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Abstract

Automatic readability assessment (ARA) pre-
dicts how difficult it is for the reader to under-
stand a text. While ARA has traditionally been
performed at the passage level, there has been
increasing interest in ARA at the sentence level,
given its applications in downstream tasks such
as text simplification and language exercise
generation. Recent research has suggested the
effectiveness of hybrid approaches for ARA,
but they have yet to be applied on the sentence
level. We present the first study that compares
neural and hybrid models for sentence-level
ARA. We conducted experiments on graded
sentences from the Wall Street Journal (WSJ)
and a dataset derived from the OneStopEnglish
corpus. Experimental results show that both
neural and hybrid models outperform tradi-
tional classifiers trained on linguistic features.
Hybrid models obtained the best accuracy on
both datasets, surpassing the previous best re-
sult reported on the WSJ dataset by almost 13%
absolute.

1 Introduction

Text readability is defined as the cognitive load
of a reader to comprehend a text (Martinc et al.,
2021). Research on automatic readability as-
sessment (ARA) has traditionally aimed at pas-
sages (Azpiazu and Pera, 2019), e.g., labeling a
passage with its difficulty level.

There has been growing interest in assessing the
difficulty of individual sentences (Štajner et al.,
2017; Brunato et al., 2018; Lu et al., 2020; Schic-
chi et al., 2020), given its application in various
downstream tasks in natural language processing
(NLP). It is essential to generation tasks that are
sensitive to language difficulty, such as pedagogical
material and exercises (Pilán et al., 2014). It also
facilitates explainable text simplification (Gârbacea
et al., 2021) by identifying which sentences require
simplification. Sentence-level ARA is a task in its
own right since a substantial drop in performance

has been observed when passage-level ARA mod-
els are applied on individual sentences (Kilgarriff
et al., 2008; Pilán et al., 2016).

Similar to many other NLP tasks, passage-level
ARA has benefited from the advent of neural
approaches (Filighera et al., 2019; Tseng et al.,
2019; Martinc et al., 2021). Recent research has
also applied ‘hybrid’ models, which leverage both
linguistically motivated features and neural mod-
els (Deutsch et al., 2020; Lee et al., 2021; Lim et al.,
2022). For sentence-level ARA, although neural
models have been evaluated (Schicchi et al., 2020;
Arase et al., 2022), there has not been any attempt
to integrate linguistic features.

This paper applies neural models and hybrid
models on sentence-level ARA and compares their
performance with a non-neural classifier trained
on linguistic features. To our knowledge, this
is the first study on hybrid models for sentence-
level ARA. Experimental results show that a hybrid
model offers the best performance, and surpasses
the previous best result reported on the Wall Street
Journal dataset (Brunato et al., 2018). 1

2 Previous work

2.1 Neural and hybrid approaches

Readability formulas (Kincaid et al., 1975) and
traditional approaches for readability assessment
have mostly relied on one-hot linguistic features
and language models (Collins-Thompson, 2008;
Sung et al., 2015). More recent studies have shown
that neural approaches can improve assessment per-
formance (Azpiazu and Pera, 2019; Martinc et al.,
2021). An active area of ARA research is to inves-
tigate how to incorporate linguistic features into
neural models. On passage-level assessment, some
studies observed no effect (Deutsch et al., 2020) or
only marginal improvement (Filighera et al., 2019)

1All data and code are publicly released at https://
github.com/ffliu6/Hybrid4SentenceARA.
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from linguistic features, while others reported sig-
nificant improvement, e.g. by combining Random
Forest and RoBERTa (Lee et al., 2021), and con-
catenating linguistic features with sentence embed-
dings from BERT hidden layers (Imperial, 2021).
However, there has not yet been any study on hy-
brid models on sentence-level ARA.

2.2 Sentence readability assessment

Most previous research on sentence readability pur-
sued binary classification or pairwise difficulty pre-
diction (Ambati et al., 2016; Schumacher et al.,
2016). An algorithm combining rule-based and sta-
tistical classifiers yielded 71% accuracy on binary
classification of texts for learning Swedish as a for-
eign language (Pilán et al., 2014). Statistical classi-
fiers achieved 66% accuracy on an English dataset
based on Wikipedia and Simple Wikipedia (Vajjala
and Meurers, 2014) and between 78.9% and 83.7%
on an Italian dataset (Dell’Orletta et al., 2014).

There have also been a few studies on
sentence-level ARA involving multi-way classifiers
trained with traditional machine learning methods.
Brunato et al. (2018) developed an SVM linear
regression model with a variety of surface, morpho-
logical and syntactic features. The model achieved
59.1% and 60% accuracy on an Italian and an En-
glish dataset of sentences graded on a 7-point scale.
Sentence length and nominal modification were
found to correlate significantly with sentence diffi-
culty. A Bayesian Ridge Regression Model, trained
on a variety of linguistic features including syntax,
lexical, morphology and cohesion, has been shown
to achieve high correlation with human judgment
on German sentence difficulty (Weiss and Meur-
ers, 2022). A classifier has also been trained on
features derived from the phrase complexity level
of n-grams (Štajner et al., 2017). It attained 0.66
weighted F-score on an English dataset on a 5-point
scale. A classifier for Chinese sentences, based on
vocabulary and grammar points, reached 31.92%
accuracy on 10-way classification (Lu et al., 2020).

Two studies have applied neural models on
sentence-level ARA. Schicchi et al. (2020) showed
that an RNN-based architecture outperformed
Vec2Read (Mikolov et al., 2013). Arase et
al. (2022) found that the BERT-base model out-
performed traditional machine learning classifiers
on their annotated CEFR-based sentence difficulty
dataset. However, they did not attempt to incor-
porate any linguistic features. This paper aims to

fill in this gap with a comparison of neural models,
hybrid models and traditional classifiers.

3 Data

We used the following two datasets in our experi-
ments. Detailed statistics are shown in Table 3 and
Table 4 (see Appendix A).

3.1 Wall Street Journal (WSJ)

This corpus (Brunato et al., 2018) consists of
1,200 sentences drawn from the Wall Street Jour-
nal (Nivre et al., 2007) and graded on a difficult
scale from 1 to 7. Each sentence was rated by 20
native speakers on a difficult scale from 1 (“very
easy”) to 7 (“very difficult”). Our evaluation is
based on the set of 650 sentences whose grade was
agreed upon by at least 14 of the 20 annotators.
While it is possible to restrict the evaluation to
sentences with an even higher rate of agreement, it
would lead to a substantially smaller dataset, whose
size is already much smaller than other datasets. 2

3.2 OneStopEnglish (OSE)

This corpus (Vajjala and Lučić, 2018) consists of
aligned texts graded at three reading grades: be-
ginner, intermediate, and advanced. Each of the
189 texts has three versions corresponding to these
grades, with a total of 19,904 sentences in the 567
texts. 3

Instead of assigning the grade of the text to all
sentences in that text (Pilán et al., 2014), we de-
termined the difficulty of each individual sentence
based on the human revision. Among the sentences
in intermediate texts, 10.21% appear verbatim in
the beginner version; among those in the advanced
texts, 18.76% appear verbatim in one of the lower
versions. These sentences are labeled with the low-
est grade at which they appear. All other sentences
are labeled with the grade of the text — the fact
the human editors revised them implies that their
grade could not be lower.

4 Approach

4.1 Baseline: Linguistic Model

We used the scikit-learn implementation of Ran-
dom Forests (RF) and XGBoost (XGB) (Pedregosa

2No sentence in this subset was graded at 6 or 7.
3Sentence segmentation was performed with NLTK (Bird

et al., 2009).
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et al., 2011). We extracted 255 linguistic fea-
tures with LingFeat4 for each sentence. We per-
formed feature selection with the Variance Thresh-
old in scikit-learn on the dev set.5 Similar to Lu et
al. (2020), we trained these classifiers with linguis-
tic features as well as bag-of-word features.

4.2 Baseline: Neural Model

Transformer-based neural models have achieved
impressive performance in many natural language
processing tasks.

We fine-tuned BERT (Devlin et al., 2019),
BART (Lewis et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019) and ELEC-
TRA (Clark et al., 2020) on our datasets (Section 3)
into an ARA classifier6 , using the pre-trained ver-
sions released by Huggingface (Wolf et al., 2019).
We used the base versions of all of the above, as
well as the large versions of BART, RoBERTa and
ELECTRA.

4.3 Hybrid Models

We implemented three hybrid models. The follow-
ing model incorporates linguistic features into a
neural model:

Concatenated Model Similar to Song et
al. (2021), the input to model consists of the
input sentence w1w2 . . . wn concatenated
with the linguistic features f1, f2 . . . fn, in
the format “[CLS] w1w2 . . . wn [SEP]
f1f2 . . . fn”.

The following two models wrap the linguistic
features and neural model output in a non-neural
statistical classifier:

Hard Label Following Deutsch et al. (2020), the
grade of the sentence, as predicted by the Neu-
ral Model (Section 4.2), serves as an addi-
tional feature in the statistical classifier (Sec-
tion 4.1).

Soft Labels Following Lee et al. (2021), the prob-
ability of each grade, as predicted by the Neu-
ral Model (Section 4.2), serve as additional
features alongside the linguistic features in the
statistical classifier (Section 4.1).

4https://github.com/brucewlee/lingfeat
5The threshold set to 0.8.
6We used the Adam algorithm (Kingma and Ba, 2015) for

optimization. The epoch for each training is 10, and set the
maximum word embedding size as 128.

5 Experiments

5.1 Set-up

We report results in terms of accuracy (Acc.), F1-
score, Precision, Recall and QWK scores.

We used stratified ten-fold cross validation in
WSJ and OSE experiments, with a 8:1:1 split for
training, development and testing.7 For the OSE
dataset, all sentences from the same text are placed
in the same fold, so that the entities and topics
mentioned in the test sentences would not be seen
during training.

5.2 Results

Linguistic Model. XGBoost (XGB) outperformed
Random Forest (RF) and Linear Regression (LR)
on all datasets. On OSE and WSJ, it achieved
0.451 and 0.618 accuracy, respectively, compared
to 0.412 and 0.551 for RF, and 0.374 and 0.413
for LR. We will therefore present results based on
XGB in the remainder of this section.

Neural Model. Table 1 presents the performance
of neural models on the WSJ and OSE datasets. On
the WSJ dataset, RoBERTa obtained the best per-
formance among base versions, at a 0.668 accuracy.
Large models were found to outperform base ver-
sions on the WSJ dataset, in which BART-large
produced the highest accuracy at 0.679. On the
OSE dataset, BART obtained the best performance
among base versions, at a 0.571 accuracy. Large
models were also found to outperform base ver-
sions on the OSE dataset, in which BART-large
produced the highest accuracy at 0.571. Generally,
BART-large model achieved the best performance
on all datasets, at 0.679 and 0.571 accuracy for
the WSJ and OSE datasets, respectively. We will
therefore use its predictions for hybrid models.

The results for OSE and WSJ in Table 2 are
based on the BART-large model, which obtained
the best performance on both datasets. Consistent
with results from passage-level ARA, the Neural
Model achieved better performance over the Lin-
guistic Model on both datasets in all metrics. De-
spite the relatively small amount of training data
in the WSJ datasets, the Neural Model still offered
competitive performance.

Hybrid Models. The previous best published
result for the WSJ dataset 0.600, obtained with an

7The hyperparameters for learning rate, dropout and batch
size are tuned on the dev set. We found best performance with
learning rate at 1 · e−5, dropout at 0.2, and set batch size as
32.
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Dataset Metric BERT BART RoBERTa XLNet ELECTRA BART RoBERTa ELECTRA
base base base base base large large large

WSJ Acc. 0.606 0.648 0.668 0.640 0.602 0.679 0.667 0.630
F1 0.527 0.590 0.596 0.540 0.520 0.611 0.603 0.523
Prec. 0.480 0.566 0.576 0.469 0.477 0.601 0.589 0.453
Recall 0.606 0.648 0.668 0.640 0.602 0.679 0.667 0.630
QWK 0.540 0.678 0.640 0.601 0.552 0.661 0.677 0.552

OSE Acc. 0.547 0.571 0.569 0.562 0.555 0.571 0.570 0.566
F1 0.532 0.555 0.554 0.543 0.533 0.558 0.555 0.549
Prec. 0.549 0.570 0.566 0.554 0.552 0.565 0.567 0.566
Recall 0.547 0.571 0.569 0.562 0.555 0.571 0.570 0.566
QWK 0.500 0.537 0.537 0.535 0.512 0.549 0.541 0.532

Table 1: ARA performance of the Neural Model based on different transformers

Dataset Metric Linguistic Neural Hybrid Model
Model Model Concatenated Hard Label Soft Labels

WSJ Acc. 0.618 0.679 0.629 0.729 0.724
F1 0.549 0.611 0.590 0.707 0.709
Prec. 0.519 0.601 0.585 0.713 0.715
Recall 0.618 0.679 0.629 0.729 0.724
QWK 0.616 0.661 0.676 0.767 0.794

OSE Acc. 0.451 0.571 0.568 0.578 0.581
F1 0.428 0.558 0.559 0.565 0.564
Prec. 0.441 0.565 0.584 0.593 0.574
Recall 0.451 0.571 0.568 0.578 0.581
QWK 0.288 0.549 0.540 0.537 0.560

Table 2: ARA performance of the Linguistic Model, Neural Model (BART-large) and Hybrid Model

SVM model (Brunato et al., 2018). The Hybrid
Model with Hard Label surpassed this result by
almost 13% absolute to achieve state-of-the-art re-
sult, at 0.729 accuracy. The Soft Labels Model
produced the second best performance, followed
by the Neural Model. The Concatenated Model
did not outperform the Neural Model, which may
because long complex sequences and the size of
dataset easily lead to overfit on the transformer-
based models. The improvement of the Hard Label
Model over the Neural Model8 was statistically
significant.

On the OSE dataset, the Soft Labels Model ob-
tained the best performance in accuracy, though at
a lower accuracy (0.581) than on the WSJ dataset.
This likely reflects more fuzzy boundaries between
the categories in the OSE corpus, where all sen-
tences in the original texts were used. The Hard La-
bel Model produced the second best performance
as OSE dataset, followed by the Neural Model also.
The Concatenated Model obtained worse perfor-

8At p < 3.6 · e−6 according to McNemar’s Test.

mance than Neural Model also. The improvement
of the Soft Label Model over the Neural Model9

was statistically significant.

6 Conclusion

We have presented the first study on hybrid mod-
els on automatic readability assessment (ARA) at
the sentence level. Our contribution is two-fold.
First, we demonstrated that hybrid models outper-
form neural models, suggesting that linguistic fea-
tures can capture salient properties that indicate sen-
tence difficulty. Second, we compared three types
of hybrid model, and showed that using the neu-
ral model’s predictions as features in a traditional
classifier yielded the best result, surpassing the
previous best published result on the WSJ dataset
by almost 13% absolute. These experimental re-
sults are expected to help inform future research on
sentence-level ARA.

9At p < 1.4 · e−4 according to McNemar’s Test.
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7 Limitation

Our experimental results should be interpreted with
the following limitations in mind. First, our experi-
ments involved relatively small datasets in English
only. The performance of the model should also be
evaluated on other languages and larger datasets.
Second, the improvement observed in our best mod-
els depends on both the efficacy of the linguistic
features and on the strength of the neural model
itself. As neural models continue to improve and
effective linguistic features are identified, the best
methods for combining may also need to be up-
dated.
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A Appendix: Corpus statistics

WSJ
Score # sent sent length
1 69 10.43
2 262 14.51
3 203 25.00
4 96 30.70
5 20 31.50
Total 650 20.27

Table 3: Size of the WSJ dataset and the average sen-
tence length

OSE
Version # sent sent length
Beginner 4,840 18.75
Intermediate 4,759 22.44
Advanced 4,632 25.90
Total 14,231 22.31

Table 4: Size of the OSE dataset and the average sen-
tence length
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