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Abstract

This paper presents the ACTA system, which
performs automated short-answer grading in
the domain of high-stakes medical exams. The
system builds upon previous work on neural
similarity-based grading approaches by apply-
ing these to the medical domain and utiliz-
ing contrastive learning as a means to opti-
mize the similarity metric. ACTA is evalu-
ated against three strong baselines and is de-
veloped in alignment with operational needs,
where low-confidence responses are flagged
for human review. Learning curves are ex-
plored to understand the effects of training
data on performance. The results demonstrate
that ACTA leads to substantially lower number
of responses being flagged for human review,
while maintaining high classification accuracy.

1 Introduction

Automated Short Answer Grading (ASAG) has
been a longstanding educational application of NLP.
The task of classifying the free-text responses to
short-answer questions (SAQs) as correct or incor-
rect is made challenging by the fact that the same
concept may be expressed in a myriad of different
ways. The problem has received considerable at-
tention, with several competitions organized on the
topic such as a SemEval shared task by Dzikovska
et al. (2013) or the ASAP 2 Kaggle competition1.

Most broadly, the ASAG literature defines two
scoring approaches: an instance-based approach,
where a system is trained on a portion of the data
and outputs a predicted score for a given new re-
sponse, and a similarity-based approach, where
each new response assumes the label of an anno-
tated response it is matched to using some sim-
ilarity metric (Bexte et al., 2022). In early work,
pre-neural similarity-based approaches were shown
to lag behind the less interpretable instance-based
approaches (Sakaguchi et al., 2015). Since then,

1https://www.kaggle.com/c/asap-sas

neural similarity-based approaches have shown in-
creasing promise by learning response (or question-
response) embeddings and matching the pairs us-
ing cosine similarity (e.g. Schneider et al. (2022)).
Bexte et al. (2022) proposed that the similarity-
based approach can be further improved if the sim-
ilarity metric is appropriately optimized. In their
work, a pretrained Sentence-BERT model (Reimers
and Gurevych, 2019) is fine-tuned on answer pairs
and then a k-nearest neighbors classifier is used
to match a new response based on its similarity
to the labeled ones. These advances have led to a
considerable improvement over the instance-based
approach not only in terms of accuracy, but also
in terms of interpretability and the need for less
annotated data for training.

In this study, we present the ACTA system (Anal-
ysis of Clinical Text for Assessment), where we
build upon the work of Bexte et al. (2022) by ex-
ploring the use of contrastive learning (Chopra
et al., 2005) as a way to optimize the performance
of similarity-based approaches and by applying the
approach to the clinical domain. The contributions
of this paper are as follows:

• Exploration of the similarity-based ASAG ap-
proach in the clinical domain, which is char-
acterized by a number of challenging idiosyn-
crasies such as complex terminology, exten-
sive use of abbreviations, misspellings, etc.

• Comparison of the results to three baselines:
majority class, a similarity-based approach
without finetuning, and a previous scoring sys-
tem designed for the clinical domain.

• System and evaluation design constructed in
alignment with operational needs, where re-
sponses that do not satisfy a given confidence
threshold are flagged for human review.

• Exploration of learning curves with various
training set sizes, as well as experimentation
with various confidence thresholds.
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2 Data

We perform experiments on two datasets containing
short free-text responses to clinical test items.

Set 1 consists of SHARP items (Short Answer
Rationale Provision items) – an item format where
examinees see a patient chart and are asked to pro-
vide a free-text response regarding the most likely
diagnosis (e.g., “plantar fasciitis", “dermatomyosi-
tis" ), most appropriate next steps (e.g., “Administer
corticosteroids then do arterial biopsys"), causes
(e.g., “Homocysteine and MMA levels in blood"),
etc.2 A total of 44 items were administered in a
pilot involving 177 4th-year US medical students.
Each student saw each item, resulting in a total of
7,788 responses (of which 2,807 were unique).

Set 2 consists of short-answer questions, which
present a vignette3 describing a clinical case. Simi-
lar to Set 1, the Set 2 responses included diagnoses,
causes, and treatments, among other categories
of responses. These items were administered to
8,162 US medical students as part of their Internal
Medicine school subject exam. There were 71 Set
2 items, where each item was seen by an average of
176 examinees (SD = 12.620), resulting in a total
of 12,508 free-text responses (5,696 unique).

Responses from both sets were scored as cor-
rect or incorrect by content experts (physicians
and nurse practitioners) using a scoring rubric for
each item. For Set 1, two subject matter experts
scored the items together as part of developing
scoring guidelines for future pilots (hence agree-
ment statistics for independent scoring cannot be re-
ported). Another group of physicians reviewed the
scores and confirmed agreement with the scoring
procedure. For Set 2, four judges scored the items.
Kappa coefficients (based on unique responses) for
the six possible pairs of judges ranged from 0.89 to
0.92, indicating strong agreement. Scoring resulted
in 5,201 correct responses (66.78%) for Set 1 and
8,086 (64.64%) for Set 2.

3 Method

We use contrastive representation learning (Chopra
et al., 2005) to encode responses into embedding
vectors such that responses with the same score
have similar embeddings and responses with dif-

2Other aspects of the SHARP item format that refer to
subsequent steps for measuring clinical reasoning are not de-
scribed here.

3See Ha et al. (2020) for a detailed description of the use
of vignette-based SAQs in medicine.

ferent scores have very different ones. For any
given two responses, the degree to which they are
matched can then be measured by the cosine si-
miliarty between their embedding vectors. Simi-
lar to Bexte et al. (2022), we use Sentence-BERT
(a.k.a. SBERT) to derive the embeddings for each
response, since the model introduces a modifica-
tion of the pretrained BERT network that “reduces
the effort for finding the most similar pair from 65
hours with BERT / RoBERTa to about 5 seconds"
(Reimers and Gurevych, 2019).

First, we pair up every response with every other
response for the same item. Each pair is assigned
a label of 1 if both responses have the same score
(both correct or both incorrect), 0 otherwise. For
each pair, the two responses are passed to SBERT
independently, producing two sentence embedding
vectors (one for each response).

The contrastive loss encourages the model to
minimize the embedding distance when responses
have the same score, and maximize the distance
otherwise. To do that, the cosine similarity and the
cosine distance between the sentence embedding
of the first response e1 and the sentence embedding
of the second response e2 are defined as:

similarity(e1, e2) =
eT1 · e2

||e1||||e2||

distance(e1, e2) = 1− similarity(e1, e2)

Then, the contrastive loss is defined as

L(e1, e2, label) = label · (distance(e1, e2))2+

(1− label) ·max(0,margin−distance(e1, e2))
2

where margin is a hyperparameter, defining the
lower bound distance between responses with dif-
ferent scores. One advantage of contrastive loss
over cosine similarity loss is that it goes to 0 for
negative pairs when the distance is farther than the
margin. When dissimilar inputs are sufficiently dis-
tant there is no more pressure on the model to keep
pushing them apart, which could allow the model
to focus on improving the most erroneous cases.

During inference, the trained model is used to
compute the cosine similarity between the sentence
embedding of the new response and the sentence
embedding of every annotation (i.e., responses of
the same item in the training set). If the highest
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Set 1 (SHARP items) Set 2 (SAQs)
Training 20 40 60 80 120 142 20% 40% 60% 80%

INCITE F1 .986 .986 .989 .984 .988 .989 .88 .9 .88 .882
Unmatched 488 442 397 354 334 318 987 830 748 711

ACTA No Finetuning F1 .998 .998 1. 1. 1. 1. .999 .999 .999 .997
Unmatched 623 523 463 429 385 368 970 835 743 684

ACTA Finetuned F1 .995 .993 .977 .979 .982 .982 .991 .991 .978 .972
Unmatched 545 443 201 123 47 44 734 497 274 172

Table 1: Results for a similarity threshold of .95, where "F1" indicates classification performance for all matched
items and "Unmatched" indicates the number of items that need to go through human scoring. For Set 1, the training
data size is measured in number of examinees whose data was used for training (e.g., the first 20 examinees, the first
40, etc.). In Set 2, it is measured as percentage of the full dataset. Note that for ACTA No Finetuning, the term
"training set" refers to the subset of data used to identify the most similar instances for a given new response.

cosine similarity is less than a given threshold, the
new response is labeled as unmatched and flagged
for human rater review. Otherwise, the new re-
sponse assumes the score of the annotation that it
has the highest cosine similarity with. For detailed
training parameters, see Appenidx A.

4 Experimental setup

Baselines: We compare the approach proposed in
ACTA to three baselines: a majority class base-
line (always predicting a correct response); ACTA
No finetuning – a similarity-based approach us-
ing SBERT, where the model was not trained to
optimize the similarity metric. We use all-MiniLM-
L6-v24, which has been pretrained on 1B sentence
pairs, as our backbone model for both SBERT-no-
training and SBERT. Finally, the INCITE system
(Sarker et al., 2019), which is specifically devel-
oped to score clinical text by capturing a variety of
ways clinical concepts can be expressed. INCITE
is a rule-based modular pipeline utilizing custom-
built lexicons, which contain observed misspellings
for medical concepts and non-standard expressions,
as well as common concepts and abbreviations
from online resources. The tool performs direct
and fuzzy matching between a new response and
an annotated response (or a lexicon variant of it) us-
ing a fixed or dynamic Levenshtein ratio threshold
(in our case - .95). Full details about the INCITE
system are available in Sarker et al. (2019).

Learning curves: We compare the approaches
by experimenting with different training set sizes
and evaluating on the same test set of 20% held-out
data (1,5K responses for Set 1 and 2,5K for Set
2). This provides insight on an important practical
consideration - how much training data is enough

4https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

to train a reliable and accurate model (Heilman and
Madnani, 2015). To emulate an operational sce-
nario, the division of training and test sets (and the
increase in training data) are based on the chrono-
logical order in which the responses were received.

Evaluation metrics Another practical consider-
ation is to directly answer two questions of opera-
tional significance: "How accurate is the system for
responses that it is able to score?" and "How many
responses do human raters still need to score man-
ually?". To address these, we present two separate
metrics – F1 for matched responses and total num-
ber of unmatched responses – as opposed to cap-
turing the number of unmatched responses through
the measure of Recall. This setup allows the selec-
tion of more strict or liberal thresholds depending
on the intended use, e.g., high-stakes summative
assessment where high precision is paramount vs.
formative assessment, where there can be a trade
off between precision and wider response coverage.

Thresholds: A conservative similarity threshold
of .95 is selected apriori to ensure high confidence
that the matched responses are scored correctly.
All items below that threshold are considered un-
matched and are sent for human scoring. We first
present detailed results for this threshold. Next, we
experiment with a variety of other thresholds and
compare their effect on the two evaluation metrics.

5 Results

The majority class baseline was .79 for Set 1 and
.794 for Set 2. The remaining results for a threshold
of .95 are presented in Table 1. As can be seen, all
three systems (INCITE, ACTA No finetuning, and
ACTA Finetuned) achieve very high F1 scores for
the responses they were able to match for Set 1
(lowest F1 was .977 for ACTA Finetuned and .984
for INCITE). For the much larger Set 2, we see
a higher F1 score range of .97 - .99 for ACTA
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Figure 1: F1 score for Set 1 (SHARP items) as a func-
tion of similarity threshold and training set size.

Figure 2: F1 score for Set 2 (SAQs) as a function of
similarity threshold and training set size.

compared to .88 - .90 for INCITE. The F1 score
remains high when evaluation is performed using
5-fold cross validation (not shown in the tables):
the average ACTA Finetuned F1 across folds for
Set 1 is .985 with an average number of unmatched
responses across folds = 49.8. For Set 2 the F1
score is .98 with an average number of unmatched
responses across folds = 88.8. Overall, the results
suggest a consistently high level of confidence in
ACTA’s output for all matched responses.

When looking at the unmatched responses, we
see dramatic differences between the three systems.
When training on more than 40 examinees, INCITE
and ACTA No finetuning have significantly more re-
sponses that require human review and increasing
the amount of training data leads to small improve-
ments. ACTA Finetuned leaves fewer unmatched
responses and continuously improves with the addi-
tion of more training data. These results show the
when finetuned using contrastive loss, ACTA can
ultimately save more human effort than INCITE
and that the gains increase with data size.

Next, we experiment with different matching
thresholds by replacing the .95 value with a range
of values: .98, .90, .85, .80, .75, .70, and .65. F1
remains high even with lower thresholds: For Set 1,
the lowest F1 is .937 (threshold = .65 when training

Figure 3: Number of unmatched responses for Set 1
(SHARP items) as a function of similarity threshold and
training set size.

Figure 4: Number of unmatched responses for Set 2
(SAQ items) as a function of similarity threshold and
training set size.

on data from 20 examinees). For Set 2 it is .95 for
the same configuration (for detailed F1 results for
each threshold, see figures 1 and 2). The number
of unmatched responses, however, decreases signif-
icantly (see Figures 3 and 4) – there are either 0 or
1 unmatched responses in both sets across all train-
ing configurations for threshold .65. This shows
that with more liberal thresholds, the need for hu-
man scoring almost disappears (except the need for
continuous quality verification). Selecting the right
trade-off between F1 and number of responses that
need to undergo human review remains an opera-
tional decision.

6 Conclusion

This study showed that a similarity-based clinical
ASAG system finetuned using contrastive loss out-
performs the INCITE and ACTA No Finetuning
baselines. Lowering the similarity threshold value
significantly decreases the number of unmatched
responses, while – contrary to expectation – the F1
score remains high at > .93 across conditions. The
condition of weakest supervision – training on 20
examinees from Set 1 with a similarity threshold
of .65 – shows that 880 annotated responses are
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sufficient to score all 1.5K test set responses with
F1 = .93. Similarly, when training on 20% of the
data from Set 2 with threshold of .65, all 2.5K test
set responses are scored with F1 = .95.

The evaluation setup allows operational experts
to balance the confidence threshold with a mini-
mum necessary F1 score, where items with more
errors can have more stringent similarity thresh-
olds and vice-versa. The threshold may also vary
depending on intended use: formative exams may
tolerate a lower F1 to gain wider coverage, while
summative assessments may have stricter criteria.

In addition to its accuracy and wider coverage
of responses, the interpretability of ACTA as a
similarity-based system is an important advance-
ment in clinical assessment compared to instance-
based ASAG systems (e.g., Ha et al. (2020)). Inter-
pretability holds special significance in the realm
of automated scoring, as the value of the scores
depends on the trust placed by various stakeholders
(such as faculty, students, and residency selection
programs, among others) in their fairness, reliabil-
ity, and validity.

Like many other products, automated scoring
tools are complex systems that have a significant
impact not only because of their technical capabili-
ties but also due to how they are used and the way
their results are interpreted. Misusing these tools
or interpreting their outputs incorrectly can lead to
serious ethical issues. In a summative context, the
models described in this article are intended to be
used as hybrid systems, where human raters always
review borderline cases. In a formative context,
it is crucial to carefully examine the relationship
between the use of the system and its impact on
learning outcomes, as this is essential evidence for
validity.

Next steps include exploration of the effects
of different "gaming" strategies (e.g., intention-
ally providing generic instead of specific answers)
and potential differential functioning across demo-
graphic groups. Notably, ACTA is intended as
a hybrid system, where cases of examinees who
perform near or below the passing standard are
reviewed by human experts.
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A Appendix

batch_size = 32; log_every_n_step = 100;
lr = 0.00002; margin = 0.5; max_length
= 512; model_name_or_path = "sentence-
transformers/all-MiniLM-L6-v2"; num_epochs =
1; num_training_participants = 142; num_workers
= 8; threshold = 0.95; warmup_ratio = 0.1;
weight_decay = 0.01
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