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Abstract

This paper presents the results of our partic-
ipation in the BEA 2023 shared task, which
focuses on generating AI teacher responses in
educational dialogues. We conducted experi-
ments using several Open-Source Large Lan-
guage Models (LLMs) and explored fine-tuning
techniques along with prompting strategies, in-
cluding Few-Shot and Chain-of-Thought ap-
proaches. Our best model was ranked 4.5 in the
competition with a BertScore F1 of 0.71 and a
DialogRPT final (avg) of 0.35. Nevertheless,
our internal results did not exactly correlate
with those obtained in the competition, which
showed the difficulty in evaluating this task.
Other challenges we faced were data leakage
on the train set and the irregular format of the
conversations.

1 Introduction

Nowadays, with the important development of
Large Language Models (LLM) and their great gen-
erative power, the interest in the development of
chatbots that simulate interactions between humans
has increased. In particular, in the educational do-
main, the use of chatbots seems to have interesting
benefits, such as their potential for adaptive learn-
ing, tailored to each student, or their permanent
availability (Bibauw et al., 2022).

The contributions of these tools to learning are
not yet clear (Wollny et al., 2021). In their review
of the area, these authors conclude that the develop-
ment of chatbots is usually based on technological
criteria, but the focus has not yet been placed on
their pedagogical contributions in terms of learning
improvements.

However, there is some evidence that for lan-
guage learning in particular, these tools bring cer-
tain benefits (Bibauw et al., 2022), mainly for stu-
dents at initial levels. It should be noted that in
the case of language teaching, interaction with the
agent is in itself an instance of learning practice.

One aspect to be studied in the development
of educational chatbots is their ability to under-
stand students needs and respond with the style
that teachers, trained to educate, use to address
their students (Bommasani et al., 2021). Although
current LLMs show great capacity for language
generation and for providing relevant -although not
always correct or true- answers to different types
of queries, it is important to study whether these
models can be used in an educational context, be-
ing able to respond to a student by simulating a
dialogue with a teacher. (Tack and Piech, 2022)
propose such an evaluation called the AI teacher
test challenge.

This paper presents the RETUYT-InCo submis-
sion to the BEA 2023 shared task (Tack et al., 2023)
on generating teacher responses in educational di-
alogues. In this work, we analyze some particu-
larities of the dataset used in the competition, we
describe the approaches we made to solving the
problem, and we present the results we obtained,
together with an analysis and discussion of future
steps.

2 Data analysis

The following study aims to understand the pat-
terns and characteristics of the conversations be-
tween teachers and students, which will be crucial
for training a chatbot to generate appropriate re-
sponses.

2.1 Dataset content
First, it is important to consider the description pro-
vided on the official BEA Shared Task webpage1

and the source of the corpus used in this study. Ac-
cording to the information available, the corpus
consists of extracts from 102 different chatrooms
where an English teacher engages in language ex-
ercises and assesses the English language profi-
ciency of the students (Caines et al., 2020). Each

1https://sig-edu.org/sharedtask/2023
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extract comprises a series of utterances, represent-
ing turns by the teacher and the student, along with
a response that, as per the competition prompt, al-
ways originates from the teacher. This distinction
is vital as the objective is not simply to continue a
conversation but to respond from the perspective
of a teacher.

Secondly, upon inspecting the corpus, it was re-
vealed that the dataset contained additional sets of
conversations beyond the original composition, as
described in the corpus paper (Caines et al., 2020)
and the provided website, which stated a total of
102 conversations. Hence, we assumed the corpus
was composed with a set of extracts from each of
those conversations, implying the data inside the
corpus is not completely dependent. Interestingly,
during the examination of the training corpus, nu-
merous tuples were found to be partially duplicated,
indicating that the conversations in the training set
were derived from overlapping segments of the
same original conversations. This issue is critical
due to two main reasons. First, it is important to
note that each teacher’s response does not corre-
spond to the final utterance of the entire conversa-
tion but rather the last utterance within an extract
from the conversation (similarly for the first utter-
ance). Moreover, this poses a significant challenge
when it comes to the typical validation approach of
partitioning the dataset, as it is not immediately evi-
dent how to separate each conversation in a manner
that prevents data leakage across corpus partitions
without hindering the model’s training.

2.2 Other relevant findings

There are several noteworthy characteristics of the
dataset to consider. Firstly, one of the initial exam-
ples showcased on the official website features a
student attempting to solve a task involving filling
a gap with a word or short phrase (see Fig. 1). How-
ever, upon inspecting the number of conversations
that contain at least one underscore character (_), it
was found that only 14.89% of them met this crite-
rion. Consequently, while this restriction does not
significantly impact the further architecture of the
model, it is worth mentioning that incorporating
this aspect could potentially enhance the model’s
performance in future work.

Furthermore, some tasks within the dataset in-
volve choosing between two options (a) or (b) type
questions. However, due to the fact that these types
of questions account for less than 1% of the total

corpus, the decision was made not to thoroughly
analyze them in this study.

Figure 1: Example of conversation extract

In addition, an examination of the dataset’s
tags reveals a variety of categories, including
<STUDENT>, <TEACHER>, <ANOTHER STU-
DENT>, <CAT’S NAME>, <LIZARD’S NAME>,
and others. Notably, students and teachers repre-
sent over 90% of the tags. The presence of specific
names and references to animals suggests that the
dataset covers a wide range of topics related to
conversations between teachers and students. A
table displaying the most frequent tags count can
be found in Table 1.

Tag Count

<STUDENT> 868
<TEACHER> 141
<ANOTHER STUDENT> 19
<CAT’S NAME> 18
<LIZARD’S NAME> 17
<STUDENT’S SHORT NAME> 7
<CAT’S NAME1> 5
<STUDENT’S FULL NAME> 5
<LIZARD’S NAME’S> 4
<TEACHER’S NAME> 3

TABLE 1: 10 Most Frequent Tags in the Dataset

2.3 Proportion of conversation utterances
In addition to examining other aspects of the cor-
pus, it is important to analyze whether the conver-
sations exhibit any form of imbalance. Intuitively,
one might expect the student to be more hesitant
in their participation due to a lack of confidence,
or conversely, the teacher may encourage the stu-
dent to contribute more in order to facilitate learn-
ing. Therefore, the rate of text length expressed by
each participant was assessed using two different
measures: the length of tokens and the number of
conversation turns.
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To tokenize the sentences in the dataset, we used
NLTK’s wordtokenize function (Bird et al., 2009).
To understand the distribution of tokens (see Fig. 2,
the analysis considered the token count for each
part of the conversation, namely the teacher, the
student, and both. The teacher’s responses had
an average of 11.18 tokens, with a standard de-
viation of 9.37. The student’s responses had an
average of 6.00 tokens, with a standard deviation
of 6.49. When considering both parts of the con-
versation, the average token count was found to be
9.07. These findings suggest that the model should
generate responses that are generally longer than
those found in the dataset.

Subsequently, it was measured the same propor-
tion taking only into consideration the number of
utteranaces by each speaker. The analysis indi-
cates that teachers account for 59.47% of the total
conversation turns. However, it is important to
acknowledge that this imbalance in the data is a di-
rect consequence of the last tuple always being the
teacher’s response. It is also worth highlighting that
the turns do not always follow an alternating pattern
based on the speaker, as there are instances where
the same speaker appears consecutively. This de-
viation from the typical conversational pattern can
present a challenge when training conversational
chatbots that rely on alternating inputs from differ-
ent speakers.

Figure 2: Student and Teacher’s token distribution

3 Experiments

This section described the systems implemented to
solve the task.

Figure 3: Prompt used with Alpaca LoRA applied to
the example with id train_1504 from the training set.

3.1 Using pretrained Large Language Models

Our first approach was trying out open source pre-
trained Large Language Models (LLMs), such as
the model LLaMA (Touvron et al., 2023) and a fine-
tuned version for following instructions available
in Hugging Face, Alpaca LoRA2.

The dataset used for the fine-tuning of Alpaca
LoRA is the one provided in (Taori et al., 2023),
where each example is composed of three sections
(the second is optional): Instruction, where the task
is described, Input, which is an optional context for
the task and Response, which is the answer to the
instruction.

We designed a prompt following this format
but we adapted it to integrate the whole conver-
sation to the context. An specific instruction was
designed for this task, and it is provided in the In-
struction section. The input section was changed
for a conversation section, where the utterances are
presented in a classical chat format. The response
section always starts with “teacher:”, influencing
the model to generate a continuation for the con-
versation as a teacher. An example is presented in
Fig. 3.

Following this experiment, we used an adap-
tation of the Few-Shot approach explained in
(Brown et al., 2020), in order to influence the
generated responses with the teacher’s style. For
choosing the examples provided in the prompt,
we used sentence embeddings generated with the
gtr-t5-large-1-epoch model in hugging
face3. An embedding was generated for each of the
utterances in the training set partition. For gener-
ating a new response, the previous utterances are

2https://huggingface.co/tloen/
alpaca-lora-7b

3https://huggingface.co/cohere-io/
gtr-t5-large-1-epoch
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Figure 4: Few-Shot prompt used with Alpaca LoRA
applied to the example with id train_1504 of the training
set.

converted into an embedding and the three most
similar conversations are selected from the training
set using the k-Nearest Neighbors technique. The
three responses of these selected examples are then
added to the prompt, as can be seen in Fig. 4.

3.2 Fine-tuning pretrained Large Language
Models

Pretrained LLMs tend to perform well in vari-
ous tasks due to scaling up of model size, dataset
size diversity, and length of training (Brown et al.,
2020). However, using these models only with
prompting techniques does not allow adapting to
a target domain or target task, nor fully leveraging
the potential of the training dataset.

Fine-tuning is the process of updating the
weights of a pre-trained model by using a domain
specific dataset in the training step. This technique
tends to obtain strong performance in many bench-
marks (Brown et al., 2020). However, it can be
computationally very costly as all parameters of
the LLM need to be updated. This is a major con-
straint, and sets a limit to the size of the models
that we are able to fine-tune.

For this experiments we used the CluserUY in-
frastructure (Nesmachnow and Iturriaga, 2019),
which has two servers using NVIDIA A100 GPUs
and 28 servers using NVIDIA P100 GPUs.

3.2.1 Experiments updating all the weights
DialoGPT is a transformer conversational model
developed by Microsoft. It is based on the
architecture of GPT2, which is known for its
effectiveness in generating coherent and con-

textually relevant text. The specific imple-
mentation of DialoGPT used in our study is
microsoft/dialogpt-large, which has
762 million parameters (Zhang et al., 2020b).

During training, DialoGPT was exposed to a vast
amount of data, including 147 million conversation-
like exchanges. These exchanges were extracted
from Reddit comment chains spanning from 2005
through 2017. This diverse and extensive training
data helped DialoGPT learn to generate responses
that resemble human-like conversations.

As mentioned in (Zhang et al., 2020b), the hu-
man evaluation results demonstrate that the re-
sponses generated by DialoGPT exhibit a level of
quality comparable to human responses in a single-
turn conversation Turing test. Considering that
the competition assesses the similarity to human
responses as a metric, leveraging DialoGPT’s per-
formance has the potential to enhance the metrics
of our model results.

It is important to note that in our study, we
trained DialoGPT without specifically optimizing
its architecture or training process. Our primary
intention was to assess whether a conversational
model like DialoGPT could achieve comparable
performance to other existing models.

3.2.2 Experiments using Low-Rank
Adaptation

The high computational requirements for fine-
tuning big LLMs, such as LLaMA 7b, posed a
significant challenge even with access to the Clus-
terUY infrastructure. The process is not only com-
putationally costly but also time consuming, which
makes the task of training and testing various fine-
tuned models with different base models or prompt-
ing techniques impractical. To overcome these re-
strictions, we opted to use Low-Rank Adaptation
(LoRA) (Hu et al., 2021) for fine-tuning the bigger
models.

LoRA is a method for fine-tuning models which
aims to reduce GPU memory requirement by freez-
ing the pretrained model weights and injecting
trainable rank decomposition matrices into each
layer of the Transformer architecture, reducing the
amount of trainable weights. This method not only
reduces computing and time requirements, but also
space requirements because only the rank decom-
position matrices need to be stored, which have
much less parameters than the original matrices.

For example, suppose W ∈ Mm×n is a weight
matrix and ∆W ∈ Mm×n is the weight update
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we want to learn. As shown in (Raschka, 2023),
instead of learning ∆W , we can decompose it into
two smaller matrices: ∆W = WmWn, where
Wm ∈ Mm×r, Wn ∈ Mr×n and r is a small
number called rank. Keeping the original weights
frozen and only training these new matrices re-
sults in reducing the amount of trainable parameters
from m∗n to m∗ r+ r ∗n. After training, the new
parameters are obtained by doing: W +WmWn.

Using the LoRA method, we trained fine-tuned
versions of OPT 2.7b (Zhang et al., 2022), Bloom
3b (Scao et al., 2022) and LLaMA 7b (Touvron
et al., 2023). For generating the dataset necessary
to train all of these models, we adapted the training
set in the following manner: The utterances and the
response were joined into a string with a classical
chat format, where every teacher intervention starts
in a new line with “teacher:” and every student
intervention starts in a new line with “student:”.

The configuration used for fine-tuning these
models with LoRA involved a rank of 16, a scal-
ing factor for the weight matrices of 32, and a
dropout probability for the LoRA layers of 0.05.
The training process employed the AdamW opti-
mizer, with a total of 200 training steps, a learning
rate of 2× 10−4, and a batch size of 4.

3.3 Preprocessing and Fine-Tuning

3.3.1 Preprocessing technique
Upon analyzing the results during the development
phase, we observed a recurring issue where the
model became confused when attempting to con-
tinue the conversation from the teacher’s perspec-
tive after the same teacher had spoken. This dis-
crepancy stemmed from the dataset’s structure, as
it did not adhere to the conventional alternation of
turns between speakers, which the models typically
expect.

Consequently, even when explicitly specifying
that the model should respond as a teacher in the
prompt or using an input format like "Teacher:
<Sentence-Before-Response>\n Teacher:", the mod-
els consistently generated responses from the stu-
dent’s standpoint. This posed a significant chal-
lenge not only during the model’s training phase,
where it could become perplexed by the corpus
structure, but also during the validation process.

To address this issue, we implemented two mod-
ifications:

Corpus Modification: We adjusted the corpus
by introducing a structural change. Whenever two

consecutive conversations appeared in the original
corpus, we combined them into a single utterance
separated by a period. This alteration aimed to
create longer utterances that would help the model
distinguish between student and teacher interac-
tions.

Test-time Adjustment: During testing, if the
last utterance belonged to a teacher, we introduced
an auxiliary phrase into the corpus. This additional
phrase was carefully crafted to avoid introducing
new information to the conversation, ensuring it
did not hinder the teacher’s train of thought. We
opted for the phrase "Student: I see\n," a common
expression used in the corpus and everyday con-
versations to convey active listening and encourage
the other person to continue speaking.

By employing these preprocessing techniques,
we sought to improve the model’s performance
by aligning its responses more closely with the
intended teacher’s perspective while overcoming
the challenges posed by the dataset’s structure.

3.3.2 Fine-Tuned model using the
preprocessing technique

The model in which we used this ad-hoc technique
was opt-2.7b (Zhang et al., 2022). OPT, devel-
oped by Meta, is a decoder-only language model
closely related to GPT-3. It has been predominantly
pretrained on English text, supplemented with a
small amount of non-English data obtained from
CommonCrawl. The model’s pretraining process
employed a causal language modeling (CLM) ob-
jective, similar to other models in its family. Evalu-
ation of OPT aligns with the prompts and experi-
mental setup used for GPT-3 (Brown et al., 2020).

The decision to employ OPT in this study was
motivated by the aim of exploring an alternative
that offers both variety and considerable power.
However, it is crucial to acknowledge and address
the limitations of this model. Meta AI’s model
card highlights that OPT’s training data consists of
unfiltered internet content, resulting in a significant
bias embedded within the model.

The configuration used for fine-tuning this model
was the AdamW optimizer, a learning rate of 0.001
and a batch size of 4.

3.4 Combining prompting techniques with
fine-tuning

After experimenting with prompt-based and fine-
tuning approaches, a natural evolution was to look
for ways to combine both of these techniques. Our
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first approach was to fine-tune the model LLaMA
7b with LoRA using the already explained few-
shot method. In the same way as before, the three
most similar responses in the training set with re-
spect to the reference response were chosen to be
added to the context. We took into consideration
that responses from different partitions of the same
conversation should not be considered for this selec-
tion. We expected that during fine-tuning, some pat-
terns that could exist between the similar responses
and the expected response could be learned.

Recent works like (Wei et al., 2023) showed that
adding intermediate reasoning steps that lead to the
final answer for a problem improves the ability of
LLMs to perform complex reasoning. Inspired on
this work, we designed a different solution that tries
to combine intermediate reasoning and fine-tuning.

The training set was modified to include some
characteristics of the response. Initially, two new
features were added. A binary feature that is set
to 1 if the response has a question mark, and a
multiclass feature that is composed of 28 emotions
taken from (Demszky et al., 2020), such as anger,
approval, curiosity, disapproval, neutral and others.
To obtain the second feature for every example in
the training set, the EmoRoBERTa model was used
(Kamath et al., 2022). This model classifies text
into the 28 emotions already mentioned.

Then, a dataset for fine-tuning was constructed.
Each example of the dataset is a string composed of
three sections: Conversation, where the utterances
are presented in a classical chat format, Reflection,
which is constructed using the already mentioned
features, and Response, which has the reference
response.

The Reflection section is a sentence with two
parts: The first part indicates the expected emo-
tion of the response and the second part, which
is optional, indicates if the expected response is a
question. For example, an example classified as

“Curiosity” and that is a question would have the re-
flection: “My response should show curiosity and
should be a question”. A complete example can be
seen in figure 5.

Using this dataset, we fine-tuned LLaMA 7b
with the already mentioned LoRA technique.
Given a new conversation, the model is capable
of generating a complete reflection and response.
The reflection is discarded to get the final response.

A second version was created using a new fea-
ture that classifies the response length in short, nor-

Figure 5: Example of the prompt used for the reflection
approach dataset.

Figure 6: Character count per example in the training
set, in ascending order. The green lines indicate the
thresholds of each class, and the red line indicates the
average.

mal or long. A response is considered short if it
has 20 characters or less and long if it has 53 char-
acters or more. These numbers were selected in
order to divide the dataset in the most balanced
way (approximately 1/3rd for each class) as can be
appreciated in Fig. 6. The reflection sentence was
changed to include this information.

4 Results

Given that this work is framed in the context of
the BEA 2023 shared task, and the development
and test sets gold responses were not released un-
til after the competition finished, we created our
own internal split of the training set in 80% for
training and 20% for internal validation. We will
present the results of all our experiments against
this internal validation data, which we call the inter-
nal validation phase. For the development and test
sets, we will only present the results of the systems
submitted to the competition.

A problem with this internal split, as already
explained in the data analysis section, is that it in-
cludes some repeated utterances across the training
and validation sets, due to the overlapping that oc-
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Experiment
BERTScore DialogRPT

Precision Recall F1 Score updown human_vs_rand human_vs_mach
Finetuning (LoRA) Bloom 3b 0.840 0.838 0.838 0.495 0.912 0.985
Finetuning (LoRA) Llama 7b + Reflection 0.808 0.840 0.823 0.463 0.881 0.995
Alpaca LoRA 0.832 0.829 0.830 0.489 0.841 0.986
Alpaca LoRA + Few Shot 0.836 0.836 0.836 0.480 0.820 0.989
Finetuning (LoRA) Llama 7b + Few Shot 0.802 0.839 0.819 0.465 0.871 0.997
Finetuning (LoRA) opt 2.7b 0.841 0.832 0.836 0.478 0.748 0.966
Finetuning opt 2.7b 0.847 0.842 0.844 0.474 0.673 0.981
Finetuning (LoRA) Llama 7b 0.854 0.841 0.847 0.473 0.642 0.965
Finetuning (LoRA) Llama 7b + Reflection with length 0.850 0.831 0.840 0.465 0.595 0.985
Finetuning DialoGPT Large 0.700 0.667 0.682 0.462 0.592 0.959
Baseline 1: Always reply "Hello" 0.861 0.805 0.832 0.524 0.305 0.952
Baseline 2: Always reply "Cucumber" 0.723 0.810 0.764 0.503 0.360 0.992

TABLE 2: Internal validation results.

curs in some of the training set tuples. This may
influence the results during evaluation, but we de-
cided to keep it this way so as not to significantly
reduce the training set partition.

Two evaluation metrics are used in all phases,
following the indications given in the official web-
site of the shared task4: One of them is BERTScore
(Zhang et al., 2020a), which produces precision,
recall, and F1 scores by comparing words in the
generated response with respect to the reference
response using cosine similarity. The other one
is DialogRPT (Gao et al., 2020), which evaluates
the generated response taking into account the
utterances given as context. The specific Dialo-
gRPT metrics used are updown, human_vs_rand,
human_vs_machine and final (average and best).

4.1 Internal evaluation

Due to the fact that both metrics have multiple hy-
perparameters that can be tuned differently, the con-
figuration used during this internal phase does not
align exactly with the one used in the competition.
For the BERTScore metric, roberta-large is used
as the base model and idf weighting is not used.
Meanwhile, for DialogRPT, the context used are
the utterances concatenated in a classical chat for-
mat and the hypothesis is the generated response.

Trying out different configurations for Dialo-
gRPT, we found out that the definition of the con-
text to be used has a big influence on the results
obtained. As no information was provided on how
the context was going to be defined in the devel-
opment and evaluation phases, we made our own
definition and used it consistently during all our
internal evaluations.

4https://sig-edu.org/sharedtask/2023#
evaluation

The results obtained during the internal eval-
uation for all the described experiments can be
observed in Table 2. Besides all the methods de-
scribed, we include two very simple methods that
serve as baselines to compare with. In both cases
the baseline systems generate the same response to
all contexts. One baseline always replies "Hello",
and the other always replies "Cucumber", so as to
consider a more likely and a more unlikely case.

4.2 Development and evaluation phases

For the development phase, we decided to submit
the LoRA fine-tuning of the model LLaMA 7b,
which had the best F1 score in the internal phase,
the model Alpaca LoRA with the Few-Shot tech-
nique for the prompt, and the fine-tuned version
of DialoGPT. We chose to submit these models
because each of them uses a different approach:
fine-tuning with LoRA, a prompting technique, and
fine-tuning updating all the weights, respectively. It
is important to mention that not all the experiments
were completed when the deadline for this phase
occurred.

Due to an error in the calculation of BERTScore
on CodaLab5, the results obtained in the develop-
ment phase were not correct. This influenced our
decisions of what models to send to the evaluation
phase, given that our internal evaluations did not
seem to correlate with these obtained results. The
corrected results were later published, and can be
seen in Table 3.

Considering that the Alpaca LoRA with Few-
Shot approach was the one that yielded the best
results in the development phase, we decided to
also submit it in the evaluation phase. Two new
approaches were also submitted: the LoRA fine-

5https://codalab.lisn.upsaclay.fr/
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Experiment
BERTScore DialogRPT

Precision Recall F1 Score updown human_vs_rand human_vs_mach final (avg) final (best)
Finetuning (LoRA) Llama 7b 0.72 0.70 0.71 0.36 0.94 0.98 0.32 0.67
Alpaca LoRA + Few Shot 0.68 0.69 0.68 0.37 0.95 0.98 0.33 0.72
Finetuning DialoGPT Large 0.70 0.67 0.68 0.35 0.92 0.98 0.30 0.68

TABLE 3: Development phase results.

tuning of LLaMA 7b with reflection in the prompt,
and the fine-tuning of OPT 2.7b with preprocessing.
Table 4 shows the results obtained for this phase,
evaluated over the test set.

4.3 Observations

We observed that fine-tuning a model updating all
the weights does not show significant differences
in comparison to using the LoRA technique. On
a separate note, the results reveal that fine-tuned
models seem to improve the BERTScore results
over prompting techniques, but the opposite seems
to happen with DialogRPT metrics. The experi-
ments that try to combine both techniques tend to
show competitive results across all metrics.

Another observation that derives from the inter-
nal results (Table 2), is that the "Hello" baseline
approach not only yields good results in the major-
ity of the metrics, but is also the best in BERTScore
precision and DialogRPT updown. This seems to
indicate that these metrics (at least with our configu-
ration) may not fully capture or accurately correlate
with human judgement.

5 Conclusions

We presented the experiments we performed for
the BEA 2023 shared task on generating teacher
responses in educational dialogues. Our methods
use the latest open source LLMs in a variety of
scenarios and incorporating some fine-tuning and
targeted prompting strategies for improving the
performance.

The experiment that yielded best results in the de-
velopment phase was the model Alpaca LoRA with
a Few-Shot prompting technique, which ranked
third. However, in the evaluation phase, the Fine-
Tuning version of OPT 2.7b with preprocessing
ended up performing better than the previous one,
and ranked fourth in this phase.

5.1 Areas of Improvement

Throughout the competition, several areas were
identified where improvements could have en-
hanced the performance of our chatbot model.

On the one hand, further fine-tuning of the
model’s parameters could have been explored to
optimize its performance. By carefully tuning hy-
perparameters, we could have potentially achieved
better results in terms of response quality and co-
herence. Additionally, despite training our mod-
els using high-performance GPUs (e.g., A100 and
P100), we faced limitations in testing models with
more than 10 billion parameters. Given the ad-
vancements in model architectures, exploring larger
models could have yielded further improvements
in chatbot performance. Overcoming hardware
limitations and resource constraints would open
avenues for investigating more powerful models in
future iterations. Moreover, to resource and time
constraints, our models could not be trained for dif-
ferent number of epochs. Longer training durations
are often beneficial for improving model perfor-
mance. Given more resources and time, training
the models for multiple epochs could have yielded
better results.

On the other hand, one challenge encountered
during the competition was data leakage between
the internal validation set and the training set. This
issue, arising from the training dataset, hindered
the models’ ability to accurately improve their per-
formance without overfitting. A more carefully
curated validation set, separate from the training
data, would have provided a more reliable eval-
uation metric. Furthermore, regarding the eval-
uation metircs, BERTScore and DialogRPT, we
observed questionable scores when comparing our
model’s performance against a baseline of answer-
ing "hello" for every prompt. The BERTScore
showed unexpectedly high scores for this base-
line, while DialogRPT correctly penalized such
responses. On top of that, another baseline that re-
sponded with a fixed word "cucumber" consistently
scored poorly, which aligns with our expectations.
Careful consideration and refinement of our evalua-
tion metrics are necessary to ensure their reliability
and alignment with the desired behavior of chatbot
models.
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Experiment
BERTScore DialogRPT

Precision Recall F1 Score updown human_vs_rand human_vs_mach final (avg) final (best)
Finetuning (LoRA) Llama 7b + Reflection 0.73 0.71 0.72 0.37 0.94 0.98 0.33 0.64
Finetuning opt 2.7b 0.74 0.68 0.71 0.38 0.90 0.96 0.35 0.65
Alpaca LoRA + Few Shot 0.72 0.68 0.70 0.37 0.91 0.96 0.34 0.68

TABLE 4: Evaluation phase results.

5.2 Ethical limitations

It is essential to address the ethical limitations ob-
served our fine-tuned OPT model, ranked 4th in
the competition. The model card provided by Meta
AI highlighted that the training data used for their
model consisted of unfiltered internet content, lead-
ing to the presence of significant biases within the
model. These ethical considerations raise concerns
regarding fairness, inclusivity, and potential biases
in the responses generated by the model. Further
research and development in addressing these limi-
tations are imperative to ensure the responsible and
unbiased deployment of chatbot models.

5.3 Final thoughts

In conclusion, while our chatbot models showcased
promising performance in the competition, there
are areas for improvement and important ethical
considerations to be addressed. By focusing on ad-
justing model parameters, handling specific tokens,
increasing training duration, improving validation
sets as well as their preprocessing, and exploring
larger models, future iterations of chatbot models
can achieve even greater performance and ensure
ethical deployment.
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