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Abstract

Online learning platforms offer a wealth of ed-
ucational material, but as the amount of con-
tent on these platforms grows, students may
struggle to determine the most efficient order
in which to cover the material to achieve a par-
ticular learning objective. In this paper, we
propose a feature-based method for identify-
ing pre-requisite dependencies between aca-
demic videos. Our approach involves using
a transcript engine with a language model to
transcribe domain-specific terms and then ex-
tracting novel similarity-based features to deter-
mine pre-requisite dependencies between video
transcripts. This approach succeeds due to the
development of a novel corpus of K-12 aca-
demic text, which was created using a proposed
feature-based document parser. We evaluate
our method on hand-annotated datasets for tran-
script extraction, video pre-requisites determi-
nation, and textbook parsing, which we have
released. Our method for pre-requisite edge
determination shows significant improvement
(+4.7%-10.24% F1-score) compared to existing
methods.

1 Introduction

In many online learning platforms, academic
videos that cover specific concepts are included
in the curriculum. These videos cover certain "aca-
demic concepts," which are key ideas that are con-
veyed in the learning material. These fine-grained
concepts aid students in understanding the learning
content more effectively and achieving their core
learning objectives. The prerequisite dependencies
between these concepts, which pertain to the order
in which they should be covered, are crucial for
both educators and learners. They assist educators
in curriculum planning and creating better learning
pathways for students. With the increasing reliance
on online learning platforms, there is a vast amount
of academic content that requires proper organi-
zation into dependency graphs to aid in indexing

for smart search capabilities and providing defined
learning paths for students. Research has shown
that organizing content in this manner has signifi-
cant benefits for learning, even in offline settings.
A meta-analysis of 55 studies involving over 5,000
participants found that students who use concept
maps for their daily studies were able to learn more
in the same amount of time (Nesbit and Adesope,
2006).

Although learning content is organized in text-
books and MOOCs, the creation of dependency
graphs for academic videos serves to extend this or-
ganization, enabling us to identify only the relevant
and required content for a specific learning objec-
tive based on prerequisite relationships. Such a
system allows us to recommend personalized learn-
ing pathways to users, fostering efficient and effec-
tive coverage of specific academic concepts. This
tailored approach enhances students’ educational
experiences and promotes better understanding of
the subject matter. Moreover, it saves time for the
student by ensuring that all required concepts or
skills are covered before viewing content related
to the desired academic concept. In this study, we
propose a two-stage methodology for identifying
prerequisite relationships among academic videos.
The process begins with transcribing videos uti-
lizing a speech-to-text model, combined with a
language model specifically trained on a K-12 do-
main corpus. Subsequently, we extract innovative
similarity-based features from these transcripts to
determine the prerequisite connections.

The features employed in our study have been
meticulously designed with the guidance of expert
educators in the respective domain. These features
utilize several similarity-based factors between
two videos to identify pre-requisite dependencies.
These factors include similarities between titles,
content, and taxonomy. We also use keyphrase ex-
traction algorithms to identify the topics covered
in the transcripts and then compare the similarity
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between them. Our work introduces the use of
extracted keyphrase-based similarity for this task,
contributing a novel approach to this research do-
main. Once the features are extracted we use mod-
els such as LGBM (Ke et al., 2017), Random For-
rest (Breiman, 2001), and ExtraTrees (Geurts et al.,
2006) to predict prerequisite dependencies. Our
approach for identifying prerequisite relationships
among educational videos demonstrates superior
performance compared to existing benchmarks.

To evaluate our pipeline, we used a hand-labeled
dataset of K-12 academic videos with annotated
pre-requisite edges. We introduced a novel feature-
based PDF document parser that extracts a K-12
text corpus which ensures correct transcription of
domain-specific terminologies and extraction of ac-
curate semantic similarity-based features that take
into account the contextual meaning of such terms.
This tool extracts a hierarchical and well-organized
corpus of K-12 academic text from core curriculum
textbooks, strengthening the resilience and effec-
tiveness of both pipeline stages when addressing
technical vocabulary.

The primary contributions of our research can
be enumerated as follows:

• A method to extract transcripts from academic
videos by using a text-to-speech model such
as Wav2Vec2 (Baevski et al., 2020) along with
a language model built from a corpus of K12
academic content.

• A novel set of similarity-based features that
can predict prerequisite edges between aca-
demic videos.

• A method to parse academic PDF textbooks
using novel layout-based features to extract
hierarchical learning taxonomies and content.

• We introduce the following datasets:

– A hand-labeled dataset of over 2797 pre-
requisite edges between academic videos
annotated by domain expert teachers.

– Extracted transcripts using various meth-
ods and ground truth transcripts for a ran-
domly selected subset of videos available
in the public domain.

– Hand-labelled textbooks parsed with all
section headers, text body, and chapter
names, as well as an object detection text-
book page image dataset, with bounding
boxes labeled on all instances of section
headers.

The datasets are released at https://bit.ly/
412WkQp and a demo for the generated pre-
requisite edges can be found at https://bit.
ly/3VrzMYL.

2 Current work

Our end-to-end pipeline to identify prerequisite
dependencies between academic videos is novel.
However, the sub-problems, such as transcript ex-
traction, prerequisite edge detection, and parsing
textbook PDFs have been well-studied in the litera-
ture.

2.1 Transcript extraction

Speech-to-Text Recognition (STR) technology is
widely used in the online learning domain. Pre-
vious studies have shown that students, especially
those with learning disabilities, can greatly benefit
from transcripts of learning content (Leibold and
Buss, 2019). With an increase in the availability of
large-scale datasets and newer deep-learning algo-
rithms, many different methods have shown great
performance on this task. End-to-end sequence-
to-sequence (S2S) modeling using RNN-based,
Transformer-based, and Conformer based models
are often used for this task (Wang et al., 2020).
Newer methods such as Wav2Vec2 (Baevski et al.,
2020) have achieved great performance by mask-
ing speech input in the latent space and solving
a contrastive task defined over a quantization of
the latent representations which are jointly learned.
This model trained on the librispeech automatic
speech recognition (ASR) dataset (Panayotov et al.,
2015) has found wide adoption for speech-to-text
tasks. We augment the Wav2Vec2 speech model
with a 5-gram n-gram language model trained on a
corpus of K-12 academic textbooks.

2.2 Pre-req edge identification

Identification of prerequisite relations between aca-
demic concepts has been a subject of study for
decades. Teachers and curriculum planners have
extensively utilized this knowledge to determine
the order in which chapters are organized in con-
ventional learning textbooks and to guide students
in covering the syllabus efficiently (Novak, 1990).
However, recent data-driven approaches have facil-
itated the automated identification of prerequisites,
resulting in enhanced performance and the emer-
gence of new research avenues. One example is
the information-theoretic approach proposed by
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Figure 1: End-to-End system architecture

(Gordon et al., 2016). External knowledge bases,
such as Wikipedia, have also been extensively em-
ployed. Liang et al. (2019) utilizes active learn-
ing on hand-crafted features (Liang et al., 2018b),
while Sayyadiharikandeh et al. (2019) leverages
Wiki click-stream-based features for prerequisite
detection. Additionally, incorporating features sim-
ilar to those employed in (Liang et al., 2018a),
along with Long Short-Term Memory (LSTM) net-
works, has demonstrated strong performance as
reported in (Miaschi et al., 2019). However, find-
ing exact Wikipedia articles for domain-specific
academic concepts is an error-prone process with
poor results from direct search. Therefore, in our
method, we avoid this mapping and find relevant
features from the videos themselves. Recently,
some methods have been developed to explore the
determination of prerequisites between any two tex-
tual documents from different domains, including
video transcripts, Wikipedia, etc. One such method,
leverages aggregated fast-text word embeddings
(Bojanowski et al., 2017) for effective prediction
of prerequisites (Gasparetti, 2022). Furthermore,
graph-based deep learning methods have also been
explored (Li et al., 2019), but these methods tend
to require a large amount of training data and may
have limited real-world performance.

2.3 Parsing Academic Textbook PDFs

PDF parsing is a well-researched issue, histori-
cally addressed using rule-based techniques to ex-
tract data from documents’ layouts (Mao et al.,
2003). Many recent tools use Conditional Random
Fields (CRFs) which are undirected graphical mod-
els trained to maximize a conditional probability
that can be used to segment and label sequence data
(Singh et al., 2016).

Additionally, it is possible to treat PDFs as im-

ages and perform text detection and extraction to
extract the content. Deep learning computer vi-
sion methods have been found to be useful in this
regard. For example, Siegel et al. (2018) utilized
a modified version of the ResNet101 network to
extract figures and captions from scientific docu-
ments. Architectures such as U-net (Ronneberger
et al., 2015) has also been utilized for performing
text body identification (Stahl et al., 2018). Deep
learning methods are also effective for finding ta-
bles, headers, or citations in PDF files, treating it
as an object detection problem. Huang et al. (2019)
uses Yolo (Redmon et al., 2016) architecture to find
tables in PDF files. However, it is important to note
that most current work focuses on parsing research
papers, and work on academic textbooks is limited.

3 Methodology

In this section, we present a comprehensive expla-
nation of the two-stage pipeline used for identify-
ing prerequisite edges between academic videos
as shown in Figure 1. The pipeline comprises a
transcript extraction stage, followed by a feature
extraction and classification stage for prerequisite
edge detection. Additionally, the pipeline requires
a corpus of academic text obtained from academic
textbooks. To fulfill this requirement, we have de-
veloped our own academic textbook parser.

3.1 Transcript Extraction

The first step in this process is to create a language
model that can be used alongside the Wav2Vec2
speech model to improve the transcription of
domain-specific terminologies. In order to create
this language model, we use our corpus of aca-
demic K-12 text. This corpus contains parsed data
from classes 9th to 12th for science and math sub-
jects. To create a generic academic video tran-
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scriber, we use all textual data from this corpus.
However, for a specific class and subject video
transcription, it is possible to query data for only
that use case and train the language model ac-
cordingly. We create a 5-gram n-gram language
model using the KenLM method (Heafield, 2011).
KenLM performs interpolated modified Kneser
Ney Smoothing for estimating the n-gram probabil-
ities (Kneser and Ney, 1995). This model is used
to form the decoder, which is combined with the
processor’s tokenizer and feature extractor to form
the Wav2Vec2 processor with language model. We
use this processor on the output of the Wav2Vec2
Large 960h model trained on the librispeech ASR
dataset (Panayotov et al., 2015) to extract tran-
scripts. The fine tuned language model aids the
decoding process in Wav2Vec2 by providing con-
text, which adjusts the prediction of the next token
in the sequence based on the sequence of previously
predicted tokens, thereby enhancing the linguistic
coherence of the transcriptions.

However, in order to process MP4 videos
through this pipeline, we must first extract audio in
the required format. Audio is extracted and saved
as an MP3 file. Then, this MP3 file is re-sampled
at 16 kHz (the frequency used by the Wav2Vec2
model). Also, as the model only works well with
mono-audio, we check if the audio is in stereo for-
mat and convert it into mono-audio if required. We
use FFmpeg tool (Tomar, 2006) to perform this
processing. Finally, the processed audio is saved
as WAV files that can be passed into the model to
extract transcripts.

3.2 Pre-requisite Edge Detection

The problem of finding prerequisites between aca-
demic videos is formulated as follows. An aca-
demic video corpus of an online learning plat-
form can be represented by n videos, denoted as
C = {V1, · · · , Vi, · · · , Vn} (1), where each Vi is
one academic learning video. Each video Vi can
be further represented as Vi = {Transcript, Title,
Taxonomy, Extracted Phrases} (2).

Transcript is the document of video text of the
form Transcript = (s1 . . . si . . . s|V |) (3) , where
si is the ith sentence of the video text.

Title is the heading of the video, which is typi-
cally the academic concept that the video covers.

Taxonomy is a tuple associated with each video
of the form: (su, cl, ch, to, st) (4) where su ∈
Su, cl ∈ Cl, ch ∈ Ch, to ∈ To, st ∈ St where

the set of all subjects is represented as Su, the set
of all classes as Cl, the set of all chapters as Ch, the
set of all topics as To, and the set of all subtopics as
St. All sets, Su, Cl, Ch, To, and St pertain to the
K12 curriculum. Furthermore, in this paper, we use
a subset of Su and Cl as follows: Su = {Science,
Mathematics, Physics, Biology, Chemistry}
and Cl = {x | x ∈ Z, 6 ≤ x ≤ 12}.

Extracted Phrases is an ordered set, denoted as
{pi|i ∈ N, 1 ≤ i ≤ m} (5), comprising of phrases
extracted from the Transcript of Vi (3) using Tex-
trank (Mihalcea and Tarau, 2004). Here, m repre-
sents the total number of extracted phrases, and pi
denotes the ith phrase. pi is ranked higher than pj
if i < j. We opted for TextRank for keyword extrac-
tion due to its unsupervised, graph-based nature,
which enables it to effectively capture contextual
and semantic relationships within the diverse and
complex language used in academic video tran-
scripts. Its simplicity and versatility across do-
mains also ensured it could efficiently handle our
broad range of data.

Based on these definitions, the problem of find-
ing prerequisites between academic videos in cor-
pus C (1) can be represented by a function F : C2

→ {0, 1}, where :

F (⟨a, b⟩) =
{
1 if a is prerequisite of b

0 if a is not prerequisite of b
(6)

and where ⟨a, b⟩ is a video pair (7) , a, b ∈ C (1).
Given this video pair ⟨a, b⟩, we can extract a set
of similarity-based features from their content (2).
Let (Tra, T ia, Taa, Ea), (Trb, T ib, Tab, Eb) (8)
be the transcripts, titles, taxonomies and
extracted phrases of videos a and b, respectively.
In order to find similarity-based features between
these, we define a set:

content pair =

{
(x, y) |x ∈ Tra, T ia, Taa, Ea

y ∈ Trb, T ib, Tab, Eb

(9)
We prune the set content pair manually to remove
repeated and unnecessary pairs, and then define a
function S : content pair → R (10) that computes
the similarity between each pair of corresponding
elements of the two videos.
Let fi be one possible value generated by S, we
take all these possible values together to form the
final feature vector k = (f1, f2, · · · , fn). These
features can then be used to learn the function
F : C2 → {0, 1} (6) using a supervised learning
algorithm.
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3.2.1 Calculating Similarity
For calculating the similarity as part of the func-
tion S (10) described above, we use the follow-
ing approach: We employ two fine-tuned mod-
els, Word2Vec Skip-Gram (Mikolov et al., 2013),
pre-trained on 100B Google News words and fine-
tuned with a lock-factor of 0.2 for 5 epochs on
our K-12 corpus, and FastText (FT) (Bojanowski
et al., 2017), also fine-tuned on the same corpus.
Word2Vec is utilized for phrases with less than 5
words; FT for longer phrases. For Word2Vec, em-
beddings are averaged to obtain a 300-dimensional
vector, while FT directly generates sentence-level
embeddings. Cosine similarity is computed be-
tween the 300-dimensional vectors to determine
similarity scores, with -1 indicating complete dis-
similarity and 1 representing identical inputs.

We opted for Word2Vec and FT, over transformer
models, for their computational efficiency and sim-
plicity, given our large transcript dataset. Word2Vec
was chosen due to its strength in handling common
words, while FT was selected for its speed and
reduced out-of-vocabulary issue, which is particu-
larly useful for longer phrases. Despite the embed-
dings being in different spaces, the similarity com-
putation remains consistent as we use Word2Vec for
shorter phrases and FT for longer ones, ensuring
comparable similarity scores across phrase lengths.

3.2.2 Features Extracted
The following features are extracted for each video
pair < a, b > (7):

• Title similarity: the similarity between the ti-
tles of the two videos Tia, T ib (8), is expected
to be higher if the videos occur in a linked con-
text in the K-12 corpus, suggesting that they
have pre-requisite dependencies.

• Taxonomy Similarity: Chapter- and subject-
based information is vital for determining the
prerequisite order of videos. Hence, we calcu-
late the similarity as described above between
the taxonomies of two videos Taa, Tab (8).

• Title and Transcript similarity: The title of
a video appearing in the transcript of another
video can be utilized to find dependencies.
Therefore, we find similarity between the Title
and Transcript Tia, T rb and Tib, T ra (8):

– Simple count of Title and its subsen-
tences in the Transcript.

– Sum of similarities between Ti-
tle and all phrases in the Tran-
script i.e for Tia, T rb we compute

∑|Vb|
i=1

∑phrases(si)
j S(Tia, j) (10)

where, phrases(si) represents the word
phrases in the sentence si and not the
extracted phrases using textrank.

– Cosine similarity between the TF-IDF
vectors of Title and Transcript.

Additionally, we apply this process to the first
500 characters of the Transcript, as these ini-
tial sentences often contain crucial informa-
tion that indicates prerequisite relationships
(Liang et al., 2018a).

• Title and extracted phrases similarity: The
title of one video occurring as an important
topic in another video can indicate that it is a
prerequisite. Thus, we calculate the similarity
between Tia, Eb and Tib, Ea (8):

–
∑|Eb|

i=1 S(Tia, pi) where pi ∈ Eb and∑|Ea|
i=1 S(Tib, qi) where qi ∈ Ea.

– List of instances where the similarity ex-
ceeds specific thresholds:
{pi ∈ Eb|S(Tia, pi) > t} and

{qi ∈ Ea|S(Tib, qi) > t},
where t ∈ {0.1, 0.2, . . . , 0.9} (11)

• Title and taxonomy similarity: We com-
pute S(Tia, j) where j ∈ Tab and S(Tib, l)
where l ∈ Taa (4) to take into account the re-
latedness of the video title Ti with the subject,
chapter, topic or sub-topics in the taxonomy
Ta of the other video.

• Similarity between extracted phrases: For
each phrase pi ∈ E′

a, where E′
a denotes the

top 10 extracted phrases in Ea, we find the
similarity with the extracted phrases in Eb (5),
and then sum these similarities while multi-
plying with the weight wi:

wi

∑

pj∈Eb

S(pi, pj) where wi =
1

λi

and i ∈ N : 1 ≤ i ≤ 10. We obtained the best
results when λ = 1.1. The motivation be-
hind the weighting parameter arises from the
notion that higher-ranked phrases tend to be
of greater importance or relevance for pre-
requisite determination. By incorporating this
weighting scheme, we assign more weight to
the phrases that are ranked higher, hence mag-
nifying their influence on the similarity score.
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• Similarity between video content: To calcu-
late the overall similarity between the two tran-
scripts, we utilize cosine similarity between
their TF-IDF vectors, treating them as two in-
dependent textual documents.
For calculating similarity between two large
video transcripts, we use TF-IDF due to its
computational efficiency and its capacity to
detect recurring themes. TF-IDF, when com-
bined with cosine similarity, enables us to
compute the overall resemblance between
transcripts, irrespective of their length. This
makes it a practical solution for identifying
textual similarities in extensive video tran-
scripts.

The aforementioned features result in a feature vec-
tor of size 316. Additionally, we append a 665-
length Bag of Words (BOW) vector, representing
the combined titles of the two videos in the for-
mat "<Title of Video A> <Space> <Title of Video
B>". This yields a combined feature vector of size
981, which is used to train our models in a super-
vised setting. We evaluated the performance of 36
widely-used machine learning models for all su-
pervised tasks in this study, and present the results
of the models that demonstrated superior perfor-
mance.

3.3 Parsing Academic Textbook PDFs
Previously, it was demonstrated that a hierarchi-
cally organized and clean K-12 academic corpus
is essential for both transcript extraction and pre-
requisite edge determination. To accomplish this,
we have created a collection of academic textbook
PDFs that are publicly available1. We have selected
PDF textbooks in the science, physics, chemistry,
biology, and mathematics domains for classes 9th
through 12th. Initially, these PDFs are converted
to XML using PDF2XML (Peng and Zhang, 2004).
Following this, we classify each font into one of
three text classes: chapter names, section or subsec-
tion headers, and text body, based on the following
features:

• Font frequency and size: Chapter names and
section headers use fonts that are larger and
occur less frequently than the general text,
making their font occurrence frequency and
size distinct from the general text.

• Font location and page occurrence: Chapter
names and section headers are positioned at

1NCERT website

the top of the page, and chapter names occur
earlier in the overall text. This allows the use
of statistical measures of font average loca-
tion and page number, to distinguish between
different text classes.

• Color: Section headers and chapter names
frequently use distinct colors. We calculate
Euclidean color distance (12) between font
color and black and white colors to quantify
the font color’s uniqueness compared to the
page’s most common colors.
dist(C1, C2) =

√
(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2

(12)
where C1 and C2 represent RGB color values
[r1, g1, b1] and [r2, g2, b2] respectively.

• Line width and section numbers: Section
numbers (13) can distinguish section headers
from other text classes. Additionally, chapter
names tend to have a narrower average line
width.
Sectionno. = x.y.zorx.y, wherex, y, zϵN

(13)
Upon extracting the features, a machine learning
model classifies each font into three text classes,
assigning a class to each text line based on its font.
Following the extraction of academic content, sec-
tion and chapter names, section numbers in headers
are utilized to derive the taxonomy. The extracted
textual data and its hierarchical structure are in-
cluded in the released datasets.

4 Dataset

4.1 Transcript dataset
To showcase the efficacy of our proposed Wav2Vec2
speech model combined with the language model
trained on our K-12 corpus, we assembled a dataset
comprising five random academic videos in the sci-
ence and math domains from YouTube. We pro-
vide ground truth subtitles for these videos, along-
side subtitles extracted by our algorithm and other
benchmarks for comparison.

4.2 VID-REQ pre-requisite dataset
To assess our approach, we introduce Vid-Req, a
large-scale video prerequisite edge dataset. We
initially gathered over 1,500 animated academic
videos covering science, mathematics, chemistry,
physics, and biology for grades 6 through 12 from
Extramarks a leading EdTech company. On aver-
age, each video encompasses 418 words. How-
ever, these videos resulted in 1,124,250 distinct
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video pairs (1500C2), which was an overwhelm-
ing amount for labeling. Consequently, we se-
lectively choose videos based on a specific cri-
terion to reduce the dataset to a more manage-
able size. For this purpose, we firstly find
chapter-level prerequisites and formulate the set
CP = {(ch1, ch2)|ch1 is a prerequisite of ch2}
where ch1,ch2 are chapters. Using CP , we form
the potential video prerequisites set PV P =
{(a, b)|a, b ∈ C, (cha, chb) ∈ CP, cha ∈
Taa, chb ∈ Tab} (1,4,9). Then, we prune the set
PV P to form PV P ′ = {(a, b)|S(Tia, T ib) >
0.7, (a, b) ∈ PV P}. This set comprises 2,797
edges that we have hand-labeled, of which 1,684
are labeled as 0 (non-prerequisite edges) and 1,113
as 1 (prerequisite edges).

Figure 2 displays the pre-requisite edge statis-
tics for the entire dataset, including label 0 (not
pre-requisites) and label 1 (pre-requisite edges) on
the left, and only label 1 on the right. The fig-
ure shows that science-to-science edges are most
frequent in the total dataset (n=1167), but in the
label=1 set (n=455), mathematics-to-mathematics
edges prevail (n=470). While mathematics appears
as a pre-requisite for all subjects in the full edge set,
it only acts as an actual pre-requisite for itself and
science. Science remains a pre-requisite for other
subjects, with most pre-requisite edges leading to
physics, biology and chemistry (n=61,23,20).

Figure 2: The subject relationship in VID-REQ with all
edges on the left and only those labeled 1 on the right

4.2.1 Annotation Process
Multiple experienced teachers were invited and as-
signed to their preferred subjects, with at least three
teachers per subject. These domain experts anno-
tated video pairs, determining if video "B" had a
prerequisite video "A" by assigning binary labels
(1: A is a prerequisite of B, 0: A is not a prereq-
uisite of B) and also assigned a unique taxonomy
from the set of taxonomies extracted from K12 text-

books parsed using our PDF parser to each video.
Teachers viewed the videos thoroughly before an-
notating and provided well-informed judgments
and reasons. The relationship is non-symmetric.
After annotating 2797 video edges, Cohen’s Kappa
coefficient (0.64) confirmed substantial agreement
among annotators. These final annotations served
as ground truth labels for model training.

4.3 Academic textbooks dataset

We generated a training dataset for PDF parsing
by downloading 26 textbooks from2 and convert-
ing them to XML using PDF2XML. These text-
books span various subjects and classes, covering
662 unique fonts for chapter names (n=53), text
body (n=563), and section name (n=46) text classes,
hand-labeled by expert academicians. The model
trained on this dataset was used to parse 189 PDFs
for subjects like science, math, chemistry, biology,
and physics for classes 9 to 12. Intermediary XML
files and extracted text with taxonomical hierarchy
and page numbers have been released.

Additionally, we created a dataset of 731 hand-
labeled textbook pages to test our method with
object detection baselines, using an 80:10:10 train,
validation, and test split. Pages were converted to
416x416 pixel JPEG images, and three augmen-
tations (horizontal flip, vertical flip, and random
crop) were applied which led to the final 1755 im-
ages with 1901 total objects.

5 Experiments

5.1 Transcript extraction

We evaluated the performance of Wav2Vec2 Large
960h (Baevski et al., 2020) trained on the Lib-
rispeech ASR dataset (Panayotov et al., 2015), with
and without our language model (Wav2Vec2 and
Wav2Vec2-LM), using Word Error Rate (WER),
Match Error Rate (MER), and Word Information
Lost (WIL) metrics. We compared it to the Deep-
speech ASR method (Amodei et al., 2016), with
Wav2Vec2 outperforming Deepspeech in speed and
accuracy. Both models ran on CPU, reporting aver-
age run-time per video in seconds. Our language
model’s inclusion improved domain-specific word
transcription and reduced error rates, as shown in
Table 1.

2NCERT Textbooks Webpage
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Table 1: Performance of transcription methods

Method WER MER WIL Time
Deepspeech 0.238 0.234 0.359 117.2
Wav2Vec2 0.16 0.158 0.253 25.9
Wav2Vec2
-LM

0.121 0.120 0.192 25.9

5.2 Pre-requisite detection

5.2.1 Performance on VID-REQ dataset

Upon evaluation, three models emerge as the top-
performing models on our released dataset of 2,797
prerequisite video pairs (VID-REQ). These mod-
els—Extra Trees (Geurts et al., 2006), LightGBM
(LGBM) (Ke et al., 2017), and Random Forest
classifiers with linear SVC feature selection (RF-
SVC) (Breiman, 2001)—are assessed using 5-fold
cross-validation, reporting mean accuracy, preci-
sion, recall, and F1-score as shown in Table 2. Hy-
perparameters for each model were fine-tuned via
grid-search from Scikit Learn (Pedregosa et al.,
2011). Extra Trees emerged as the best-performing
model with an F1-score of 79.08%. Although both
Extra Trees and Random Forest employ multiple
decision trees, the difference in performance can be
attributed to their responses to various feature char-
acteristics. The unique splitting mechanism of Ex-
tra Trees, which involves more randomness, lends
robustness when dealing with potentially noisy or
complex data. This resilience to the inherent com-
plexities of the feature set likely contributed to
Extra Trees’ superior performance over the LGBM
and RF-SVC classifiers in our study. We employed
the F1-score as a reliable metric given its simulta-
neous consideration of both precision and recall.
This is crucial from a learner’s perspective, as it is
vital to prevent mislabeling non-prerequisite videos
as prerequisites while accurately identifying all es-
sential prerequisite videos. Moreover, the F1 met-
ric effectively addresses the slight class imbalance
present in the dataset.

Furthermore, we replicate the approach outlined
in Gasparetti (2022) on our dataset as a baseline
comparison. This technique utilizes aggregated
fast-text word-embeddings input into SVC and RF
classifiers to predict prerequisite dependencies be-
tween pairs of textual documents. As demonstrated
in Table 2, our method surpasses the baseline in all
metrics, with an F1-score exceeding by more than
10%.

5.2.2 Performance on AL-CPL dataset
We also compared our features with those of (Liang
et al., 2018b, 2019). The dataset released in Wang
et al. (2016) is the most widely used Wikipedia pre-
requisite dataset, which covers data mining, geome-
try, physics, and pre-calculus subjects. The authors
of Liang et al. (2018b, 2019) have pre-processed
this data which is released as the AL-CPL dataset.
We extract our features from this dataset and quote
F1-score performance using 5 fold cross validation
of the best performing model i.e., Random Forest
with linear SVC feature selection in Table 3. We
also compare the results of this model with those of
Miaschi et al. (2019) who have used a multimodal
architecture that uses LSTM and global features
similar to Liang et al. (2018b, 2019) to predict
pre-requisites. Both the above mentioned meth-
ods quote mean 5-fold cross validation results for
the F1 metric. However, Miaschi et al. (2019) has
showcased performanced on in-domain and cross-
domain prerequisite relationships separately, on 3
variants of their proposed architecture (M1,M2,M3).
Thererfore, in order to facilitate direct comparison
we choose best results for the F1-score across the
models and then take average of the in-domain and
cross-domain results. As evident in Table 3 our
method surpasses Liang et al. (2018b, 2019) for all
subjects and Miaschi et al. (2019) for 3 out of 4
subjects. The average F1-score across subjects of
our methods also surpasses that of Miaschi et al.
(2019).

5.2.3 Performance on Meta-Academy dataset
We further showcase performance of our method
on another Wikipedia pre-requisite dateset that
includes pre-requisites extracted from Meta-
Academy (Sayyadiharikandeh et al., 2019). Meta-
cademy is a free, open-source platform encom-
passing 487 machine-learning concepts connected
by 7,947 prerequisite pairs. Our top-performing
model, RF-SVC, trained on our novel features,
demonstrates superior performance compared to
the AdaBoost model trained on Wiki-clicks-based
features (user navigation patterns on Wikipedia) on
this dataset. As exhibited in Table 2, our model
surpasses the AdaBoost model across all metrics,
with an F1-score exceeding by over 5%.

These experiments showcase the robustness of
our features, exceeding benchmarks for Wikipedia
prerequisites tasks, even though they were designed
for videos. This success can be attributed to our
in-depth collaboration with domain expert teach-
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Table 2: A comparative analysis of our prerequisite detection method and other methods across multiple datasets.

Dataset Method Model Accuracy Precision Recall F1-Score

VID-REQ
(ours)

Gasparetti (2022)
RF 77.53 76.72 62.63 68.84

SVC 75.11 69.22 67.79 68.44

Ours
Extra Trees 84.09* 82.85* 75.83 79.08*

LGBM 83.01 80.48 75.74 78.00
RF(SVC) 83.12 79.82 77.36* 78.43

Meta Academy
Wiki-Clicks Ada-Boost 81 80 78 80

Ours RF(SVC) 84* 85* 85* 85*

Table 3: F1-scores for various methods performed across different subjects on the AL-CPL dataset.

Dataset Method DataMining Geometry Physics PreCalculus Avg.

AL- CPL
Miaschi et al. (2019) 78.1 89.1 81.8 91* 85
Liang et al. (2018a) 76.7 89.5 69.9 88.6 81.1

Ours 80.7* 90.4* 83* 89.2 85.8*

ers during feature creation, leading to enhanced
effectiveness and performance of our algorithm.

5.3 PDF Parsing

To evaluate performance on the dataset described
in Section 4.3, we use an 80:20 train-test split. The
LightGBM classifier (Ke et al., 2017) achieves the
best classification results as shown Table 4 and is
used in the PDF parser to generate our K-12 corpus.

Table 4: Performance of LGBM Classifier

Text class Precision Recall F1
Chapter names 0.78 0.64 0.70
Section names 1.00 0.57 0.73
Text body 0.94 0.98 0.96
Average 0.9067 0.73 0.7967

To compare our PDF parsing methods with re-
cent deep learning-based approaches, we treat the
extraction of text-classes as an object detection
problem, focusing on the crucial section name text
class. We use a random subset of textbooks (46
section headers) and extract section headers using
both methods. Headers are considered correctly
matched if they have distance D (14) less than 0.6
(Doucet et al., 2011; Wu et al., 2013).

D =
LevenshteinDist(A,B) ∗ 10

Min(Len(A), Len(B))
(14)

For this experiment, we use the YOLOv5 model
(Jocher, 2021) for object detection and EASYOCR
(AI, 2021) to extract text from cropped header im-
ages. Our font-based classification method outper-

forms the YOLO + OCR approach in both perfor-
mance and average per-page time as shown in Table
5. The deep learning method’s low precision stems
from its reliance on visual features alone, which are
inadequate for detecting text-classes. In contrast,
our method utilizes text, color, and occurrence-
based features for accurate classification, and by la-
beling only the fonts in PDF textbooks, it achieves
faster and more precise performance.

Table 5: Comparison of our method with YOLO

Method Preci
-sion Recall F1

score
Time

(in sec)
YOLO +

OCR
0.533 0.869 0.661 2.54

Ours 0.893 0.913 0.903 0.011

6 Conclusion

In this paper, we present a pipeline for detecting
prerequisite dependencies among academic videos
using novel similarity-based features. Our ap-
proach outperforms existing methods, even sur-
passing prerequisite detection in domains like
Wikipedia. We introduce hand-labeled datasets to
discover prerequisite relations across diverse sub-
jects, fostering future research in this area.

Future work will explore additional features and
methods, extending our approach to a broader
range of educational content such as podcasts,
slides, and lecture notes. We also aim to integrate
collaborative filtering and recommender systems
for personalized learning paths, enhancing students’
educational experience and learning outcomes.
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