Hernandez and Nie (2022) developed a sys-
tem for the automatic generation and validation of
test items, using autoregressive LLMs for genera-
tion and autoencoding LLMs for validation. Lee
et al. (2023) extensively evaluated the psychomet-
ric properties of GPT-3 generated personality items,
including analysis of internal structure, differential
item functioning, and reliability. They concluded
that the validity evidence for machine-generated
items was just as strong, if not stronger than, for
human-written ones. While much work has fo-
cused on non-cognitive assessments, others have
explored LLM-based AIG for educational assess-
ments. Notably, Chan et al. (2022) used the BERT
(Devlin et al., 2019) LLM to generate grammar
reading exercises. Zou et al. (2022) and Rathod
et al. (2022) used transformers to generate true/-
false and reading comprehension questions. At-
tali et al. (2022) used transformer-based LLMs to
generate items for the Duolingo English Test. Zu
et al. (2023) used a combination of finetuning and
prompt-based learning to train GPT-2 to generate
distractors for fill-in-the-blank vocabulary items.
A common theme throughout these works is the
focus on well-studied assessments, and the use of
items that have already been psychometrically vali-
dated in the prompt. Their goal is thus to generate
items that maintain existing psychometric proper-
ties, which is different from our goal of generating
items with improved properties.

2.2 Synthetic Data Generation in NLP

When it comes to gathering high-quality data, NLP
researchers have concerns that overlap with those
faced by the measurement community. Training ex-
amples for popular NLP tasks, including NLI (Bow-
man et al., 2015), and question answering (QA)
(Rajpurkar et al., 2016), have historically been cre-
ated using crowd-sourced annotations, which is
both expensive and time-consuming. The incred-
ibly rapid progress of LLMs in recent years also
means that many once challenging datasets quickly
become outdated as new models are developed
(Ott et al., 2022). There has been significant re-
search interest in using LLMs to generate synthetic
training data, forgoing the need to run annotation
studies (Schick and Schütze, 2021). Prior work
has explored LLM-based data augmentation for
QA (Duan et al., 2017), paraphrase identification
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(Nighojkar and Licato, 2021), and NLI (Liu et al.,
2022). Typically, this line of research relies on
information-theoretic metrics of item quality, for
example, dataset maps (Swayamdipta et al., 2020)
to evaluate the newly generated items. Most rele-
vant to our work is the study by Liu et al. (2022),
who developed a system for using GPT-3 to au-
tomatically generate NLI items. However, their
approach does not employ methods of assessing va-
lidity and reliability commonly used in educational
measurement and instead relies on information-
theoretic measures of item quality. Our goal is to
generate items with improved validity and reliabil-
ity in both human and LLM populations, using the
psychometric properties of the items as the opti-
mization target.

3 Generation of Test Items

The General Language Understanding Evaluation
(GLUE) (Wang et al., 2018) is a benchmark de-
signed to measure broad linguistic constructs in
LLMs. Included in GLUE is a diagnostic set, AX ,1

which is meant to be a challenge set for diagnosing
faults in LLMs. Items on AX are framed as NLI:
given a premise (p) and hypothesis (h), a model
must determine whether p entails, contradicts, or
is neutral with respect to h (Dagan et al., 2006;
Bowman et al., 2015). Items were written by NLP
experts, inspired by categories taken from the Fra-
Cas suite (Cooper et al., 1996), and are based on
sentences from a variety of artificial and naturalistic
contexts. Wang et al. (2018) reported strong inter-
rater reliability when labeling a random sample
of AX items, and AX has been used successfully
to evaluate many new LLMs (Brown et al., 2020;
Raffel et al., 2020; Chowdhery et al., 2022), which
suggests the diagnostic has good predictive validity.
Furthermore, Laverghetta Jr. et al. (2021) previ-
ously ran human studies on a subset of items from
AX , targeting those testing for propositional struc-
ture (PS), quantifiers (Q), morphological negation
(MN), and lexical entailment (LE). Table 1 shows
example AX items from these categories. They
found that LLMs strongly predicted item difficul-
ties and inter-item correlations in human responses
across these categories, indicating good convergent
validity for AX as a test of reasoning in both pop-
ulations. Collectively, these results demonstrate
a surface level of validity for the AX items (i.e,

1AX being the notation for the diagnostic on the GLUE
leaderboard.

Category p h

PS The cat sat on the mat. The cat did not sit
on the mat.

LE The water is too hot. The water is
too cold.

MN The new console
is cheap.

The new console
isn’t cheap.

Q Several are available. All are available.

Table 1: Examples of NLI items from each AX category.
MN and Q items have been trimmed and paraphrased
to fit in one line, but still fall into their respective cate-
gories.

face validity); the items appear to function well in
preliminary human studies and have been used suc-
cessfully to find faults within LLM reasoning, but
extensive analysis of their psychometric properties
has yet to be performed. This makes AX a good
assessment to use for our experiments, as we want
items that have not undergone extensive psychome-
tric development, and hence may not have strong
validity as measures of the construct in question.

Our goal is to use LLMs to generate new items
for AX , such that the psychometric properties of
both the items and the test as a whole are improved.
Formally, given an LLM M and a prompt p that
contains one or more items that have a psychomet-
ric property θ, we seek to sample new items i from
M that lead to an improvement in θ:2

i ∼ M(p) | θi > θp (1)

Where i and p are assumed to test for the
same construct (e.g., NLI). Prior work has demon-
strated that when LLMs are given existing items as
prompts, they can generate new items that match
the construct measured by those items (Liu et al.,
2022; Lee et al., 2023). We build on this approach
by designing prompts to instruct LLMs to generate
new items for a particular construct, that possess
a desired psychometric property. Figure 1 shows
one of the prompts we developed. The model is
instructed to generate only items that match the
target property, and we use items from only one
category at a time. We use item discrimination as
the target property in our experiments. Discrimina-
tion refers to the ability of an item to separate high
from low-ability test takers (Bandalos, 2018) and
is computed using the item-to-total correlation (the
correlation between the responses to a single item
and total scores across all items). An item that is

2Note that θi > θp should be taken to mean that the psy-
chometric properties of i are improved relative to p, and not
necessarily that they are numerically greater.
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I need to generate new NLI
items for a given trait.
Here are some examples:
###
Trait: High Discrimination
Items (3):
[ITEMS]
###
Trait: Low Discrimination
Items (3):
[ITEMS]
###
Trait: High Discrimination
New Items (5):

Figure 1: Prompt structure using the “simple” prompt
format. Additional newlines have been added to keep
text within margins.

highly discriminating will predict total scores and
thus should be maximized. Our use of discrimina-
tion was based on preliminary analysis of the data
from Laverghetta Jr. et al. (2021), which indicated
that at least one item in every category had nega-
tive discrimination. In general, items with negative
discrimination are regarded as problematic and pos-
sibly erroneous, and should not be included in cog-
nitive assessments (Bandalos, 2018), which makes
improving the discrimination of the AX items a
natural optimization target. We use existing human
written items as examples of the desired property
in the prompt, selecting the top k items with the
highest discrimination as “high discrimination” and
the bottom k items with the lowest discrimination
as “low discrimination”.3 We set k = 3 in our
experiments, as we found larger values caused the
difference in discrimination to become negligible.
By providing examples of both good and bad items,
we hope to teach the model general characteristics
of high-quality items.4

We use GPT-3 (Brown et al., 2020) as our item
generator, given its strong performance across
many NLP tasks, the presence of an easy-to-use
and inexpensive API, and the success prior work
has had in using GPT-3 to generate non-cognitive
(Lee et al., 2023) and NLI (Liu et al., 2022) items.

3Properties are calculated using SPSS version 28. We use
only the categories from Table 1.

4Note that our approach has strong conceptual similarities
to prior work in few-shot item selection for in-context learning
(e.g. Walsh et al., 2022), in that the psychometric properties
of the items are essentially used to select which shots to use.

We set temperature to 1 for all experiments, to en-
courage diversity in the generated items, and use a
maximum token limit of 300. We explore the effect
of varying other key hyperparameters:

• Top P: This parameter is based on nucleus
sampling (Holtzman et al., 2019) and deter-
mines what fraction of log probabilities to
consider when sampling, with larger values
allowing more unlikely completions to be sam-
pled. Prior work in LLM-based AIG has dif-
fered on this setting; some have used a value
above 0.5 (Lee et al., 2023) and others a value
at or below 0.5 (Liu et al., 2022). We there-
fore choose to experiment with both 0.5 and
1, as we theorized setting a higher value could
lead to more diverse generations, but also in-
crease the risk the items would lack construct
validity.

• Prompt Type: We use a “simple” prompt fol-
lowing the structure shown in Figure 1. How-
ever, because the AX categories are highly
specific, we reasoned that providing addi-
tional context about the categories may im-
prove generation accuracy. We thus also ex-
periment with “elaborated” prompts, which
include additional information about each cat-
egory, taken from the appendix on AX .5

We left all other hyperparamters at their defaults.
We use the text-davinci-003 endpoint,6 and
queried the API in December 2022. We generate
400 items, 100 for each category, and 25 for each
hyperparameter combination (prompt type and top
p). We remove any duplicate items, items where
the model did not generate a valid label, and items
that match verbatim an item from AX .

Following best practices in scale development
(Worthington and Whittaker, 2006) we conduct a
content review on the generated items. Four Ph.D.
students with prior publications in NLP, NLI, or
psychometric AI were asked to rate the quality of
the GPT-3 items. We ask our annotators to rate the
relevance of the items for measuring the category,
the clarity of the items (in terms of whether they
have spelling or grammatical errors), whether the
items have potentially harmful content, and their

5https://gluebenchmark.com/diagnostics
6Prompts and generated items for repro-

ducing our results are available on Github:
https://github.com/Advancing-Machine-Human-Reasoning-
Lab/gpt3-item-generation/tree/main
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certainty in their annotations. Before beginning
the study, we gave annotators detailed instructions
they were asked to review in advance, including
information about the AX categories, how to an-
swer each of the ratings, and example ratings. We
instructed annotators to rate items as “Completely
irrelevant” if either the label was incorrect or the
item did not match the target category. We followed
standard practices in NLI research for determining
what the correct label should be (Bowman et al.,
2015), which all our annotators were informed of.
In particular, annotators always assumed p and h re-
ferred to the same event or situation (Bowman et al.,
2015). For determining category membership, we
follow the definitions of each AX category pro-
vided by Wang et al. (2018), and developed a sim-
ple code book for determining this. The majority
of the annotations were done synchronously in a
four-hour annotation session. Per recommended
practices for content analysis, each item was rated
by every annotator (Putka et al., 2008). Annotators
were encouraged to discuss items with each other
and come to an agreement on what ratings should
be used. Further details on the content review, in-
cluding an example of the annotation interface, can
be found in Appendix A.

For a generated item to pass the content review,
we determined that all annotators must rate the
item as very clear, either relevant or very relevant,
that the item contained no harmful content, and
that annotators were either sure or very sure of
their predictions. Of the 400 items, 92 met these
criteria across all categories, with at least 15 in
every category passing. We sampled 15 at random
from each category, balanced for the label, to obtain
the GPT-3 generated items. In total, 60 items were
sampled.

4 Experiments

We determined in Section 3 that GPT-3 can gen-
erate AX items that possess at least face validity
evidence. But are these items really more valid
and reliable measures of basic linguistic reasoning,
given that we designed our prompts to induce this?
To study this, we recruited human participants on
Amazon Mechanical Turk7 to complete both the
GPT-3 items and the original human-written items.

102 participants residing in the United States,
who had completed at least 50 HITs (human intelli-
gence tasks) with an acceptance rate of at least 90%,

7https://www.mturk.com

were recruited to take part in the study. We use the
attention check items and quality control protocol
from Laverghetta Jr. et al. (2021) to validate that
our workers participated in good faith. Workers
first completed an onboarding HIT where they were
given five attention check items, whose format was
identical to the AX items but by design, they were
much easier to solve. This was meant to familiarize
workers with the task and ensure they would likely
give good response data. Workers who passed the
onboarding then completed two more HITs, each
containing half the GPT-3 items, and then two fi-
nal HITs, each containing half the human-written
items, and each of these HITs contained six atten-
tion checks spread evenly throughout the survey.
Each worker’s submission was evaluated on every
survey, and we followed the protocols developed by
Laverghetta Jr. et al. (2021) to determine whether
work should be accepted or rejected. Briefly, work-
ers needed to get at least 60% accuracy on the
survey, or at least 66% on the attention checks, and
provide a justification for each response to show
that they were truly paying attention. Further de-
tails on the protocol and payment structure for the
human studies are included in Appendix B.

We ultimately gathered data from 18 participants
and base the following analysis on this sample.
Broadly, our goal is to compare the psychomet-
ric properties of the GPT-3 written items to the
human-written items, focusing specifically on item
difficulty, item discrimination, reliability (assessed
using internal consistency), and convergent and
discriminant validity. These are all important prop-
erties to analyze when establishing the validity and
reliability of a new assessment (Bandalos, 2018),
and when assessed using a measurement frame-
work known as classical test theory (CTT), can be
computed using small sample sizes. CTT essen-
tially posits that an individual’s true proficiency on
a cognitive task (their true score) can be decom-
posed into an observed (actual) score they obtain
and an error term that represents the measurement
error (Rust and Golombok, 2014). Note that this
error is assumed to be random, and not systematic.
Methods from CTT for assessing both validity and
reliability are hence based on analysis of observed
scores, and correlations between observed scores,
where the observed scores are simply accuracy on
the task:

observed score =
correct answers

all answers
(2)

418



Figure 2: Mean item difficulties for each category, mea-
sured using total scores. Lower values indicate lower
total scores, and hence more difficult items.

Although more sophisticated measurement the-
ories have been developed (Embretson and Reise,
2013), they typically rely on latent variable model-
ing and require much larger sample sizes. Further-
more, in practice, establishing validity and reliabil-
ity under CTT is often a first step in validating new
assessments (Bandalos, 2018), which we believe
justifies our focus on CTT in the present study.

4.1 Analysis of Item Properties

Figure 3: Mean item-to-total correlations for each cate-
gory. Higher values indicate items are more predictive
of a participant’s total score, and hence are more dis-
criminating.

We begin by comparing mean item difficulties
(Figure 2) and mean item discriminations (Figure
3) for both human and GPT-3 written items. Diffi-
culty is based on the participants’ observed scores,
and is equivalent to accuracy. Classical psychomet-
rics dictates that items should have difficulties at
approximately the midpoint between chance and

Figure 4: Coefficient α for item responses in each cate-
gory, comparing human-written to GPT-3 written items.
Errors bars are 95% confidence intervals computed us-
ing Feldt’s method (Feldt et al., 1987). Higher values
indicate better reliability and stronger validity evidence.

perfect scores (Lord, 1952), which in our case is
roughly 70%. We again use item-to-total correla-
tion to measure discrimination, and recall that item
discrimination should be positive, with high values
indicating better discrimination. We find that GPT-
3 items are consistently closer to the optimal diffi-
culty level than human-written items. GPT-3 items
are also more discriminating than human-written
ones, though a notable exception is for LE, where
the GPT-3 items are noticeably less discriminating.
As LE tests for all forms of lexical entailment, and
is a much more broadly scoped construct than the
others, lower discrimination is expected (Clark and
Watson, 1995), though this does not fully explain
the rather sizeable drop.

4.2 Internal Consistency Reliability
Items on cognitive assessments should exhibit
strong reliability, meaning that participants with
similar ability levels should also respond in a simi-
lar fashion. A widely used measure of reliability is
coefficient α (Tavakol and Dennick, 2011), defined
as:

α =
k

k − 1
(1−

∑k
i=1 σ

2
yi

σ2
x

) (3)

Where k is the total number of items, σ2
x is the

variance of total scores across all items, and σ2
yi

is the variance of total scores for item i. α ranges
from −∞ to 1, and will be negative when there
is greater within-subject variability than between-
subject variability. Reliability should thus be maxi-
mized. We compute α for both GPT-3 and human
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Figure 5: Results from the MTMM matrix, computed
using Pearson correlations with total scores. Bluer col-
ors indicate stronger correlation.

written items, doing so separately for each cate-
gory, using the Pingouin Python library (Vallat,
2018). Reliabilites with 95% confidence intervals
are shown in Figure 4. Across all categories, GPT-
3 produces items with similar or better reliabilities
compared to human-written items. MN is a special
case, as α for this category dips into the negative
range, indicating poor validity evidence, though
even in this case the GPT-3 items show much better
reliability overall. Thus, the GPT-3 items appear
to elicit more consistent responses among human
participants.

4.3 Convergent and Discriminant Validity
Evidence

The multi-trait multi-method (MTMM) matrix is a
classic technique for evaluating the construct valid-
ity of measures and is often used when evaluating
new instruments (Campbell and Fiske, 1959). The
MTMM matrix shows the correlations between dif-
ferent cognitive constructs (the traits) when they
are measured using different measurement tech-
niques (the methods). In this framework, validity
is defined in terms of the strength of the correlation
between different trait / method combinations. In
general, different methods should be strongly cor-
related when measuring the same trait (monotrait-
heteromethod), and different traits measured us-
ing the same method should be weakly correlated
(heterotrait-monomethod), per the definitions of
convergent and discriminant validity (Campbell
and Fiske, 1959).

We use this approach to evaluate the convergent
and discriminant validity of the GPT-3 items. We

treat the AX category as the trait, and the method
used to generate items (human written or gener-
ated by GPT-3) as the method and compute Pear-
son correlations between all possible combinations
of trait and method, using the participant’s total
scores. Additionally, we check for significance
using Bonferroni corrected p-values of 0.002.8 Re-
sults are shown in Figure 5. Significant monotrait-
heteromethod correlations were found for PS (ρ
= 0.75, p << 0.001) but not for Q (ρ = 0.72, p
< 0.01), MN (ρ = 0.06, p < 0.5) or LE (ρ =
0.20, p < 0.5) All heterotrait-monomethod cor-
relations were insignificant (p > 0.1), except for
between PS and Q. For human-written items, the
correlation was found to be significant (ρ = 0.81,
p << 0.001), but not for GPT-3 written items (ρ
= 0.16, p < 0.5). Collectively, these results indi-
cate strong evidence for the discriminant validity
of the GPT-3 items, given the lack of significant
heterotrait-monomethod correlations. Evidence for
convergent validity is strong for PS, and to a lesser
extent Q,9 but not for either MN or LE. Thus, the
validity evidence for GPT-3 written items is just
as strong, if not stronger, than for human-written
items.

4.4 Analysis of Local Item Dependency

Recall that CTT assumes that measurement errors
are due purely to random chance, and systematic
error is not easily accounted for. One way this
can be violated is from a phenomenon called local
item dependence (LID). LID occurs between pairs
of items, often whenever information needed to
solve the items is interrelated. For example, LID is
often a concern on reading comprehension assess-
ments, because items that refer to the same text can
inadvertently introduce local dependency on the
common stimulus (Attali et al., 2022). Importantly,
LID indicates that errors on items are interrelated in
a way other than proficiency on the construct, and
hence imply systematic error in the measurement.

As Attali et al. (2022) notes, LID is an even
greater concern in the context of AIG, as GPT-3
may have generated items in a programmatic and
somewhat redundant fashion. Perhaps as an artifact
of how AX was constructed, we also found many
human-written items had highly similar linguistic
structures, which we reasoned could cause GPT-

8Rounded to three decimal places.
9The monotrait-hetheromethod correlations for Q were

strong, even though they did not meet the Bonferrioni-
corrected significance level.
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Figure 6: Density plots (computed using kernel density estimation) of partial Pearson correlations computed for
each category, controlling for the participants’ total scores per category. Item pairs where one or both items have 0
variance are excluded. Partial correlations greater than 0.3 indicate LID, and distributions which peak closer to 0
have fewer item pairs with LID.

3 to generate items based on a common stimulus,
which might inadvertently introduce LID. We thus
follow Attali et al.’s protocol and, for each category
and for both the human-written and GPT-3 written
items, we compute the partial correlations between
all pairs of items in each category, controlling for
total scores. Following prior work (Christensen
et al., 2017; Attali et al., 2022), we use a thresh-
old of 0.3 correlation or higher as indicating LID,
and we plot the density distributions of the partial
correlations in each category. Results are shown in
Figure 6. We find that, even with the human-written
items, LID appears to be present in all categories
except for MN, though even in this case we ob-
serve strong anti-correlations. It does not appear,
however, that the GPT-3 items have made LID sig-
nificantly worse. Distributions are often similar
between the item types, and in some cases, GPT-3
distributions appear closer to zero, indicating fewer
pairs with LID. We thus surmise that LID is no
greater a concern for GPT-3 written items than it
was for human-written items.

4.5 Scaling Up to GPT-4
OpenAI’s most recent LLM, GPT-4,10 was released
after the completion of our testing of the GPT-3
items. Given the large gains in performance re-
ported for GPT-4 across myriad tasks, we chose
to perform preliminary analysis on the quality of
items generated by GPT-4, this time running only
the content review.11 We use the same content ex-
perts and follow an identical protocol for the review.
We chose not to generate items for MN, due to the
very poor validity evidence for items in this cat-
egory. Hyperparameters and prompts remain the

10https://openai.com/research/gpt-4
11Due to time constraints, we could not run a more detailed

analysis on the GPT-4 written items, and leave this to future
work.

same, and we use the gpt-4 endpoint in the API.
To keep results as comparable as possible across
models, we chose not to use the system context or
other chat features provided for GPT-4, and instead
administer the prompts in a single shot. We gen-
erate 18 items per category, totaling 54 across the
three categories tested. After running deduplication
and dropping items with invalid labels, we admin-
ister the remaining items to our content experts.
We were specifically interested in whether our ex-
perts would report the GPT-4 items as being any
more relevant for measuring the target construct as
compared to GPT-3. We graph the annotator distri-
butions for PS in Figure 7, and show results for LE
and Q in Appendix C. Surprisingly, we find results
from GPT-4 to be mixed. Although GPT-4 gen-
erates a larger fraction of items labeled as either
“Relevant” or “Very relevant” for Q, it generates
fewer such items for LE and PS. As GPT-4 is de-
signed to function more like a chatbot than GPT-3,
it is possible our prompts need to be restructured
to make better use of the model’s capabilities, but
more experiments are needed to explore this.

5 Discussion and Conclusion

Collectively, our results demonstrate that LLMs
can generate items with superior validity evidence,
even for constructs that have undergone limited
psychometric analysis. GPT-3 items were found
to have better discrimination and reliability, while
maintaining strong convergent, discriminant, and
content validity. LID, while confirmed to be
present in both item types, appeared no worse and
perhaps slightly better in GPT-3 items. These pos-
itive results, while clearly present for PS and Q,
were less clear for MN and LE, and validity evi-
dence as a whole appeared strongest for the cate-
gories testing the most narrowly scoped constructs.
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Figure 7: Distribution of annotator relevance scores
(checking that the item both has a correct label and
matches the category) for both GPT-3 and GPT-4 items,
on items from the PS category. A lower percentage
of items marked as “Completely irrelevant” indicates
stronger evidence of the content validity of items gener-
ated using that model.

Though promising, our results come with lim-
itations that should be addressed in future work.
The small sample size we collected makes it diffi-
cult to assess the generalizability of our findings.
This also prevented us from running any analysis
of internal structure or differential item function-
ing (DIF) using methods from factor analysis or
item response theory, as these models require large
sample sizes (Min and Aryadoust, 2021). As items
generated by GPT-3 should contain no DIF and
have similar factor structures as items written by
humans, these are important analyses to explore
in future work. We also did not examine the di-
versity of the generated items, in other words, how
thoroughly the model explored the construct space.
It is a well-known problem in psychometrics that
having too many similarly worded items can inflate
the reliability and reduce the validity of a measure
(Clark and Watson, 1995), and our results may have
been susceptible to this. A related problem is ensur-
ing that the distribution of labels in the generated
items remains balanced, and while we took steps to
account for this, we did find that the distribution of
GPT-3 items was somewhat unbalanced. For exam-
ple, there were far fewer neutral items than either
entailment or contradiction. Improving the prompt
design to account for diversity and other psychome-
tric properties simultaneously is a fruitful direction
for future work. Our experiment with GPT-4, while
disappointing, was also quite limited and should be
expanded upon. We deliberately kept the prompt

design as similar as possible between the two mod-
els, to avoid possible confounds. Making effective
use of the system query and changing the structure
of the prompts to suit a conversational style could
lead to much better results, however. Finally, al-
though we believe NLI is a good task to use for
initial experimentation, we also acknowledge that
it is significantly different from the tasks of interest
in education (e.g., question answering), and future
work should explore our approach on tasks with
stronger educational applications.

LLMs have the potential to greatly ease the bur-
den of scale development, and transform educa-
tional and psychological measurement. Our results
contribute to the growing field of LLM-based au-
tomated item generation, and demonstrate the po-
tential these methods have for generating valid and
reliable items at a scale that would have previously
been impossible. Further research, combining our
approach with more advanced prompting strategies,
or zero-shot parameter estimation, could conceiv-
ably lead to a system that generates high-quality
items in a fully autonomous fashion, which would
transform the practice of writing and validating test
items.

Limitations

We emphasize that our research is exploratory and
the generated items we produced should not be
used for making critical evaluations of cognitive
skillsets in either humans or LLMs. As discussed in
Section 5, our small sample size makes it difficult
to draw broad conclusions about the generalizabil-
ity of our findings, and practical considerations
regarding the annotation study limited our ability
to thoroughly explore the prompt space. While we
chose GPT-3 due to its ease of use and the fact
that most psychometricians would likely be aware
of it, we also acknowledge that OpenAI has re-
leased few details on how this model is trained or
updated, which hampers the reproducibility of our
results. We also acknowledge that more recent Ope-
nAI LLMs, including ChatGPT and GPT-4, have
been released since this work is completed, and that
our preliminary experiments using GPT-4 do not
give us a full understanding of the capabilities of
this model. However, given that we were still able
to perform detailed experiments using the GPT-3
items, and these items proved to have superior va-
lidity evidence across multiple trials, we do not
believe the existence of more recent LLMs negates
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our results. Finally, it is also well known that LLMs
can produce biased, toxic, or other forms of harm-
ful text content (Liang et al., 2021). While we took
steps to account for this in our content review, fu-
ture work must keep this possibility in mind and
carefully analyze generated items for potentially
harmful content. A related problem is the risk of
GPT-3 items propagating disadvantages against his-
torically marginalized groups. For example, the
items may have relied on cultural context or other
information that would give an unfair advantage
to certain populations. Given that we lacked a
sufficient sample size and did not collect person-
ally identifiable information from participants, we
could not run DIF analysis to check for this, and
cannot state definitively that DIF is not present.
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Figure 8: The annotation interface for the content review.

1. Item Relevance: This question concerned
the usefulness of the item for measuring
the construct. Experts could rate items as
“Completely irrelevant”, “Somewhat relevant”,
“Relevant”, or “Very relevant”. At a basic
level, items needed have both a correct label
and test for the target category. If either of
these were false, experts were instructed to
rate the item as “Completely irrelevant”. Ex-
perts were instructed to rate items as “Some-
what relevant” if the prior checks passed, but
knowledge of the category was not critical to
solving the item. An example of this would
be an item from MN where the negated clause
does not change at all from p to h. If knowl-
edge of the category was critical, and all prior
checks passed, experts were instructed to rate
the item as “Relevant”. “Very relevant” was
reserved for items that experts judged as be-
ing highly discriminating, which we included
based on prior work demonstrating experts
can effectively evaluate latent properties of
items (Stark et al., 2011). We left the exact
judgment of what constituted a highly discrim-
inating item up to the discretion of the ex-

perts, and we encouraged them to discuss this
and reach an agreement for each item deemed
“Very relevant”.

2. Item Clarity: This question concerned how
clear the wording of the item is, and whether
it contains spelling or grammatical errors.
Experts could rate items as ”Not clear, ma-
jor revisions”, “Somewhat clear, some revi-
sions”, “Clear, slight revisions”, and “Very
clear, no revisions”. “Not clear, major revi-
sions” was reserved for cases where items
contained any spelling or grammatical errors.
This also included cases with unterminated
punctuation (e.g, an opening ‘(’ that was not
closed). Both “Somewhat clear, some revi-
sions” and “Clear, slight revisions” were re-
served for cases where the prose of the item
was unorthodox (e.g, GPT-3 generated an odd
word choice or an unusual phrase). Experts
were instructed to rate “Very clear, no revi-
sions” if items were both grammatically cor-
rect and contained no unusual wording that
made the item needlessly difficult to under-
stand.
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3. Potentially Harmful Content: This was in-
cluded to ensure that GPT-3 did not generate
offensive or otherwise harmful content in the
items, though we did not expect this to be an
issue in general as AX items were written in
a fairly neutral tone and avoided covering con-
troversial social issues or explicitly targeting
identified subgroups. Experts were instructed
to check if the items contained any content
related to race, ethnicity, religion, or other
identifiable characteristics that might be con-
sidered offensive to members of those groups.
Importantly, AX does contain items related
to U.S. politics circa 2018 that we reasoned
might lead to toxic generations regarding po-
litical ideology. We made experts aware of
this but instructed them to only rate such items
as harmful if the content explicitly attacked a
political ideology or its adherents. There were
only two options for this item, “yes” or “no”.

4. Annotator Certainty: Finally, using a four-
point Likert scale, we asked annotators to rate
how sure they were of their ratings.

Figure 8 shows the annotation interface. Experts
were given the full item content and the label gen-
erated by GPT-3, as well as additional data about
the hyperparameters used which they did not need
to refer to. They were free to move back and forth
within the survey and revise their responses later
if they wished. Most annotations were completed
in a synchronous session, and all annotators be-
gan their work in this session to ensure the task
instructions were clear and to train them on how to
rate each item. Importantly, we did not ask raters
to edit any item content to improve its quality, as
we were interested in the quality of GPT-3 written
items without human intervention.

For determining category membership, we devel-
oped a codebook based on the presence of certain
keywords in the item content, and either p or h
needed to contain at least one of these keywords to
pass content validity. For example, for Q, either p
or h needed to contain either a universal (all, none)
or existential (some, many, most, etc.) quantifier
in natural language to pass. We developed an ini-
tial list of keywords based on both the appendix
covering AX in Wang et al. (2018), and by manu-
ally inspecting the items in each category to locate
additional keywords. During the content review,
experts could also suggest additional keywords,

and if all annotators agreed, these new keywords
were added to the codebook. Table 2 show all the
keywords used across categories. LE was the only
category that did not follow this protocol for de-
termining category membership. As LE tests for
all forms of entailment at the word level, there is
no predetermined list of keywords that can be used
to determine LE membership. Therefore, for LE,
we used the rule that p and h must differ by only
one word, with the only exception being if other
words needed to be changed to keep the sentences
grammatically correct.

B Details on Human Study

We follow many of the same protocols from
Laverghetta Jr. et al. (2021) for conducting our hu-
man study. In particular, they employed attention
check NLI items taken from the ChaosNLI dataset
(Nie et al., 2020), which collected 100 human rat-
ings to a subset of SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) items. Only items
which at least 90% of the workers agreed on the
correct label were used, and hence they are presum-
ably quite easy to answer correctly. In addition,
Laverghetta Jr. et al. (2021) also asked workers
to justify their response to each item, which was
used as an additional check to ensure workers were
paying attention during the task. We follow their
protocol and check that workers do not copy text
from the item as their justification, that the justifi-
cation is not used multiple times, that it is clearly
related to the item content,13 and that the justifi-
cation is not a nonsensical word or phrase (e.g,
“good” or “nice question”). Collectively, the fol-
lowing quality control procedure was used for each
survey:

1. Submissions with duplicate IP addresses or
worker IDs were dropped.

2. Submissions with less than 40% accuracy, or
less than 60% with less than 66% on attention
checks, were dropped.

3. Submissions whose justifications did not meet
the above criteria were also dropped.

All other submissions were accepted, and at each
stage passing workers were given qualifications to
proceed to the next survey. If however, workers

13In some instances, workers appeared to copy text from ex-
ternal websites that was completely unrelated to the question.
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Category Keywords
MN un−, non− ir−, dis−, im−, il−, in−, −n’t, not, never, no
PS un−, non− ir−, dis−, im−, il−, in−, −n’t, not, no, and, or, if
Q all, no, some, many, most, none, every, several, each, one other, only, nearly all, the , part of

Table 2: Keywords used to determine category membership. Leading and trailing “−” indicate suffixes and prefixes,
respectively.

failed a given stage, they were not allowed to pro-
ceed. In total, we administered five separate HITs
and used Qualtrics to gather all responses. Workers
were paid $8.00 for each HIT, except for the initial
onboarding HIT, where they were paid $0.10,14 and
had one hour to complete each HIT. Workers were
told they would be compensated for each survey
completed successfully, to encourage consistently
high-quality work. Workers gave informed con-
sent to participate prior to beginning each HIT, and
could withdraw at any time. Workers could ap-
peal any rejections made, however, we also clearly
stated submissions would be checked for quality
control purposes, and may be dropped if evidence
of bad-faith responses was found. All work was
done anonymously; workers were not asked to pro-
vide us with any personally identifiable information
at any stage.

Finally, we also considered extending
Laverghetta Jr. et al.’s protocol to check for
AI-generated text for the explanations, in case
workers attempted to use ChatGPT or another
LLM during the survey. We examined several
detectors for AI-written text, including one
developed by OpenAI.15 However, we found that
currently available models require too much text
to be helpful for our study. Participants were
asked to only briefly explain their thought process
with at most one sentence, which was far too
short for current detectors to make a classification.
Therefore, we did not include any check for
AI-generated text, but we strongly encourage
future work to consider this and investigate other
possible safeguards against workers cheating on
the task using LLMs.

C Additional Results from GPT-4

Figures 9 and 10 compare the annotator relevance
scores between GPT-3 and GPT-4 items, for LE
and Q.

14This HIT contained only 5 items and was meant to be
finished quickly.

15https://openai.com/blog/new-ai-classifier-for-indicating-
ai-written-text

Figure 9: Distribution of annotator relevance scores for
LE.

Figure 10: Distribution of annotator relevance scores
for Q.
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