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Abstract

An inclusive society needs to facilitate access
to information for all of its members, including
citizens with low literacy and with non-native
language skills. We present an approach to
assess Dutch text complexity on the sentence
level and conduct an interpretability analysis to
explore the link between neural models and lin-
guistic complexity features.1 Building on these
findings, we develop the first contextual lexi-
cal simplification model for Dutch and publish
a pilot dataset for evaluation. We go beyond
previous work which primarily targeted lexical
substitution and propose strategies for adjust-
ing the model’s linguistic register to generate
simpler candidates. Our results indicate that
continual pre-training and multi-task learning
with conceptually related tasks are promising
directions for ensuring the simplicity of the
generated substitutions. Our code repository
and the simplification dataset are available on
GitHub.2

1 Introduction

Reading is a foundational skill for acquiring new
information. Many sources of information are only
available in written form, including educational ma-
terial, newspaper articles, and letters from munici-
palities. Although many people learn how to read
as a child, not everyone becomes equally skilled at
it. In the Netherlands alone, more than 2.5 out of
14 million people over 16 years old are low-literate,
meaning that they experience challenges with read-
ing or writing.3 As a result, they face obstacles in
achieving academic success, seeking employment

*Equal contribution.
+The experiments were conducted when all authors were

affiliated with Vrije Universiteit Amsterdam.
1The colloquial Dutch expression "Geen makkie" in the

title can be translated as "not easy" or "not a walk in the park".
2https://github.com/clap-lab/makkie/
3https://www.lezenenschrijven.nl/

reading-and-writing-foundation

opportunities, and keeping up-to-date with current
events.

One way to address this problem is to reduce
text complexity. Texts that contain many infre-
quent words and complex sentence structures are
difficult to read, especially for readers with low
literacy and language learners. Automated natural
language processing tools for text complexity as-
sessment can help both in assisting editors in the
selection of adequate texts and by signaling poten-
tial comprehension problems to copywriters. By
estimating text complexity, we can select texts that
are sufficiently easy for a particular target audience
or simplify texts that are too difficult.

Recent neural models for text complexity assess-
ment have obtained good results in classifying texts
into discrete categories of complexity (Deutsch
et al., 2020; Martinc et al., 2021). The global classi-
fication label can be a first indicator but it does not
point to specific parts of the input that are complex,
leaving it to the human editor to identify the neces-
sary simplifications. In this work, we first explore
Dutch complexity prediction on the sentence level
(as opposed to full-text classification in previous
work) and then zoom in even further.

The complexity of a text is affected by an in-
terplay of various factors, including its structural
characteristics, domain, and layout. A crucial com-
ponent is the choice of the lexical units and their
complexity. A system for lexical simplification can
support humans in detecting lexical complexity and
suggest simpler alternatives. In the sentence chil-
dren bear the future, and our resolution to support
them determines the world they inherit, a lexical
simplification model could propose to substitute
bear with simpler words such as carry, hold, or
shape. These suggestions can assist human writers
in revising and simplifying their text.

Previous approaches to Dutch lexical simplifica-
tion generated substitution candidates by naively
substituting words according to a static alignment

503

https://github.com/clap-lab/makkie/
https://www.lezenenschrijven.nl/reading-and-writing-foundation
https://www.lezenenschrijven.nl/reading-and-writing-foundation


of synonyms without considering the context of
the sentence. This approach does not account for
ambiguous words and synonyms that only maintain
semantic coherence in a subset of contexts. In the
example above, resolution can be interpreted as in-
tention, but in the context of TV screens, it refers to
sharpness. In order to ensure meaning preservation,
lexical simplification needs to be context-sensitive.

Contributions We fine-tune BERTje (de Vries
et al., 2019), a Dutch pre-trained transformer
model, to predict sentence-level complexity and
use interpretability methods to show that it captures
relevant linguistic cues. We visualize the local attri-
bution values of the model’s predictions in a demo
to point end users to complex parts of the sentence.
In order to facilitate the simplification process, we
introduce LSBertje, the first contextual model for
lexical simplification in Dutch. We explore three
approaches to adapt the linguistic register of the
model, to re-enforce a preference for simplicity in
the generated substitutions.

2 Related Work

We discuss complexity assessment and lexical sim-
plification as separate consecutive stages in line
with related work.

2.1 Complexity Assessment
Text complexity is affected by the words we choose
and the way we combine them into meaning. The
complexity of individual words is determined by
features such as length, frequency, morphologi-
cal complexity, abstractness, and age of acquisi-
tion. At the sentence level, syntactic features such
as parse tree depth, syntactic ambiguity, and the
number of subordinate clauses affect complexity.
Features that indicate lexical variety, such as the
type-token ratio, can also serve as a proxy for com-
plexity (Schwarm and Ostendorf, 2005; Feng et al.,
2009; Vajjala and Meurers, 2012).

Traditional surface-based metrics such as the
Flesch-Kincaid score are widely used to auto-
matically assess text complexity, but they only
consider length characteristics and do not take
into account the various intricate factors that in-
fluence text complexity. In contrast, feature-
based machine learning models leverage numerous
features to predict complexity labels, surpassing
the capabilities of surface-based metrics (Collins-
Thompson and Callan, 2005). Nevertheless, hand-
engineering effective features is an expensive and

time-consuming process (Filighera et al., 2019).
Neural models for classifying complexity do

not rely on hand-engineered features and show
marginal improvements over feature-based mod-
els (Deutsch et al., 2020; Martinc et al., 2021), but
they lack interpretability. In this study, we ana-
lyze if neural models leverage relevant linguistic
cues when predicting binary complexity labels for
Dutch sentences and can therefore reliably detect
sentences that qualify for a simplification proce-
dure.

2.2 Lexical Simplification
Lexical simplification characterizes a substitution
operation on the lexical level with the goal of re-
ducing the complexity of a sentence and making
the text accessible to a wider audience. Lexical
simplification of a sentence is typically performed
as a pipeline of four consecutive stages: complex
word identification, substitution generation, substi-
tution selection and substitution ranking (Sikka and
Mago, 2020; Thomas and Anderson, 2012; Paet-
zold and Specia, 2017b). In this work, we focus on
the first two stages.

Complex Word Identification In the initial
stage, words with simplification potential need to
be identified. Traditional approaches for this sub-
task use curated lists of complex words (Lee and
Yeung, 2018) or word frequency resources to flag
words below a certain frequency threshold as com-
plex (Sikka and Mago, 2020). In the most recent
shared task for complex word identification (Yi-
mam et al., 2018), feature-based machine learning
techniques using length and frequency features ob-
tained the best results. More recent approaches
express lexical complexity on a continuous scale
(Shardlow et al., 2021) as a binary classification is
too simplistic for most educational scenarios. We
explore the applicability of gradient-based inter-
pretability techniques for complex word identifica-
tion (Danilevsky et al., 2020; Sundararajan et al.,
2017).

Substitution Generation The generation of sub-
stitution candidates has traditionally been per-
formed with lexical resources such as WordNet
(Miller, 1995; Carroll et al., 1998). In a more data-
driven approach, simple-complex word pairs have
been extracted from a parallel corpus that aligns
sentences in Wikipedia with their counterparts in
Simple Wikipedia (Kauchak, 2013; Paetzold and
Specia, 2017a). These static approaches are unable
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to generate substitution candidates for words that
do not occur in the resources or that are spelled
differently. In addition, they are prone to gener-
ate semantically incoherent candidates since the
substitutions are not context-sensitive.

Context-Aware Substitution Generation For
meaning-preserving simplification, it is important
to consider the context of the complex word. Paet-
zold and Specia (2016b) propose to use the part
of speech of a word to narrow down its meaning.
Their approach relies on proximity in a static em-
bedding space to find simplifications, which are
then disambiguated with respect to their part of
speech. As a result, the relatively simple noun
bear is represented by a different vector than the
rather complex verb bear. This syntactically in-
formed approach leads to improvements over non-
contextualized models, but it still falls short in cap-
turing more fine-grained differences in meaning;
even the verb bear can be used in a semantic spec-
trum ranging from bearing/delivering a child to
bearing/having a resemblance.

To capture such subtle distinctions, recent ap-
proaches use contextualized language models such
as BERT (Devlin et al., 2019) to generate substitu-
tions tailored to the specific context. Alarcón et al.
(2021) search the contextual embedding space of a
complex word to find context-aware simplification
candidates. They find antonyms of the complex
word among the generated candidates, which is
detrimental to the goal of preserving the mean-
ing of the complex sentence. Qiang et al. (2020)
introduce LSBert, which uses a prompting strat-
egy based on BERT’s masked language modeling
objective to generate context-aware lexical simpli-
fication candidates for English sentences. They
generate simplifications by masking the complex
word. In order to enforce semantic coherence of
the masked word, Qiang et al. (2020) feed the input
sentences as a duplicated pair and apply the mask-
ing operation only on the second sentence. In the
recent shared task on multi-lingual lexical simplifi-
cation (Saggion et al., 2022), approaches that use
pre-trained language models produced very com-
petitive results. In all three languages covered in
the shared task, English, Spanish, and Portuguese,
state-of-the-art results were obtained. In this work,
we evaluate the LSBert lexical simplification ap-
proach and adapt it to Dutch.

2.3 Complexity Assessment and
Simplification for Dutch

Work on complexity and simplification for Dutch
is sparse. Vandeghinste and Bulte (2019) analyze
complexity classification at the document level us-
ing feature-based classifiers, but there is currently
no known work on neural sentence-level complex-
ity classification for Dutch. Regarding lexical sim-
plification, Bulté et al. (2018) develop a pipeline
using various resources. However, systematically
evaluating the pipeline is challenging as there is no
existing benchmark dataset for lexical simplifica-
tion in Dutch.

3 Complexity Classification

We train a neural classifier for determining binary
labels of Dutch sentence complexity and compare
its performance to several feature-based classifiers.
We then analyze if the neural model captures rele-
vant complexity cues.

3.1 Experimental Setup

Data We contrast articles from the Dutch news-
papers De Standaard and Wablieft in line with Van-
deghinste and Bulte (2019). The two newspapers
cover similar topics and events. As Wablieft tar-
gets an audience that prefers simpler language, the
articles are significantly shorter (on average, there
are 164 words in Wablieft articles vs 383 words
in De Standaard articles). The source of an article
(Wablieft vs De Standaard) can therefore be easily
determined by its length.4 However, identifying the
source is just a proxy for identifying the linguistic
characteristics that determine complexity. To go
beyond this superficial approach, we instead train
our models to predict the complexity of individual
sentences.

The corpus contains 12,683 articles from
Wablieft and 31,140 articles from De Standaard.5

We create a balanced dataset by randomly selecting
12,000 articles from each newspaper and prepro-
cessing them using the same steps as Vandeghinste
and Bulte (2019). We split the articles into indi-
vidual sentences and only keep the first sentence
of each article to keep the dataset balanced. We
label all sentences from Wablieft articles as easy

4Our BERTje model could distinguish the two types of arti-
cles with 99% accuracy when fine-tuned to predict complexity
labels for the entire articles.

5The data does not include any meta information such as
author names and time stamps of publication, which could
reveal the source of the article.
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and all sentences from De Standaard as complex.
We use 80% of the data for training, 10% for vali-
dation, and 10% for testing. The validation set was
used for checking model accuracy at each epoch.
Statistics regarding the length and frequency of the
words in both types of sentences are shown in Table
1.

Easy Complex

#Sentences 12,000 12,000
Word length 4.33 (2.14–8.60) 5.10 (2.08–11.80)
Word freq. 4.95 (1.95–6.38) 4.78 (1.39–6.44)

Table 1: Descriptive statistics of the easy and complex
sentences that are used to train and evaluate our models.
Averages are in bold, ranges are between brackets. Fre-
quencies are measured as standardized Zipf frequencies
using the Python package wordfreq.

Models We fine-tune a pre-trained transformer
model for Dutch sequence classification (BERTje,
de Vries et al. (2019)) available from Huggingface
and add a linear output layer with ReLU activa-
tion and dropout (0.5). The model is optimized
using ADAM with a learning rate of 1e-6 and cross-
entropy loss.

We use Support Vector Machines (SVM) as our
feature-based classification models. We employ
the scikit-learn implementation with all default pa-
rameters (Pedregosa et al., 2011).

Complexity Features Our complexity features
can be grouped into three categories: length charac-
teristics, frequency effects, and morpho-syntactic
properties. Word frequencies are obtained as stan-
dardized Zipf frequencies using the Python pack-
age wordfreq (Speer et al., 2018). The package
combines several frequency resources, including
SUBTLEX lists, e.g. Brysbaert and New (2009),
and OpenSubtitles (Lison and Tiedemann, 2016).
The morpho-syntactic features are computed using
the Profiling-UD tool (Brunato et al., 2020). We
calculate all features on the sentence level and train
our feature-based models on different combinations
of these features. An overview of the features is
given in Table 3.

3.2 Results
Table 2 shows the prediction accuracy of the fine-
tuned BERTje model and several feature-based
SVM classifiers for sentence-level complexity clas-
sification. We see that the neural model outper-
forms all feature-based models by 10 percent or

more. For the feature-based classifiers, the best
results can be obtained by all types of features
(frequency + length + morpho-syntactic), but the
morpho-syntactic features only improve the fre-
quency and length-based classifiers with 1 percent
accuracy. This might be caused by the fact that
the morpho-syntactic features are correlated with
length (e.g., parse tree depth naturally increases
as the sentence length increases). We conclude
that frequency and length are the most predictive
features for Dutch sentence-level complexity clas-
sification, which is in line with previous work for
English (Vajjala Balakrishna, 2015).

Model Accuracy

Frequency .72
Frequency + Morpho-Syntactic .73
Length .78
Length + Morpho-Syntactic .79
Frequency + Length .79
Frequency + Length + Morpho-Syntactic .80
Neural Model (fine-tuned BERTje) .90

Table 2: Prediction accuracy of several feature-based
SVM models and the fine-tuned BERTje model for
sentence-level complexity classification.

Prediction Confidence To gain more insight in
the linguistic cues that the neural model relies on,
we analyze model confidence with respect to the
complexity features that our feature-based models
were trained on. Table 3 shows the Spearman cor-
relation between complexity features and model
confidence for the complex class. We see that the
model allocates higher probability values to the
complex class when word length, sentence length,
dependency link length, or the number of low-
frequency words increases. As the classification is
binary, the inverse relationship can be observed for
the easy class.

Since the correlation values in Table 3 are rel-
atively low, we analyze the corresponding scatter
plots. Figure 1 depicts the correlation between
model confidence for the complex class and the
maximum dependency link of the input sentences.
We see that low to medium values for the maxi-
mum dependency link length do not clearly affect
model confidence, but that high dependency link
values always lead to high confidence. We observe
the same pattern for the other complexity features.
This suggests that the model considers relevant
complexity features when making its predictions,
but that the evidence needs to be strong enough
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Category Linguistic Feature ρ

Length Avg. word length (# chars) .41
Sentence length (# tokens) .40

Morph-Synt. Max. dependency link length .43
Avg. dependency link length .40
# Verbal heads .37
Parse tree depth .35
Lexical density .12

Freq # Low frequency words (Zipf<4) .37
Avg word frequency -.04

Table 3: Spearman correlations between sentence-level
complexity features and confidence for the complex
class of the BERTje model, fine-tuned for sentence-
level complexity classification. All positive correlations
are significant (p < 0.0001). The negative correlation
between token frequency and model confidence is not
significant (p = 0.03).

(i.e., the sentence should be sufficiently complex).

Figure 1: Correlation between BERTje’s confidence for
the complex class and the maximum dependency link
length of the input sentences.

3.3 Complex Word Identification
Our results indicate that the fine-tuned BERTje
model is a reliable tool for sentence-level com-
plexity classification. It can show an editor which
sentences qualify for simplification. Nevertheless,
binary complexity classification is an overly sim-
plified operationalization that lacks educational us-
ability. We go one step further and combine the
model with feature attribution methods and analyze
its utility for the first component of the lexical sim-
plification pipeline: complex word identification.

We implement a demo that explains the predic-
tions of our neural complexity classifier. Users can
type Dutch input sentences, which are classified as
either easy or complex. Words that contributed pos-
itively or negatively to the model’s prediction are
highlighted, as shown in Figure 2. We use Captum
(Kokhlikyan et al., 2020) for extracting token-level
attributions. Additionally, the sentence-level com-

plexity features from Table 3 are calculated and
shown to the user, which give a more fine-grained
perspective on the complexity of the input sentence
(see Appendix Figure 4).

Attribution Methods Selecting the right attri-
bution method is not straightforward. Different
attribution methods produce varying, sometimes
even contrasting explanations for model predictions
(Bastings et al., 2022). Atanasova et al. (2020) find
that gradient-based techniques produce the best ex-
planations across different model architectures and
text classification tasks. We therefore include three
gradient-based attribution methods in our demo:
Gradient, InputXGradient, and Integrated Gradi-
ents. The vanilla Gradient method estimates fea-
ture importance by calculating the gradient (i.e. the
rate of change) of a model’s output with respect to
a given input feature (Danilevsky et al., 2020). In-
putXGradient additionally multiplies the gradients
with the input, and Integrated Gradients integrates
the gradient of the model’s output with respect to
the input features along a chosen path between a
feature x and a baseline x’ (Sundararajan et al.,
2017). We use the [PAD] token as our baseline.

Linguistic Plausibility of Attributions Explana-
tions of the complexity predictions are most useful
for end-users of the demo (e.g. teachers) if the at-
tribution scores are linguistically plausible. This
means that the scores should match our expecta-
tions of what makes a sentence complex or easy to
understand. Given the intended use of the demo
for complex word identification, we analyze the
linguistic plausibility of the attributions with re-
spect to lexical complexity. We expect short and
frequent words to receive high attributions when
the model predicts that a sentence is easy to under-
stand, while longer and less frequent words should
receive high attributions when the model predicts
that the sentence is complex.

To better understand the differences between our
selected attribution methods and to analyze the lin-
guistic plausibility of the observed patterns, we
calculate the Spearman correlation between lexical
complexity features and attribution scores. Since
our model uses subword tokenization, both attribu-
tion scores and complexity features are calculated
on the subword level. We exclude the special to-
kens [CLS] and [SEP] from our analyses.

Table 4 shows that Integrated Gradients is the
only method for which the correlations have the ex-
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Figure 2: Complexity classification and attributions scores for the sentence De treinverbinding tussen Gent en
Brussel blijft hinder ondervinden, taken from the newspaper De Standaard (translation: the train connection between
Ghent and Brussels continues to be affected.) The sentence is classified as complex by the fine-tuned BERTje model.
Attributions are calculated by Integrated Gradients.

Class Method Len Freq

Easy
Gradient .61 -.44
InputXGradient .07 .18
Integrated Gradients -.10 .19

Complex
Gradient .54 -.48
InputXGradient -.09 .04
Integrated Gradients .11 -.14

Table 4: Spearman correlation between subword-level
complexity features and subword-level attributions. All
correlations are significant (p < 0.0001.)

pected directionality, i.e. when the model predicts
the easy class, high attributions are assigned to
short/frequent words, and when the model predicts
the complex class, high attributions are assigned
to long/infrequent words. For InputXGradient, we
see the opposite pattern, and for Gradient, the direc-
tionality of the correlations is the same for both the
easy and complex class. The inconsistency of the
three attribution methods is surprising but in line
with previous findings (Bastings et al., 2022). More
user-centered analyses are required to identify their
practical benefits.

To further explore the linguistic plausibility of
the attribution scores, we calculate average attribu-
tion scores with respect to part-of-speech tags. We
again find that the most plausible attributions are
generated by the Integrated Gradients approach. In
Figure 3, we see that nouns, adverbs, and adjec-
tives are assigned relatively high importance scores
when the model predicts the easy class. Preposi-
tions, conjunctions, and complementizers receive
higher importance when the model predicts the
complex class. This is plausible since function
words often signal a complex sentence structure,
while easier sentences typically contain more con-
tent words. Additionally, we observe that subwords,
which indicate the presence of compound words,

receive higher scores when the model predicts the
complex class. This is helpful for lexical simplifi-
cation, as compound words are often challenging
to read. Finally, we observe that determiners re-
ceive high scores when the model predicts the easy
class, which aligns with lexical complexity since
determiners are short and frequent.

Figure 3: Average attribution scores per part-of-speech
tag, generated by Integrated Gradients.

4 Context-Aware Simplification

In the second step of the simplification pipeline, we
generate context-aware simplifications for Dutch.

LSBertje We present LSBertje, the first model
for contextualized lexical simplification in Dutch.
We base LSBertje on LSBert (Qiang et al., 2019,
2020) by altering its language-specific components
to Dutch. We replace the language model that gen-
erates simplifications with the Dutch BERT model,
BERTje. We also replace the stemmer used in fil-
tering with the snowball stemmer.6

6nltk.org/api/nltk.stem.snowball.html
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4.1 Dutch Evaluation Data

Dutch evaluation data for lexical simplification
does not yet exist. To evaluate our approach, we
develop a pilot benchmark dataset using authen-
tic municipal data. We select sentences from a
collection of 15,334 sentences from 48 municipal
documents based on the presence of a complex
word from a list curated by domain experts and
based on their word count (less than 20 words). We
exclude incomplete sentences such as headers, sen-
tences without verbs, or with less than four words.
From the remaining 6,084 sentences, we randomly
sample 250 of complex words from the list and find
a sentence for the dataset for 108 of the complex
words. Eight sentences where simplification was
not possible were removed because: 1) they were
part of a named entity, 2) the sentence was incom-
plete or 3) a simple sense of the word was used.
This resulted in 100 sentences.

The sentences were simplified by 23 native
speakers of Dutch who pursued or obtained an
academic degree. They were shown a sentence
with the highlighted complex word and five sim-
plification options that LSBertje generated. The
annotators could select from these options and pro-
pose additional simplifications. For five sentences,
no annotator could come up with a lexical simpli-
fication candidate. The remaining 95 sentences
contained an average of 2.9 simplification candi-
dates, with a maximum of 7.

4.2 Results and Analysis

Table 5 shows that the LSBertje model yields good
simplification performance for our dataset. The
potential metric shows that the model was able to
predict at least one correct simplification candidate
in 85% of the sentences. It should be noted that the
English benchmark datasets come with a greater
variety. In our dataset, a sentence is annotated with
2.9 simplifications on average, whereas BenchLS
lists 7.4 substitutions. These size differences can
explain the slightly lower potential score and the
higher recall for Dutch.

To evaluate the simplicity of the generated sub-
stitutions, we assess their frequency using the
SUBTLEX-NL corpus (Keuleers et al., 2010) and
find that 517 out of 650 generated words occur with
higher frequency than the original word. This indi-
cates that the generated simplifications are indeed
simpler.

5 Register Adaptation Techniques

LSBertje relies on a base model that was pre-
trained for masked language modeling and captures
aspects of text complexity only as an incidental
byproduct. It uses a masked language modeling
mechanism that induces semantic preservation by
repeating the input sentence. The goal of generat-
ing simpler substitutions is only implicitly targeted
by restricting the generation to tokens consisting
of a single subtoken. This effectively prevents the
model from generating infrequent or morpholog-
ically more complex words, but the model is not
explicitly optimized for capturing different levels
of text complexity. We explore three strategies to
adapt the linguistic register of the model so that
it generates simpler substitutions: conceptual fine-
tuning, continual pre-training, and multi-task learn-
ing.

Conceptual Fine-tuning We aim at adapting the
linguistic register of the model by fine-tuning LS-
Bert to predict the linguistic complexity of sen-
tences before applying it for generating substitu-
tion candidates. The model is fed a pair of sen-
tences and is trained to predict whether the first
sentence is simpler or more complex than the sec-
ond example. We use sentence pairs from the
sentence-aligned simple-complex Wikipedia cor-
pus (Kauchak, 2013). The sentences are balanced
with respect to the simplification order condition,
and we experiment with the number of sentences.7

Continual Pre-Training For the second strat-
egy, we adapt the linguistic register by expos-
ing the model to simpler texts using continual
pre-training. We continue the pre-training com-
bination of masked language modeling and next-
sentence prediction using only sentences from sim-
ple Wikipedia.8 We pair each sentence either with
the directly following sentence or with a randomly
selected sentence from another Wikipedia article.

Multi-Task Learning We then combine the two
ideas and train a model on two tasks simultaneously.
We use the same training method but replace next-
sentence prediction with complexity prediction.

5.1 Experimental Setup

As the Dutch dataset is too small for representative
evaluation, we first explore the register adaptation

7cs.pomona.edu/ dkauchak/simplification/
8github.com/LGDoor/Dump-of-Simple-English-Wiki
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strategies using English evaluation data and the
English LSBert model.

Evaluation Data We evaluate the models on
three commonly used benchmarking datasets. They
consist of sentences from Wikipedia with the
complex word highlighted and a list of human-
generated simplifications. LexMTurk (Horn et al.,
2014), BenchLS (Paetzold and Specia, 2016a) and
NNSEval (Paetzold and Specia, 2016b) contain re-
spectively 500, 929, and 239 sentences.

Implementation Details We base our imple-
mentation on the Huggingface documentation
Bert.for_Pretraining and the same model
as LSBert.9 10 For the masked language modeling
components, we mask 15% of the tokens in the
input sentences. Optimization is performed using
an ADAM optimizer and a batch size of two. The
continual pre-training is run for two epochs, the
multi-task learning for four epochs. We varied the
learning rate (5e-5, 5e-6, 5e-7) and the number of
sentences (1000, 10.000, 50.000).

5.2 Results
We find that the model adapted with conceptual
fine-tuning lost its ability to perform masked lan-
guage modeling. Its predictions for bear in chil-
dren bear the future were: swallowed, if, knicks,
cats, nichol. These predictions clearly indicate a
case of catastrophic forgetting (Liu et al., 2020). In
learning a new task, the model forgot its original
capabilities.

Both continual pre-training and multi-task learn-
ing lead to improved performance on the simplifi-
cation task in two and three configurations respec-
tively. We find that the configuration of LR 5e-6
and 10.000 sentences is the best for both fine-tuning
methods as shown in Table 5. See the Appendix
for all scores.

The multi-task learning strategy seems to be the
most promising approach. We test the robustness
of our findings by training the model using 26
different random seeds. The model outperforms
LSBert in 20 cases, see Table 8 of the Appendix
for a detailed overview. Overall, we see an in-
crease in precision, recall, and F1-score. While
the model’s performance is highly sensitive to task-
specific components (the learning rate and the num-

9bert-large-uncased-whole-word-masking
10https://huggingface.co/transformers/

v3.0.2/model_doc/bert.html#
bertforpretraining

ber of sentences), the performance remains robust
for variation in the task-independent random seed.
The results indicate that multi-task learning is a
promising strategy for adapting the model’s lin-
guistic register.

5.3 Analysis

We analyze the effect of the register adaptation tech-
niques by comparing the frequency of the generated
substitutions using the same resources as Qiang
et al. (2019) that contains word frequency counts
for Wikipedia articles and a children’s book corpus.
We see that the fine-tuned model generates simpli-
fications that occur more frequently compared to
the substitutions generated by LSBert (13,030 vs
20,000 occurrences on average). When we zoom
in on the generations, we find that the fine-tuned
model correctly generates 356 words that were not
captured by LSBert and that these words have a
high average frequency of 27,000. These findings
indicate that the fine-tuning process indeed leads
to the generation of simpler words.

5.4 Register Adaptation Results for Dutch

Due to the absence of a sentence-aligned simplifi-
cation corpus for Dutch, we only test the continual
pre-training strategy on the Dutch data. The results
show that the improvements obtained for English
cannot yet be observed for Dutch. In the future, we
plan to extend our experiments to a larger dataset
and to the multi-task learning strategy.

6 Conclusion

In this work, we have introduced two state-of-the-
art components for complexity prediction and sim-
plification in Dutch. It can support teachers and
text editors in making texts more accessible for
people who face reading challenges.

We developed a demo that predicts binary com-
plexity labels for Dutch sentences and highlights
words that contributed positively or negatively to
the prediction. Additionally, the demo interface
provides scales for different aspects of sentence-
level complexity to enable a more fine-grained in-
terpretation by the user.

We introduced LSBertje, which is the first model
for contextualized lexical simplification in Dutch
(to the best of our knowledge). We show that the
model can generate adequate simplifications with-
out additional fine-tuning. This base setup can
serve as a reasonable starting scenario for context-
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LexMTurk NNSEval BenchLS
Model Pot. P R F1 Pot. P R F1 Pot. P R F1

LSBert 98.20 29.58 23.01 25.88 90.79 19.04 25.40 21.77 92.36 23.64 32.08 27.22
Cont. Pre-training 98.40 33.46 26.02 29.28 90.79 20.33 27.14 23.25 92.14 25.68 34.84 29.56
MTL 98.80 33.48 26.04 29.29 92.89 21.55 28.75 24.64 93.54 25.93 35.17 29.85

Dutch Benchmark
LSBertje 85.26 17.74 65.68 29.16
Cont. Pre-training 83.16 16.95 59.41 26.37

Table 5: Simplification performance of the register adaptation techniques as potential (Pot.), precision (P), recall
(R), and F1 for the configuration with a learning rate of 5e-6 and 10,000 fine-tuning sentences.

aware simplification generation for resource-poor
languages. We developed a pilot evaluation dataset
for Dutch that allowed us to perform initial com-
parisons. For a more elaborate analysis, a larger
Dutch dataset needs to be curated in future work.

We explored strategies to adapt the linguistic reg-
ister of the model to ensure the simplicity of the
generated substitutions and find that both multi-task
learning and continual pre-training show consid-
erable potential. We further analyzed the model’s
robustness and discovered a strong sensitivity to
task-specific hyperparameters but little variation
across random seeds.
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LR No. Sents Potential Precision Recall F1

NNSEval

LSBert 90.79 19.04 25.40 21.77
5e-6 1,000 87.03 17.03 22.72 19.47
5e-6 10,000 91.63 20.17 26.91 23.06
5e-6 50,000 90.79 20.33 27.14 23.25
5e-7 1,000 88.70 17.95 23.95 20.52
5e-7 10,000 88.28 17.24 23.00 19.71
5e-7 50,000 88.28 17.53 23.39 20.04

LexMTurk

LSBert 98.20 29.58 23.01 25.88
5e-6 1,000 95.80 25.64 19.94 22.43
5e-6 10,000 98.60 32.16 25.01 28.14
5e-6 50,000 98.40 33.46 26.02 29.28
5e-7 1,000 97.20 26.76 20.81 23.41
5e-7 10,000 96.00 25.89 20.13 22.65
5e-7 50,000 97.80 26.62 2070 23.29

BenchLS

LSBert 92.36 23.64 32.08 27.22
5e-6 1000 88.37 20.13 27.32 23.18
5e-6 10,000 92.68 24.74 33.57 28.48
5e-6 50,000 92.14 25.68 34.84 29.56
5e-7 1,000 90.42 21.33 28.95 24.57
5e-7 10,000 89.34 20.56 27.90 23.68
5e-7 50,000 91.50 21.42 29.07 24.67

Table 6: Performance of the Continual Pre-training Setup on the Benchmarking Datasets for Different Experimental
Conditions
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LR Num Sents Potential Precision Recall F1

BenchLS

LSBert 92.36 23.64 32.08 27.22
5e-5 1,000 87.19 21.77 29.54 25.06
5e-5 10,000 91.17 24.92 33.82 28.69
5e-6 1,000 89.99 21.07 28.59 24.26
5e-6 10,000 93.54 25.93 35.17 29.85
5e-6 50,000 92.03 24.19 32.82 27.85
5e-7 1,000 84.61 18.62 25.26 21.43
5e-7 10,000 88.91 20.23 27.45 23.29
5e-7 50,000 90.74 22.37 30.35 25.76

LexMTurk

LSBert 98.20 29.58 23.01 25.88
5e-5 1,000 97.00 28.54 22.20 24.97
5e-5 10,000 98.00 32.22 25.06 28.19
5e-6 1,000 96.60 26.76 20.81 23.41
5e-6 10,000 98.80 33.48 26.04 29.29
5e-6 50,000 98.20 30.92 24.05 27.05
5e-7 1,000 94.20 24.55 19.09 21.48
5e-7 10,000 96.00 25.98 20.21 22.73
5e-7 50,000 97.00 28.16 21.90 24.64

NNSEval

LSBert 90.79 19.04 25.40 21.77
5e-5 1,000 84.52 17.07 22.78 19.52
5e-5 10,000 91.21 19.29 25.74 22.05
5e-6 1,000 87.45 18.20 24.29 20.81
5e-6 10,000 92.89 21.55 28.75 24.64
5e-6 50,000 92.05 19.71 26.30 22.53
5e-7 1,000 81.59 14.81 19.77 16.93
5e-7 10,000 86.61 17.36 23.17 19.85
5e-7 50,000 87.45 18.74 25.01 21.43

Table 7: Performance of the Multi-Task Learning Setup on the Benchmarking Datasets for Different Experimental
Conditions
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Random Seed Potential Precision Recall F1

1 84.94 18.12 24.18 2.71
2 88.28 18.08 24.12 20.66
3 92.89 21.55 28.75 24.64
4 88.28 19.29 25.74 22.05
5 90.79 20.33 27.14 23.25
6 86.61 17.62 23.51 20.14
7 91.63 19.87 26.52 22.72
8 90.79 20.75 27.69 23.73
9 87.03 19.08 25.46 21.81

10 88.28 19.67 26.24 22.48
11 90.79 20.17 26.91 23.06
12 89.54 20.59 27.47 23.54
13 92.89 21.00 28.03 24.01
14 90.79 20.96 27.97 23.97
15 85.77 18.45 24.62 21.10
16 88.70 18.70 24.96 21.38
17 89.54 18.83 25.13 21.53
18 91.63 20.67 27.58 23.63
19 89.54 20.00 26.69 22.87
20 88.28 16.86 22.50 19.28
21 90.38 19.21 25.63 21.96
22 88.28 17.91 23.90 20.47
23 92.05 20.88 27.86 23.87
24 87.45 18.20 24.29 20.81
25 93.31 20.92 27.92 23.92
26 90.79 19.96 26.63 22.82

mean 89.59 19.53 26.06 22.32

Table 8: Multi-task learning results for NNSEval with varying random seeds. The learning rate is fixed at 5e-6 and
fine-tuning is conducted on 10,000 sentences.
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Figure 4: Complexity features for the sentence De treinverbinding tussen Gent en Brussel blijft hinder ondervinden,
taken from the newspaper De Standaard (translation: the train connection between Ghent and Brussels continues to
be affected.) The sentence is classified as complex.
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