
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), pages 766–771
July 13, 2023 c©2023 Association for Computational Linguistics

Empowering Conversational Agents using Semantic In-Context Learning

Amin Omidvar, Aijun An
Department of Electrical Engineering and Computer Science, York University, Canada

omidvar@yorku.ca, ann@yorku.ca

Abstract

Language models are one of the biggest game
changers in downstream NLP applications, es-
pecially in conversational agents. In spite
of their awesome capabilities to generated re-
sponses to solve the inquiries, there are still
some big challenges to using them. One chal-
lenge is how to enable the LLMs to use the
private internal data to solve inquires. And
secondly, how to keep the LLMs updated with
newly incoming data without the burden of fine-
tuning as it is not only expensive but also not an
available option for some commercial LLMs,
such as ChatGPT. In this work, we propose Se-
mantic In-Context Learning (S-ICL) to address
the aforementioned challenges. Our proposed
approach participated in the BEA 2023 shared
task1 and ended up achieving the fourth place
in both the development and evaluation phases.

1 Introduction

Conversational agents are one of the most impor-
tant applications of NLP. If implemented success-
fully, they can bring tremendous benefits for both
organizations and clients, such as improving the
efficiency of customer service in terms of support
and availability of the services.

With the emergence of powerful large language
models (LLMs) such as ChatGPT, there is a lot of
interest in leveraging LLMs to develop AI agents.
Even though LLMs are capable of answering a
broad spectrum of questions, there are still two
major bottlenecks for using them as an AI assistant.

First, each organization has some valuable inter-
nal knowledge such as FAQs, policies, regulations,
etc. that can or should be used to resolve incoming
inquiries. However, the LLMs are trained based
on public datasets and may not be aware of private
knowledge sources that could help them to resolve
incoming inquiries more accurately.

1https://sig-edu.org/sharedtask/2023
Our username and team’s are amino and aiitis, respectively.

Secondly, fine-tuning these LLMs on the orga-
nization’s internal data is not an easy task due to
factors such as the size of the LLMs, cost of train-
ing, frequent updates in the internal data, and data
privacy. For example, in news media, news arti-
cles are published every day that LLMs are not
aware of them. If the news media decides to use an
LLM as an agent, the agent would be unable to pro-
vide users with information about current events
or answer their questions about what is happening
now. On top of that, the fine-tuning option is not
available for certain LLMs (e.g., ChatGPT with the
GPT-3.5-turbo engine).

One possible solution to the mentioned problems
is In-Context Learning (ICL), as it can enable the
LLMs to perform well on the tasks or data that they
have never seen before (Brown et al., 2020). In ICL,
a prompt containing an instruction, few labeled
samples, and an unlabeled sample is given to the
LLM. Then, the LLM would be able to label the
unlabeled sample without the need for any gradient-
based training (Liu et al., 2022).

However, it is infeasible to show all the avail-
able samples to the LLM due to the high cost of
computation. Also, previous research shows that
the format of the prompt, the selection of samples,
the number, order, and structure of samples could
have not only significant but also unforeseeable
effects on LLMs’ performance (Min et al., 2022;
Sanh et al., 2021; Wei et al., 2023; Liu et al., 2022).

To solve the aforementioned problems, we pro-
pose Semantic In-Context Learning (S-ICL) which
utilizes a semantic search engine (i.e., an SBERT
model (Reimers and Gurevych, 2019)) and an LLM
(i.e., ChatGPT with the gpt-3.5-turbo engine) to
build a conversational agent. This agent not only
benefits from the knowledge of an LLM but also
utilizes available private knowledge sources to pro-
vide the correct answer to the inquiries. We also
propose a flexible architecture that allows experts to
apply and compare different approaches for prompt

766

https://sig-edu.org/sharedtask/2023


engineering.
The proposed model is developed and partici-

pated in the BEA 2023 Shared task (Tack et al.,
2023). However, the proposed model is flexible,
and the agent can be used in other domains such as
news media, customer service, and more.

The rest of the paper is as follows. In Section 2,
we describe the proposed architecture along with
its components. In section 3, we compare different
configurations of the proposed model on the created
test set, and we also evaluate the model on the
competiton’s data. Finally, this paper is wrapped
up with the conclusion in section 4.

2 Proposed Model

In this section, we present our proposed approach
for generating a response to the inquiry. Our pro-
posed approach uses semantic search (Reimers and
Gurevych, 2019) to enable the agent to utilize pri-
vate domain data. It also uses a large language
model not only to provide higher quality answers
but also to enable the agent to answer questions
that are significantly different from past questions
and answers in the private domain data.

2.1 Overview

As shown in Figure 1, the proposed architec-
ture consists of five main components: Data pre-
processor, Embedder, Retriever, Prompt builder,
and Answer generator. The first three components
are related to the semantic search part of the ar-
chitecture, while the other two are related to the
language model.

2.2 Data pre-processor

The data pre-processor receives utterances in JSON
format containing a context and a query (i.e., the
last utterance). It extracts and transforms the JSON
file into the followings:

Concatenation: it’s a textual concatenation of
all the utterances made by a student and a teacher.
The main purpose of transforming data into this
format is to enable its use in the semantic search
part of the architecture.

Sample: It’s a conversational flow between the
student and the teacher. Based on who wrote the
utterance, either "Teacher: " or "Student: " would
be appended in the beginning of the utterance. This
format is being used by the prompt builder com-
ponent as it is more appropriate to be used by the
language model.

2.3 Embedder

In this section, we use a state-of-the-art transformer
encoder model to convert the concatenation format,
which is built in the data pre-precossor part, into the
embedding represention. We use the pre-trained
model "multi-qa-mpnet-base-dot-v1" to generate
embeddings as it has the highest performance in
the Hugging Face benchmark 2. The tokenizer first
tokenizes the input text, and then the transformer
encoder model infers an embedding vector with a
size of 768 for each token of the input text. The
embedding vector of the CLS token in the last layer
is considered the embedding representation of the
whole input text.

2.4 Retriever

The Retriever is responsible for finding the most
similar records that exist in the training data to the
incoming context. It calculates the cosine similarity
between the embedding vector of the context and
each embedding vector in the training set. Then,
the results would be sorted in descending order
based on the cosine similarity score, and the top N
results would be passed on to the next step.

This process could be significantly sped up on
large datasets by using approximate K-nearest
neighbor methods, such as Facebook AI Similarity
Search (Faiss) (Johnson et al., 2019). However, due
to the small size of our data, we don’t need to use
any approximate K-NN methods.

2.5 Prompt builder

The prompt builder component creates a prompt
based on the selected prompt building approach.
Figure 2 shows the structure of the prompt which
consists of the following components in order:

Command: It’s a first component of the prompt
that informs the language model of what is ex-
pected to be done.

Sample(s): The retrieved sample(s) from the
training set are included to assist the language
model in answering the inquiry. This part of the
prompt is optional because the number of samples
to be used depends on the selected approach.

Inquiry: It contains the last utterance along with
the previous utterances (i.e., Context) given to the
system.

The command part of the prompt is written by
humans, while the other parts are generated auto-

2https://www.sbert.net/docs/
pretrained_models.html

767

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html


Figure 1: The proposed architecture for the conversational agent uses both semantic search and a large language
model.

matically depending on the chosen prompt building
approach. So far, four prompt building approaches
have been designed, but more could be defined to
further improve the agent’s performance or adapt it
better to different domains of data, such as news.

2.6 Answer Generator
A large language model is used in this part of the
architecture. In our experiment, we use ChatGPT 3

API using gpt-3.5-turbo engine. A prompt created
in the previous stage would be sent to the language
model, and the response would be returned to the
end user. To make the result reproducible, we set
the temperature value to zero.

In this way, the language model can not only use
its knowledge but also have access to the relevant
past responses from the private domain knowledge
to answer the question. Another advantage is that
there is no need to fine-tune the large language
model on private internal data, which may not be
an option for many models, such as ChatGPT.

3 Experiment

This section has three subsections. In the first sub-
section, we introduce the dataset used, split the
train portion of the data into our created train and
test sets, and show how the pre-processing has been
done. In the second subsection, we conduct experi-
ments on the proposed architecture using the cre-
ated test set (i.e., selected from the original training
set) and compare the accuracy of the model using

3https://openai.com/blog/chatgpt

different prompt building approaches. In the third
subsection, we will demonstrate the model’s per-
formance on the development and testing sets of
the competition data.

3.1 Data

The data consists of the conversation between a stu-
dent and a teacher provided by (Caines et al., 2020).
The sizes of the provided data and their release
dates in the competition are shown in Table 1. We
transform the training set using the pre-processor
component (subsection 2.2). Then, we use the em-
bedder component (subsection 2.3) to convert the
concatenation of the utterances into their embed-
ding representations (i.e., Train set embedding in
Figure 1).

Then, we split the train set into customized train
and test sets with sizes of 2647 and 100, respec-
tively. We use the customized train and test sets
to compare the different prompt generation ap-
proaches in subsection 3.2. Since some of the
records in the training set have similar utterances
(i.e., they overlap), we select the test data in a way
that none of the test conversations can be answered
directly from the conversations in the training set
(i.e., there is no overlap between the utterances of
the train and test sets).

3.2 Evaluation of different approaches

We use five different approaches to provide the
response to the incoming inquiry. In the first ap-
proach, we only use the semantic search. That

768

https://openai.com/blog/chatgpt


Figure 2: An example of a prompt structure with a single sample.

Set Size Release date
Train 2747 March 24, 2023
Dev 305 March 24, 2023
Test 273 May 1, 2023

Table 1: The statistics of the TSCC dataset.

means the last utterance of the most similar re-
trieved sample is chosen as a response. Next, we
are curious to see how good the language model is
in completing the conversation without using any
samples. The command we use is "Complete the
following conversation by giving an appropriate
answer by the teacher". However, for the third
approach, we ask the language model to "Find the
appropriate answer by the teacher from sample 1
to complete the conversation 1". The provided sam-
ple, which has the ID "train_0063", was chosen by
us from the training set and has been used for all
inquiries.

During the experiments, we observed that Chat-
GPT tends to generate longer responses than the
ground truths. However, we discovered that by for-
mulating our prompt command in a certain way
(i.e., find the appropriate answer by the teacher
from sample ...), ChatGPT can produce more con-
cise and shorter responses. Therefore, we decided
to write the command part of our prompt in this
way. We also observed that for some inquiries,
ChatGPT mentions "teacher :" in its response, so
we wrote a rule to remove it.

The fourth approach includes the top 3 most
similar samples in the prompt and the command is
"Find the appropriate answer by the teacher from
sample 1, sample 2 and sample 3 to complete the
conversation 1". And the last approach is similar
to the third one but instead of using the curated
sample, the most similar sample from the training
set is being used. The last two approaches are based
on S-ICL.

The results of the above approaches on the cre-
ated test dataset are shown in Table 2 in terms of
BERT Score (Zhang et al., 2019) and DialogRPT
(Gao et al., 2020). In Table 2, P, R, F, U, HvR,
HvM stand for precision, recall, f1-score, updown
(the probability that a response receives upvotes),
human vs random (the probability that the response
is relevant to the given context), human vs ma-
chine (the probability that the response was written
by a human rather than generated by a machine),
respectively. The first three measures belong to
BERTScore (Zhang et al., 2019), and the rest of
them belong to DialogRPT (Gao et al., 2020). We
use "roberta-large" model 4 for the BERTScore as
we do not know which model the competition is
using. We then compare the generated responses
with their ground-truths using BERTScore in terms
of precision, recall, and f1-score. Each of the first
three measures of DialogRPT (i.e., U, HvR, and
HvM) 5 has its own pre-trained model. Each model

4https://huggingface.co/roberta-large
5https://github.com/golsun/DialogRPT

769

https://huggingface.co/roberta-large
https://github.com/golsun/DialogRPT


Approach BERTScore DialogRPT
P R F U HvR HvM best avg

1 0.824 0.823 0.823 0.433 0.789 0.983 0.999 0.735
2 0.835 0.837 0.836 0.490 0.922 0.999 0.999 0.804
3 0.839 0.836 0.837 0.464 0.877 0.997 0.998 0.779
4 0.828 0.832 0.830 0.574 0.767 0.998 0.999 0.780
5 0.835 0.831 0.833 0.481 0.839 0.997 0.999 0.773

Table 2: The comparison between different approaches used on the created test set in terms of BERT Score.

receives the generated responses and their corre-
sponding contexts (i.e., the previous utterances of
each conversation) to calculate a score.

Interestingly, the model that uses the fixed sam-
ple for all the inquiries (third approach) gained the
best BERTscore in terms of f1-score. This observa-
tion is inline with the results of other studies such
as (Min et al., 2022) that they concluded replacing
the sample labels randomly would barely hurts the
performance of the LLMs. In terms of DialogRPT,
the second approach gained the best results. How-
ever, when we examined the generated answers, we
found out the answers of the fifth approach are both
more reasonable and preferable in comparison with
the other approaches.

3.3 BEA Workshop’s evaluation

Our proposed approach ranked fourth both in devel-
opment and evaluation phases. We used our third
approach (using the fixed sample) for the develop-
ment phase as we noticed the majority of utterances
in development data have overlap with the training
set. If we use either the fifth or fourth approach,
the model would recognize the similarity between
the sample and the conversation and produce a re-
sponse so similar to the existing utterance in the
sample that it would inflate the performance of the
system. However, we discovered that the test data
is different in a way that none of its conversations
could have their responses directly obtained from
any utterances in either the training or development
sets. Therefore, for the evaluation set, we used the
fifth approach. Another reason that why we used
the fifth approach in the evaluation phase is that the
top three models would be evaluated by the human
evaluators, and we already noticed in subsection
3.2 that the results of the fifth approach are more
desirable from humans’ point of view.

The evaluation phase was started on May 1st
and ended on May 5th. Due to an unprecedented
emergency, we were unable to continue working

on the test data and our last submission was on
May 1st. Our model ended up ranking fourth in
the evaluation phase and could not pass to the hu-
man evaluation phase. However, we think that the
proposed model has a high potential for improve-
ment, especially if more efforts would be put on
the prompt engineering part of the architecture.

4 Conclusion

We proposed a Semantic In-Context Learning (S-
ICM) approach for conversational agents using
the combination of a semantic search and a large
language model (i.e., ChatGPT). We also imple-
mented an architecture enabling users to apply and
compare different approaches for prompt engineer-
ing. We applied our proposed method on the BEA
2023 shared task and our approach ended up rank-
ing fourth in both the development and evaluation
phases.

Acknowledgements

This work is funded by Natural Science and Engi-
neering Research Council of Canada (NSERC).

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Andrew Caines, Helen Yannakoudakis, Helena Edmond-
son, Helen Allen, Pascual Pérez-Paredes, Bill Byrne,
and Paula Buttery. 2020. The teacher-student chat-
room corpus. arXiv preprint arXiv:2011.07109.

Xiang Gao, Yizhe Zhang, Michel Galley, Chris Brockett,
and Bill Dolan. 2020. Dialogue response ranking
training with large-scale human feedback data. arXiv
preprint arXiv:2009.06978.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

770



Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Anaïs Tack, Ekaterina Kochmar, Zheng Yuan, Serge
Bibauw, and Chris Piech. 2023. The BEA 2023
Shared Task on Generating AI Teacher Responses in
Educational Dialogues. In Proceedings of the 18th
Workshop on Innovative Use of NLP for Building
Educational Applications, page to appear, Toronto,
Canada. Association for Computational Linguistics.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. 2023. Larger language
models do in-context learning differently. arXiv
preprint arXiv:2303.03846.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

771


