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Abstract

In English speaking assessment, pretrained
large language models (LLMs) such as BERT
can score constructed response items as accu-
rately as human raters. Less research has in-
vestigated whether LLMs perpetuate or exacer-
bate biases, which would pose problems for the
fairness and validity of the test. This study ex-
amines gender and native language (L1) biases
in human and automated scores, using an off-
the-shelf (OOS) BERT model. Analyses focus
on a specific type of bias known as differential
item functioning (DIF), which compares exam-
inees of similar English language proficiency.
Results show that there is a moderate amount
of DIF, based on examinees’ L1 background in
grade band 9–12. DIF is higher when scored
by an OOS BERT model, indicating that BERT
may exacerbate this bias; however, in practical
terms, the degree to which BERT exacerbates
DIF is very small. Additionally, there is more
DIF for longer speaking items and for older ex-
aminees, but BERT does not exacerbate these
patterns of DIF.

1 Introduction

Pretrained large language models (LLMs) present
new opportunities for English speaking assess-
ments, yet they are prone to perpetuating and, in
some cases, exacerbating social prejudices (Blod-
gett et al., 2020). In educational assessment, re-
searchers have shown that pretrained LLMs can
replicate human scoring, including English speak-
ing assessment, with a high degree of accuracy
(Wang et al., 2021). Studies of biases of these au-
tomated scoring systems, however, is uncommon
(Ormerod, 2022). Considering how widespread

and high stakes English speaking assessments are
at both the primary and secondary education levels
(Cimpian et al., 2017; Educational Testing Service,
2005), it is imperative that these assessments be fair
for all students, regardless of gender or L1 back-
grounds. This study addresses the need for deeper
analyses of bias in LLM-based automated English
speaking assessments.

1.1 Bias in English speaking assessment

There are many potential sources of bias in English
speaking assessment. We highlight four sources
that we believe are most pertinent to the study of
gender and L1 biases.
Human rater bias Scholarship on implicit bias
demonstrates that human judgment is influenced
unconsciously by peripheral cues, including speak-
ers’ accents (Kang and Yaw, 2021). In the context
of English speaking assessment, these biases may
lead to unfair scoring without raters even realizing
it (Greenwald and Banaji, 1995). Indeed, Winke
et al. (2013) reports that human raters are more
lenient towards examinees who share the same L1
background. In a summary of research on the bi-
ases of raters of L2 English, Lindemann and Sub-
tirelu (2013) reports a strong disconnect between
subjective evaluation of speech (e.g. using Likert
scales) and more objective measures (e.g. transcrip-
tion). Although unexplored, implicit bias could
also affect examinees based on gender vocal cues.

Research on implicit bias and speech suggests
that there may be more bias in the speaking do-
main, as opposed to other domains, such as writing.
By listening to examinees’ voices, human raters
may be more likely to be influenced by examinees’
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accents, triggering implicit bias that affects their
judgment during scoring.
Socio-cultural factors There are many socio-
cultural differences based on gender and L1 that
affect English speaking assessment. Derwing and
Munro (2013), for instance, discuss how factors
like age and conversational opportunities interact
with L1 in complex ways. Gender is also a source
of variation in L2 English speaking proficiency, al-
though it varies by culture and task (Denies et al.,
2022).

Additionally, cultural differences may interact
with item properties. In one highly-publicized
study, Freedle (2003) describes how verbal items
draw on cultural knowledge that disadvantage mi-
nority examinees. It is possible, then, that certain
speaking items require an understanding of the con-
text of schooling in the United States, which may
be more or less familiar to examinees of different
cultural backgrounds, and particularly for those
who recently emigrated.
Curricular differences Huang et al. (2016) report
that curricula vary across countries, and that these
differences are a likely source of bias in compara-
tive studies of international assessment. Curricular
differences between countries would be particu-
larly salient for examinees who entered into the
United States schooling system at a later age.
Item difficulty Dorans and Zeller (2004) and San-
telices and Wilson (2010) suggest that item diffi-
culty might be related to guessing behavior, which
in turn produces bias related to examinees’ overall
proficiency. Given that speaking is a difficult aspect
of L2 language acquisition (Brown et al., 2000), it
is possible that examinees who are less fluent are
able to guess their way through non-speaking items,
yet struggle with speaking items.

1.2 LLMs may exacerbate social biases

Studies have revealed that pretrained LLMs can
propagate and, in some cases, amplify negative
stereotypes of marginalized groups (Blodgett et al.,
2020). Because LLMs are pretrained on large cor-
pora of text largely scraped from the web, soci-
etal biases in these texts become embedded in the
LLMs. These biases may surface in downstream ap-
plications, such as machine translation (Stanovsky
et al., 2019) and sentiment analysis (Kiritchenko
and Mohammad, 2018).

In English speaking assessment, LLMs are not
yet in widespread use. Yet researchers who are

exploring their use typically focus on performance
metrics (e.g. accuracy) to the exclusion of biases
(e.g. Wang et al., 2021). Even in the broader field of
NLP-based English speaking assessment, analyses
of bias are rarely conducted or reported (e.g. Col-
lier and Huang, 2020). In one rare study, however,
Wang et al. (2018) found that their automated scor-
ing system diverged from human raters for several
L1 groups.

1.3 Differential item functioning

Differential item functioning (DIF) is a specific
type of bias commonly examined in educational
and psychological assessment (American Educa-
tional Research Association et al., 2014). DIF oc-
curs when “equally able (or proficient) individuals,
from different groups, do not have equal probabili-
ties of answering the item correctly” (Angoff, 1993,
p. 4).

Although there are many studies of DIF with
respect to gender and L1 in large-scale English
language assessment, these studies focus on vocab-
ulary, listening, and writing proficiency (Kunnan,
2017). Very few studies of DIF have been con-
ducted on English speaking proficiency.

1.4 Study overview and research questions

This study is designed to analyze gender and L1
biases in L2 English speaking assessment, and
to determine if these biases are exacerbated by a
pretrained LLM-based automated scoring system.
Our data come from a large-scale K-12 English
language assessment known as the English Lan-
guage Proficiency Assessment for the 21st Century
(ELPA21; Huang and Flores, 2018). For our au-
tomated scoring model, we use an off-the-shelf
pretrained Bidirectional Encoding Representation
using Transformers (BERT) model (Devlin et al.,
2018). We focus on BERT because of its seminal
status in language modeling, and because it remains
a focus of study in English speaking assessment
(Wang et al., 2021). We quantify the amount of
bias in human and automated scores by measuring
DIF. We first describe specific patterns of DIF in
human scores, and then determine whether or not
BERT exacerbates DIF.

2 Methods

2.1 Data

This study draws on data from the English Lan-
guage Proficiency Assessment for the 21st Century

669



Grade Band 2-3 Grade Band 9-12
n % Avg. Proficiency n % Avg. Proficiency

All 8377 100 0.18 (0.91) 6623 100 0.16 (0.93)
Gender

Male 4310 51.5 0.13 (0.9) 3648 55.1 0.14 (0.94)
Female 4067 48.5 0.23 (0.92) 2975 44.9 0.2 (0.92)

L1
Spanish 4205 50.2 0.08 (0.85) 3481 52.6 0.23 (0.92)
Marshallese 692 8.3 -0.0 (0.86) 891 13.5 -0.05 (0.75)
Russian 862 10.3 0.28 (0.9) 375 5.7 0.49 (0.86)
Vietnamese 522 6.2 0.41 (0.9) 402 6.1 0.36 (0.93)
Arabic 499 6 0.33 (0.88) 414 6.3 0.06 (0.86)
Mandarin 439 5.2 0.88 (0.89) 203 3.1 0.44 (1.02)
Hindi 416 5 0.75 (0.82) 185 2.8 0.67 (0.82)
Mayan 238 2.8 -0.66 (0.88) 258 3.9 -0.84 (0.95)
Persian 295 3.5 -0.05 (1.01) 197 3 -0.07 (0.94)
Swahili 209 2.5 0.22 (0.87) 217 3.3 0.04 (0.93)

Table 1: Sample descriptive statistics in aggregate ("All") and disaggregated by gender and L1.

(ELPA21), a consortium involving 7 state education
agencies in the U.S. (Huang and Flores, 2018). To
maintain confidentiality, certain details regarding
test items and examinees are omitted.

Analyses focused on two grand bands (2–3 and
9–12) which corresponded to two tests adminis-
tered during the 2020–2021 school year. For items
in the speaking domain, examinees spoke into a mi-
crophone for up to two minutes, after which their
responses were sent to human raters who assigned
holistic integer scores based on item-specific scor-
ing rubrics. All verbal responses in ELPA21 are
currently scored by human raters. Consistent with
best practices, raters are trained and monitored over
time to ensure consistency (Engelhard, 2002).

2.2 Sample design and demographics

The sampling frame included all examinees in
grade bands 2–3 or 9–12 who met the following in-
clusion criteria: answered all three speaking items
included in this study; answered at least one item
in each of the other three domains; and had gen-
der and L1 demographic information available. To
limit the scope of the study, we excluded exami-
nees with disabilities, examinees with non-binary
gender, and examinees whose L1 was other than
one of the ten L1s analyzed in this study.

From the sampling frame, we sampled 15,000
students.1 We included all examinees whose L1

1The size of our sample was limited, in part, by the cost of

was one of the nine L1 focal groups selected for
study (Table 1). The remainder of examinees were
randomly sampled from Spanish speakers.

Demographics of grand bands 2–3 and 9–12 are
presented in Table 1. Note that there were group
differences with respect to overall language pro-
ficiency.2 In both grand bands, male examinees
scored slightly lower than female examinees. There
was also heterogeneity among L1 groups.

2.3 L1 selection
Due to practical limitations, we focused on ten L1
groups. Spanish was the largest L1 group (consti-
tuting 82.7% of all examinees in 2020–2021) and,
for this reason, served as the reference group. The
other nine L1 groups were selected based on the
number of examinees available, and with a view
to global diversity. See Appendix A for additional
details regarding L1 selection and grouping.

2.4 Item selection
Speaking items were selected to span a range of
response times (i.e., length or quantity of speech).
Specifically, for each grand band, we selected one
speaking item that was short in duration (i.e., requir-
ing examinees to produce a phrase or simple sen-
tence to answer the prompt), one medium-length
item (i.e., requiring 2–3 sentences or a compound

automated transcription.
2See Section 2.6 for how language proficiency was com-

puted for examinees.
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Grade Band 2-3 Grade Band 9-12

Item # Length
Num. of
categories

Avg.
seconds

Avg.
words

Num. of
categories

Avg.
seconds

Avg.
words

Item 1 short 3 6.4 (4.9) 6.0 (6.5) 4 8.3 (5.0) 11.5 (7.1)
Item 2 medium 5 17.2 (13.3) 25.1 (23.2) 6 14.9 (9.1) 22.8 (16.7)
Item 3 long 6 36.9 (23.1) 51.1 (35.0) 5* 34.7 (18.9) 65.0 (38.4)

Table 2: Item descriptive statistics. Item 3 for grand band 9–12 was re-scaled from a 6-point scale to a 5-point scale.
This change was made due to the fact that one group of respondents (Hindi) did not receive any 1s. Combining 1s
with 2s helped to improve model convergence.

sentence), and one long item (i.e., requiring 3+ sen-
tences). Table 2 presents the lengths of items 1–3,
based on average audio duration (in seconds) and
average number of words, for both grand bands. To
increase comparability between grand bands, our
selection of items also took into consideration item
type and item information.

2.5 Automated Transcription

Automated transcripts were generated using Ama-
zon Web Services, during October 7–12 and
November 14–16, 2022. Default transcription set-
tings were used, with output language set to “en-
US.” Amazon provides multiple transcripts by de-
fault; the most probable transcripts were selected
for analyses.

We conducted an analysis of transcription accu-
racy and bias of Amazon’s automated transcription
service, reported in detail in Kwako (2023). Find-
ings pertinent to the present study are reproduced
in Appendix B

2.6 Differential item functioning

As discussed in Section 1.3, DIF occurs when there
are group differences, conditional on unbiased pro-
ficiency estimates. The unbiased proficiency esti-
mate, θ, is referred to as the matching criterion. In
this study, the matching criterion is examinees’ non-
speaking English language proficiency (see Section
2.9 for how non-speaking English proficiency was
computed). By excluding speaking items, we en-
sured that estimates of θ were not contaminated
by the same type(s) of bias under examination. To
compare examinees’ of similar θ, the sample was
divided into ten strata based on which quantile of
the standard normal distribution their non-speaking
English proficiency resided.

The majority group is referred to as the reference
group; and the minority group is referred to as the
focal group. For gender, the reference group was

male (and the focal group was female); for L1, the
reference group was Spanish (and the nine focal
groups are listed in Table 1).

2.7 DIF effect sizes

As summarized by Michaelides (2008), a com-
mon method to evaluate DIF for ordinal items is
based on the standardized mean difference (SMD)
between reference and focal groups (Dorans and
Kulick, 1986).3 SMD is calculated as follows:

∑

j

NF.j

NF..

∑
u
NFuju

NF.j
−
∑

j

NF.j

NF..

∑
u
NRuju

NR.j

where NFuj is the number of examinees in the
focal group F whose θ puts them in stratum j,
and who received score u on the item in question.
Multiplying this quantity by u, and dividing by the
number of examinees in the focal group in stratum
j, yields the expected score for the focal group.
A similar procedure is followed for the reference
group. Before taking the difference, the expected
scores are weighted by the proportion of examinees
in the focal group in stratum j.

The effect size, z, is the ratio of SMD to the stan-
dard deviation (pooled between the two groups).4

Intuitively, z represents how much the focal group
outperforms the reference group, among examinees
of similar proficiency, in units of standard devia-
tion.

What counts as a large or small effect size is
based on a system originally proposed by Zwick
et al. (1993) and is used by the Educational Testing

3Instead of using the Mantel test (Mantel, 1963), our sig-
nificance tests were based on bootstrap sampling distributions
and B-H adjusted p-values, described in Sections 2.10 and
2.11, respectively.

4Ormerod et al. (2022) refer to this effect size as z, a
convention we follow.
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Service and other educational assessment organi-
zations. Generalizing the system to ordinal items,
Allen et al. (2001) designate items as having strong
DIF if z is greater than or equal to 0.25. Items have
weak DIF if z is less than 0.17. And items have
moderate DIF if z is between 0.17 and 0.25.
Absolute effect size For certain research ques-
tions, the primary interest was not in determining
the direction of DIF (i.e., which groups are advan-
taged or disadvantaged), but only in quantifying
the magnitude of DIF. To address these questions,
we based our analyses on the absolute value of
z, zabs = |z|. We also refer to this metric as the
absolute effect size or absolute DIF.
Differences between effect sizes We also com-
puted differences in effect sizes (i.e. between hu-
man and automated scores, between items, and be-
tween grade bands). In each of these comparisons,
we were interested not in z or zabs, but in first-
order differences. We refer to these quantities as
∆z = zi− zj , and ∆zabs = |zabs,i− zabs,j |, where
i and j represent two different effect sizes. In re-
search questions 2 and 3, we also examined second
order differences, ∆∆zabs = |∆zabs,i −∆zabs,j |.

2.8 Aggregate DIF metrics

Aggregating DIF effect sizes allowed us to make
more general claims about DIF. Analysis of DIF
typically revolves around pairwise comparisons
at the item level. This fine-grained level of anal-
ysis, however, is not suited for making general
claims about DIF. To make more general claims
(e.g., across multiple items or focal groups) we
report overall DIF and factor DIF.
Overall DIF To evaluate DIF across items, we
computed z based on examinees’ summed score
(i.e. summed across all items of interest). That
is, for grand bands 2–3 and 9–12, we added ex-
aminees’ responses to items 1–3, and computed
z according to the procedure outlined in Section
2.7. Since z is in units of standard deviation, it is
unaffected by differences in items’ scales, and thus
generalizes well to summed score.
Factor DIF Analyses of DIF are usually localized
to pairwise comparisons involving one focal group
and the reference group. For factors containing
more than one focal group, however, we were in-
terested in evaluating DIF for the factor as a whole.
To evaluate DIF for the entire factor, we took an
unweighted stratified mean of all pairwise compar-
isons, z̄abs = 1

p

∑
zabs,i, where p is the number of

focal groups. Note that in the case where there is 1
focal group, z̄abs reduces to zabs.

2.9 Non-speaking English proficiency
Examinees’ non-speaking English proficiency was
used as the matching criterion in DIF analyses.
Non-speaking proficiency was inferred from exam-
inees’ responses to test items in non-speaking do-
mains (i.e. listening, reading, and writing). Items
were modeled using an Item Response Theory
(IRT) framework (Cai et al., 2016), consistent with
modeling choices used in production. One differ-
ence, however, was that we modeled non-speaking
items as a unidimensional construct because (1) it
simplified interpretation of the matching criterion,
since we were interested in non-speaking profi-
ciency as a whole rather than individual domains,
(2) it yielded smaller margins of error, and (3)
model fit was in an acceptable range for both grade
bands, based on limited-information fit statistics
and Tucker-Lewis (non-normed) fit indices (M2
RMSEA ≤ .03 and M2 TLI ≥ .96).

2.10 Statistical Estimation
To compute confidence intervals and p-values, we
used a simple bootstrap procedure (Efron and Tib-
shirani, 1994). Examinees were resampled within
grand band, gender, and L1 groups, as these charac-
teristics were central to our study design. Statistics
were calculated from 1,000 bootstrapped samples.
Confidence intervals were determined from .025
and .975 quantiles for each estimate. p-values were
determined by assuming a normal distribution and
taking the minimum of a two-sided quantile of the
CDF evaluated at 0.

2.11 p-value adjustments
We controlled false discovery rate at the nominal
level of .05 using the Benjamini-Hochberg (B-H)
technique (Benjamini and Hochberg, 1995). We
use the term “statistically significant” (or simply
“significant”) when an estimated p-value is below
the B-H adjusted p-value. In practical terms, sta-
tistical significant means that we place an upper
bound of .025 on “the probability of being erro-
neously confident about the direction of the popu-
lation comparison” (Williams et al., 1999, p. 43).

2.12 BERT modeling
Six separate classification models were trained for
each of the items analyzed in this study. Cross-
entropy served as the loss function. The maxi-
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mum number of input tokens depended on the item
length: We set the cutoff at two standard devia-
tions above the mean number of tokens for each
item. We used the pre-trained uncased BERT base
model provided by Huggingface (Wolf et al., 2020).
Modeling and training were scripted using Pytorch
(Paszke et al., 2019) in Python 9.3.12 (Python Soft-
ware Foundation, 2022). We explored several pos-
sible models with differing hyperparameters as a
part of a previous pilot study (Kwako et al., 2022).

2.13 BERT training

Data were split 1:1 into testing and training sets.5

Testing and training sets were split so as to maintain
equal proportions of examinees by gender and L1.

Based on a smaller-scale study, we selected
learning rates of 1e-6 for BERT layers and 2e-6
for classification heads (Kwako et al., 2022). To
slow down overfitting, all but the last attention layer
and classification head were frozen during training.
Models were trained for 10 epochs, and the epoch
with the lowest test loss was selected as the final
scoring model for each item.

BERT models nearly achieved parity with hu-
man raters for items 1 and 2, and outperformed
human raters for item 3. See Appendix C for de-
tails regarding the performance of each of the six
BERT models in terms of accuracy, correlation,
and quadratic weighted kappa (QWK).

3 Results

3.1 BERT increases DIF for L1

Overall, BERT-based automated scores increased
DIF (to a very small degree) with respect to L1
in grade band 9–12. Although this difference was
visible across all items in grade band 9–12, item
3 had the largest difference between human and
automated scores.
Overall DIF of human scores Results revealed
a moderate amount of DIF in human ratings based
on examinees’ L1 in grade band 9–12. This result
is visualized in Figure 1, which shows a gray bar
(representing human scores) extending into the yel-
low (“moderate” DIF) region of the chart (zabs =
.196, CI95% = [.170, .222], p = 5.4 · 10−48). Ad-
ditionally, there was non-zero DIF based on L1 in
grade band 2–3, and non-zero DIF based on gender

5We set aside a larger percentage of data for testing (50%
as opposed to the conventional 20%) because we required a
more robust calculation of DIF in the testing set for a related
study on debiasing (Kwako, 2023).

in grade band 9–12; however, the effect sizes of
these quantities were weak.

Grade Band 2-3 Grade Band 9-12

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

L1

Gender

zabs

Human

BERT

Figure 1: Estimates of overall DIF. Error bars indi-
cate 95% confidence intervals. Yellow shaded regions
correspond to moderate DIF, and red shaded regions
correspond to strong DIF.

Human vs. BERT overall DIF Overall DIF of au-
tomated scores was highly similar to human scores.
As seen in Figure 1, green bars (representing BERT
scores) are nearly commensurate with gray bars
(representing human scores), with mostly overlap-
ping 95% confidence intervals. Yet, there was sig-
nificantly more DIF in BERT scores compared to
human scores with respect to L1 in grade band
9–12 (∆zabs = .025, CI95% = [.011, .039], p =
3.3 · 10−4). In practical terms, however, an effect
size of 0.025 standard deviations is very small.
Human vs. BERT individual item DIF In addi-
tion to overall DIF, we examined DIF of each indi-
vidual item. Figure 2 presents DIF of human and
automated scores, for gender and L1, across items
1–3, for each grade band. Human and automated
scores are again quite consistent. For grade band
9–12, L1 DIF tended to be higher across all items;
however, only item 3 reached statistical signifi-
cance (∆zabs = .032, CI95% = [.010, .055], p =
3.3 · 10−3). Again, an effect size of .032 standard
deviations is very small.

3.2 DIF increases with item length

Based on human rater scores, longer speaking items
tended to exhibit more DIF than shorter speaking
items. Automated scores did not exacerbate this
trend.

By design, item 3 was longer than item 2, which
in turn was longer than item 1. Figure 2 shows
that, in general, item 3 had more DIF than item 2,
which in turn had more DIF than item 1. Table 3
presents the specific values of ∆zabs,ij , based on
human rater scores, for all three item comparisons.
For example, in grade band 9-12, the difference in
DIF between items 1 and 2, based on human rater
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Grade Band 2-3 Grade Band 9-12
Factor 2 - 1 3 - 1 3 - 2 2 - 1 3 - 1 3 - 2

Gender .012 .010 -.002 .065 * .078 * .013
[-.030, .051] [-.029, .049] [-.042, .039] [.021, .110] [.031, .116] [-.032, .055]

L1 .046 * .053 * .006 .087 * .184 * .097 *
[.009, .085] [.010, .093] [-.035, .046] [.043, .130] [.139, .226] [.056, .138]

Table 3: Differences in DIF between longer and shorter items, within each grade band, based on human ratings.
"*" indicates that an estimate is statistically significant using B-H adjusted p-values. 95% confidence intervals are
presented in square brackets.

It
e

m
 3

It
e

m
 2

Grade Band 2-3

It
e

m
 1

Grade Band 9-12

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

L1

Gender

L1

Gender

L1

Gender

zabs

Human

BERT

Figure 2: Estimates of DIF for each of the 3 speaking
items. Error bars indicate 95% confidence intervals.
Yellow shaded regions correspond to moderate DIF, and
red shaded regions correspond to strong DIF.

scores (i.e., the gray bars in Figure 2), with respect
to L1, was ∆zabs,21 = .087. That is, item 2 had
.087 more standard deviations of DIF compared
to item 1. Using B-H adjusted p-values, this is a
statistically significant difference. As indicated by
asterisks in Table 3, many (but not all) between-
item ∆zabs,ij were statistically significant.

Although longer items tend to have more DIF,
this general trend was not uniformly consistent
across factors and grand bands. Specifically, the
trend was less consistent for gender: There were
no statistically significant differences in grade band
2–3; and in grade band 9–12, item 3 did not have
more DIF than item 2 at a statistically significant
level. Additionally, for grade band 2–3, item 3 did
not have significantly more DIF than item 2.

In order to determine if item-item differences
were exacerbated by automated scoring, we com-
puted second-order differences, ∆∆zabs. None of
these values, however, were statistically significant.
We conclude that the pattern of longer items pro-
ducing more DIF is consistent for both human and
automated raters.

3.3 DIF is higher for older examinees

In general, there was more DIF for older exami-
nees (in grade band 9–12) compared to younger
examinees (in grade band 2–3). Automated scores,
however, did not exacerbate this trend.

There was significantly more DIF in grade band
9–12, compared to grade band 2–3, in terms of
both gender and L1. This trend can be seen clearly
in Figure 1. Based on bootstrapped estimates for
gender, ∆zabs = .059 (CI95% = [.011, .100], p =
4.9 · 10−3); and for L1, ∆zabs = 0.082 (CI95% =
[0.047, 0.120], p = 3.8 · 10−6).

When we examine individual items, this trend is
present for items that are medium-length or longer
(items 2 and 3) but not for short items (item 1).
Visually, this can be seen in Figure 2. The ∆zabs,
based on human ratings, are presented in Table 4.
For example, in item 1, the difference between DIF
observed in grade band 2-3 versus grade band 9-12
is ∆zabs = .013, with respect to L1, which is not a
statistically significant difference. In items 2 and
3, however, the differences between grade band
2-3 and 9-12 are much larger (∆zabs = .054 and
∆zabs = .145, respectively).

In order to determine if differences between
grand bands were exacerbated by automated
scoring, we computed second-order differences,
∆∆zabs. None of these values, however, were sta-
tistically significant. We conclude that the trend of
greater DIF in older examinees was consistent for
both human and automated raters.
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Factor Item 1 Item 2 Item 3

Gender .005 .058 * .072 *
[-.033, .042] [.011, .105] [.019, .118]

L1 .013 .054 * .145 *
[-.029, .057] [.012, .098] [.098, .193]

Table 4: Differences in DIF between grand bands, based
on human ratings, for each of the three speaking items.
"*" indicates that an estimate is statistically significant
using B-H adjusted p-values. 95% confidence intervals
are provided in square brackets.

3.4 Severity of DIF depends on L1 and grade
band

The direction and magnitude of DIF varied by L1
background, and patterns were generally not consis-
tent across grand bands. Figure 3 depicts the mag-
nitude and direction of DIF for gender and all L1
groups. For grade band 2–3, native speakers of Mar-
shallese and Mayan languages showed evidence of
moderate–strong DIF for human and BERT scores.
DIF was negative for both L1 groups, indicating
that these examinees fared worse on speaking items
than their (equally-proficient) Spanish-speaking
counterparts.

In grade band 9–12, examinees of nearly all L1
backgrounds fared better than native Spanish speak-
ers. In this case, speaking items tended to disad-
vantage members of the reference group (i.e. ex-
aminees with Spanish L1 backgrounds).

As with preceding analyses, DIF based on BERT
scores aligned closely with DIF based on human
scores. Although results showed that BERT exacer-
bated DIF in L1 as a whole (Section 3.1), analyses
of individual L1 groups did not reveal any statis-
tically significant differences between human and
BERT scores. We also did not find any statistically
significant differences between human and BERT
scores when examining DIF at the individual item
level (Appendix D).

4 Discussion

4.1 Main findings

Analysis of differential item functioning (DIF) re-
vealed several patterns of biases in L2 English
speaking assessment based on human rater scores,
some of which biases were exacerbated by BERT-
based automated scores. With respect to human
scores, we found that there was more DIF for older
examinees and for longer items. Based on com-
monly accepted standards regarding effect size,

there was a moderate amount of overall DIF in
grade band 9–12 based on examinees’ native lan-
guage (L1) backgrounds. Automated scores gener-
ated by off-the-shelf BERT models closely matched
human scores, yet BERT was found to exacerbate
overall DIF for grade band 9–12 based on exami-
nees’ L1. The degree to which BERT exacerbated
this bias, however, was very small.

4.2 Causes of DIF
Although our findings do not confirm any causes
of DIF, they do allow us to rule out several possi-
bilities.
Transcription (in)accuracy Prior research
showed that there were discrepancies in transcrip-
tion accuracy based on speakers’ L1 background
B. Specifically, automated transcription struggled
with speakers of Vietnamese L1 backgrounds in
grade band 9-12. Yet given the close correspon-
dence between human and automated scores for
all examinees, not just Vietnamese examinees, it
appears unlikely that transcription inaccuracies en-
gendered lower or higher scores.
Implicit bias Our automated scoring system
was based exclusively on transcripts of examinees’
speech. No phonic information was used in the
automated scoring process. It is notable, then, that
there was no mitigation of DIF in automated scores
using the text-based BERT model. In other words,
removal of acoustic input did not reduce bias. From
this, we conclude that examinees with identical
(transcribed) responses could not have received
higher or lower scores, on average, based on gen-
der or L1.

Although text-based automated scores did not
mitigate bias, this does not necessarily imply that
human raters were unaffected by implicit bias. It is
possible, for instance, that examinees with different
accents also had different (transcribed) responses,
which still affected human raters’ judgment.

4.3 Limitations
Our analyses were based around one metric of uni-
form DIF, z. The benefits of z are that it is com-
monly used in practice, it is highly interpretable
with well-established effect sizes, and it is easy to
aggregate across items and focal groups. One of
the drawbacks, however, is that it does not capture
non-uniform DIF, and it is not ideal in terms of
statistical power (Woods et al., 2013).

Consistent with other analyses of DIF, our study
struggles to identify sources of DIF (Zumbo, 2007).
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Figure 3: Estimates of direction and magnitude of overall DIF. Error bars indicate 95% confidence intervals. Yellow
shaded regions correspond to moderate DIF, and red shaded regions correspond to strong DIF. Reference groups
are listed on the left of each chart (M = Male, Spa = Spanish); focal groups are listed on the right (L1 groups are
abbreviated by the first three letters). DIF in the positive direction indicates that the focal group is favored.

Although it is outside the scope of this study, a fine-
grained analysis of examinees’ language, especially
based on L1, could provide insight. Additionally,
it could be beneficial to explore the possibility of
modifying BERT using debiasing techniques (Sun
et al., 2019). These techniques could potentially
reveal sources of DIF and reduce DIF. Follow-up
analyses along these lines of inquiry may be found
in Kwako (2023).
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A L1 Groups

In selecting L1 groups, one of our aims was to rep-
resent languages from around the globe. In some
cases, this required grouping languages to reach an
adequate sample size for statistical analyses. Given
the constraints of sample size, we tried to ensure
that L1 groups were as geo-historically related to
each other as possible (Brown, 2005). The four
composite L1 groups in our study were (1) Hindi,
(2) Mayan languages, (3) Persian, and (4) Swahili.
For simplicity, we refer to composite L1 groups
by the predominate language within each group,
with the exception of Hindi (in order to remain
consistent with a prior study). It would be more
accurate, however, to refer to the L1 groups as (1)
Indo-Aryan, (2) Indigenous languages of Central
and South America, (3) Indo-European languages
of the Middle East, and (4) Niger-Congo languages.

The languages within each of the composite L1
groups are presented in Table 5. Note that the
names of languages are derived from states’ depart-
ments of education, which do not follow the same
naming conventions. We made minor changes in
compiling the list of languages (e.g. changing “Pan-
jabi” to “Punjabi”).

There is a great deal of heterogeneity within L1
groups, as with gender, and as with all other de-
mographic characteristics. We note that L1 is not
synonymous with cultural identity, racial identity,
geographic identity, or preferred language. Despite
these limitation, in the context of English speaking
assessment, we believe L1 is a more relevant con-
struct than, say, conventional racial categories (e.g.
White, Asian, Black).

B BERT Performance Metrics

We conducted an analysis of the accuracy and bias
of Amazon’s automated transcription service. The
methodology and results of this study are reported
in detail in Kwako (2023); however, pertinent as-
pects of the study are also presented here. Briefly,
we evaluated transcription accuracy by comput-
ing word error rate (WER), a common metric that
represents the number of transcription errors (i.e.
insertions, deletions, and substitutions) as a per-
centage of words in a given utterance. Transcripts
generated by Amazon were compared to a set of
manually-generated ("ground truth") transcripts.

Figure 4 presents the WER of automated tran-
scription for grade bands 2-3 and 9-12. Overall,
examinees in grand band 2–3 had a higher WER,
on average, than examinees in grand band 9–12
(20.5% versus 16.5%, respectively). Note that this
level of accuracy is on par with human-human lev-
els of (dis)agreement for L2 English speech, which
typically ranges from 15-20% (Zechner, 2009).

There were no statistically significant differences
in either grade band with respect to gender. There
were also no statistically significant differences
in grade band 2-3 with respect to examinees’ L1.
Yet in grade band 9-12, examinees’ whose L1 was
Arabic had a lower WER (9.1%), on average, com-
pared to other L1 groups. In contrast, examinees
whose L1 was Vietnamese had a higher WER
(26.3%) than other L1 groups.

As discussed in Section 3.4, there were no statis-
tically significant differences with respect to over-
all DIF, when comparing human and BERT scores,
based on examinees’ L1 groups. Given the close
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Grade Band 2-3 Grade Band 9-12
Language n % n %

Hindi
Punjabi 157 37.7 75 40.5
Hindi 124 29.8 39 21.1
Urdu 65 15.6 35 18.9
Gujarati 46 11.1 30 16.2
Marathi 24 5.8 6 3.2

Mayan languages
Mayan languages 212 89.1 214 82.9
Q’anjob’al 24 10.1 40 15.5
Quechua 1 0.4 3 1.2
Q’eqchi 1 0.4 1 0.4

Persian
Persian 209 70.8 97 49.2
Kurdish 76 25.8 87 44.2
Farsi 10 3.4 13 6.6

Swahili
Swahili 89 42.6 120 55.3
Nuer 37 17.7 28 12.9
Niger-Kordofanian languages 16 7.7 16 7.4
Dinka 19 9.1 11 5.1
Kinyarwanda 7 3.3 19 8.8
Wolof 15 7.2 10 4.6
Fulah 10 4.8 5 2.3
Igbo 7 3.3 5 2.3
Yoruba 3 1.4 1 0.5
Hausa 1 0.5 1 0.5
Akan 2 1 0 0
Shona 2 1 0 0
Chichewa; Chewa; Nyanja 0 0 1 0.5
Kirundi 1 0.5 0 0

Table 5: Languages of composite L1 groups by grand band.
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Figure 4: Average word error rate (WER) estimates produced by Amazon’s automated transcription service. Overall
WER appear in black, and disaggregated WER appear in gold (gender) and blue (L1); whiskers indicate 95%
confidence intervals; brackets with asterisks indicate statistically significant pairwise comparisons.

Grade Band 2-3 Grade Band 9-12
Acc. r QWK Acc. r QWK

Item H B H B H B H B H B H B

1 .911 .896 .793 .713 .792 .713 .929 .904 .920 .895 .920 .895
2 .756 .685 .898 .861 .898 .859 .728 .700 .911 .910 .911 .909
3 .614 .618 .834 .834 .834 .829 .694 .707 .841 .885 .609 .884

Table 6: Performance of off-the-shelf BERT scoring models for items 1–3, compared to human-human agreement,
with respect to accuracy, correlation (r), and quadratic weighted kappa (QWK). "H" refers to human-human
comparisons (i.e. rater 2 compared to rater 1). The number of observations that were scored by two human
raters ranged from 1,567–1641 for Grade Band 2–3, and from 1,254–1,293 for Grade Band 9–12. "B" refers to
human-BERT comparisons (i.e. BERT compared to rater 1). The number of observations in the testing sets were
4,185 for Grade Band 2–3, and 3,306 for Grade Band 9–12.

correspondence between human and BERT scores,
it is unlikely that transcription inaccuracies engen-
dered lower or higher scores.

C BERT Performance Metrics

Performance metrics of all six BERT models are
presented in Table 6. Approximately 10% of all re-
sponses were scored by two human raters, indepen-
dently, which provides the basis for comparisons
between human and BERT performance. Off-the-
shelf BERT models performed marginally worse
for items 1 and 2, but were more consistent than
human raters for item 3, across most metrics.

D Human vs. BERT DIF for each item

Figure 5 presents the magnitude and direction of
DIF of items 1-3 for grand bands 2-3 and 9-12,
based on gender and all nine L1 focal groups sepa-
rately.
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Figure 5: Estimates of direction and magnitude of DIF for each of the three speaking items. Error bars indicate 95%
confidence intervals. Yellow shaded regions correspond to moderate DIF, and red shaded regions correspond to
strong DIF. Reference groups are listed on the left of each chart (M = Male, Spa = Spanish); focal groups are listed
on the right (L1 groups are abbreviated by the first three letters). DIF in the positive direction indicates that the
focal group is favored.
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