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Abstract

Since the introduction of transformer-based lan-
guage models in 2018, the current generation of
natural language processing (NLP) models con-
tinues to demonstrate impressive capabilities
on a variety of academic benchmarks and real-
world applications. This progress is based on a
simple but general pipeline which consists of
pre-training neural language models on large
quantities of text, followed by an adaptation
step that fine-tunes the pre-trained model to per-
form a specific NLP task of interest. However,
despite the impressive progress on academic
benchmarks and the widespread deployment of
pre-trained and fine-tuned language models in
industry we still lack a fundamental understand-
ing of how and why pre-trained and fine-tuned
language models work, as well as they do. We
make several contributions towards improving
our understanding of pre-trained and fine-tuned
language models, ranging from analyzing the
linguistic knowledge of pre-trained language
models and how it is affected by fine-tuning, to
a rigorous analysis of the fine-tuning process
itself and how the choice of adaptation tech-
nique affects the generalization of models. We
thereby provide new insights about previously
unexplained phenomena and the capabilities of
pre-trained and fine-tuned language models.

1 Introduction

Since the introduction of transformer-based pre-
trained neural language models in 2018 (Devlin
et al., 2019; Liu et al., 2019b), the field of nat-
ural language processing (NLP) has witnessed a
paradigm shift. Instead of designing and training
highly task-specific models from scratch, the cur-
rent default approach for most NLP tasks consists
of adapting general-purpose pre-trained language
models, a process which typically requires only
very few task-specific changes to the model archi-
tecture, and therefore allows us to easily apply the
same pre-trained model to different tasks. Over
the last five years (2019 – 2023), this paradigm

Figure 1: Our contributions positioned along the pre-
train then adapt pipeline which is prevalent in modern-
day NLP. §3 is concerned with how fine-tuning affects
the linguistic knowledge of a model, §4 focuses on a
better understanding of the fine-tuning process, and §5
is concerned with the generalization of models adapted
via fine-tuning and in-context learning during inference.

shift has led to impressive progress on a large vari-
ety of downstream NLP tasks, ranging from tradi-
tional computational linguistics tasks such as part-
of-speech tagging and more challenging tasks like
natural language inference, to text-based dialogue
and assistant systems (Wang et al., 2018, 2019;
OpenAI, 2023, inter alia).

At the core of this impressive progress lies a
very simple but general pipeline which is illus-
trated in Figure 1 together with our contributions.
The first step of this pipeline, which we will refer
to as the pre-train then adapt pipeline, consists
of pre-training a (large) neural language model
on large quantities of text using self-supervised
training. Due to the discrepancy between the pre-
training objective (e.g., masked language model-
ing) and the downstream task (e.g., classification),
the pre-training step is followed by an adaptation
step which fine-tunes the pre-trained model to per-
form a specific task of interest. During fine-tuning,
we either update all of the pre-trained parameters
or update only a small fraction of them by leverag-
ing parameter-efficient fine-tuning techniques. In
both cases, however, fine-tuning results in a task-
specific model which can be used for a single task.
An alternative task-adaptation technique which was
popularized by the most recent advances in training



pre-trained language models (Brown et al., 2020;
OpenAI, 2023), allows us to bypass the fine-tuning
step by treating the downstream task as a language
modeling problem. This process, known as in-
context learning, enables adapting a pre-trained
model without updating any parameters and allows
even non-expert users to easily leverage pre-trained
language models.

Recent advancements in in-context learning have
led to impressive progress on challenging reason-
ing benchmarks, surpassing the capabilities of fine-
tuned language models by large margins (Wei et al.,
2022a), a development which has resulted in un-
precedented interest from the general public in the
promises and potential risks associated with the use
of large language models.

2 Research objectives

The previously described pipeline is ubiquitous in
modern-day NLP and pre-trained and fine-tuned
language models are now dominating research in
academia as well as in industry. However, regard-
less of their impressive capabilities, pre-trained and
fine-tuned language models are not without short-
comings. Our contributions center around three
major shortcomings of pre-trained and fine-tuned
language models. Each of the shortcomings con-
cerns a specific component (or the interaction be-
tween two components) of the pre-train then align
pipeline (see Figure 1).

2.1 Interplay between fine-tuning and probing

It is well established that fine-tuned language mod-
els are often right for the wrong reasons and their
good performance on downstream tasks can at least
in part be explained by the tendency to pick up spu-
rious correlations during the adaptation process
(Jia and Liang, 2017; McCoy et al., 2019; Niven
and Kao, 2019; Warstadt et al., 2020, inter alia).
These results stand in contrast to a large body of
evidence that pre-trained language models encode
various forms of linguistic and factual knowledge
(Liu et al., 2019a; Tenney et al., 2019a; Petroni
et al., 2019; Goldberg, 2019; Hewitt and Manning,
2019, inter alia).

When combined, these findings require taking a
nuanced perspective on the connection between the
strong capabilities of language models, as shown
by their impressive results on common NLP tasks,
and their encoding of linguistic and factual knowl-
edge. These findings also demonstrate the need

for investigating the interplay between the linguis-
tic capabilities of pre-trained language models and
their downstream performance.

2.2 Investigating fine-tuning stability

Fine-tuned language models often exhibit striking
variation in downstream task performance when
performing small changes to the adaptation process
such as changing the random seed used for initializ-
ing model weights, the order of training examples,
or the format of a task instruction (Dodge et al.,
2020; Webson and Pavlick, 2022; Lu et al., 2022).
Large variations in fine-tuning performance are
undesirable for several reasons such as hindering
reproducible research and complicating the distinc-
tion between actual improvements due to modeling
or algorithmic advances and comparisons against
weak baselines.

Given the ubiquity of fine-tuned language mod-
els, it is therefore critical to gain a better under-
standing of the fine-tuning algorithms that are com-
monly applied to adapt language models to down-
stream tasks.

2.3 Generalization of task-adapted models

As mentioned in the previous section, the rapid
progress in training ever larger language models
has resulted in novel ways to adapt pre-trained lan-
guage models to downstream tasks by simply in-
structing them to perform a task of interest via
in-context learning. Instead of adapting a model
via gradient based fine-tuning, in-context learning
allows task adaptation via mere textual interaction
and has lead to impressive progress on challenging
reasoning benchmarks (Wei et al., 2022b,a). At
the same time, there is growing evidence that in-
context learning suffers from similar shortcomings
to fine-tuning such as their sensitivity to changes in
the data order (Min et al., 2022; Lu et al., 2022) and
difficulties with generalizing to out-of-distribution
inputs (Si et al., 2023).

Given the prevalence of task adaptation via fine-
tuning and in-context learning in modern NLP, it
is necessary to investigate their respective benefits
and downsides and provide a fair comparison of
task adaptation approaches.

3 Interplay between fine-tuning and
probing (Mosbach et al., 2020)

Our first contribution focuses on the connection be-
tween high performance on downstream tasks and
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(a) Difference in probing accuracy before and after fine-tuning
on CoLA using different models and pooling strategies.
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(b) Entropy of the attention distribution for the cls-token of
the RoBERTa model on the bigram-shift dataset.

Figure 2: A selection of our findings. (a) shows that when comparing to a stronger pooling baseline, fine-tuning has
a negligible impact on probing performance. (b) shows that fine-tuning results in a more uniform attention which
offers an alternative explanation for improved sentence-level probing performance.

the linguistic information encoded by a pre-trained
model. Specifically, we investigate the hypothesis
that the strong capabilities of fine-tuned language
models can at least implicitly be attributed to the
vast amount of linguistic knowledge which they
encode (Pruksachatkun et al., 2020).

3.1 Previous work

A large body of previous work focused on analyz-
ing the internal representations of neural models
and the linguistic knowledge they encode via prob-
ing (Shi et al., 2016; Ettinger et al., 2016; Adi
et al., 2016; Belinkov et al., 2017; Hupkes et al.,
2018; Conneau et al., 2018; Krasnowska-Kieraś
and Wróblewska, 2019). In a similar spirit to these
first works on probing, Conneau et al. (2018) were
the first to compare different sentence embedding
methods based on the linguistic knowledge they en-
code. Krasnowska-Kieraś and Wróblewska (2019)
extended this approach to study sentence-level
probing tasks on English and Polish sentences.

Alongside sentence-level probing, a lot of recent
work (Peters et al., 2018; Liu et al., 2019a; Tenney
et al., 2019b; Lin et al., 2019; Hewitt and Manning,
2019) has focused on token-level probing tasks in-
vestigating more recent contextualized embedding
models such as ELMo (Peters et al., 2018), GPT
(rad), and BERT (Devlin et al., 2019). Two of the
most prominent works following this methodology
are Liu et al. (2019a) and Tenney et al. (2019b).

Limitations In contrast to our work, most studies
that investigate pre-trained contextualized embed-

ding models focus on pre-trained models and not
fine-tuned ones. Therefore, little is known about
the interaction between fine-tuning and probing.
In our work, we aim to assess how probing per-
formance changes with fine-tuning and how these
changes differ based on the model architecture, as
well as probing and fine-tuning task combination.

3.2 Our contributions

Setup We study three different pre-trained lan-
guage models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), and ALBERT (Lan
et al., 2020), and investigate via sentence-level
probing (Conneau et al., 2018) how fine-tuning
them on downstream tasks affects the linguistic
information encoded in their representations.

We fine-tune on four datasets: CoLA (Warstadt
et al., 2018), SST-2 (Socher et al., 2013), RTE (Da-
gan et al., 2005), SQuAD (Rajpurkar et al., 2016),
and perform sentence-level probing experiments on
three tasks from the SentEval probing suite (Con-
neau et al., 2018), each of which targets a differ-
ent level of linguistic competence: bigram-shift,
semantic-odd-man-out, and coordination inversion.

To evaluate the impact of fine-tuning on the lin-
guistic information encoded by a model, we com-
pare probing results before and after fine-tuning.

Fine-tuning mostly affects upper layers Com-
paring differences in probing performance before
and after fine-tuning, we observe that fine-tuning
mostly interacts with the upper layers of the pre-
trained model. Changes in probing performance



are typically larger for higher layers and this find-
ing is consistent across all models and tasks we
experiment with.

Positive effect on probing performance is
marginal When following the default strategy
for sentence-level probing, i.e., constructing sen-
tence representations based on the cls-token of the
last hidden layer, we indeed observe large posi-
tive changes in probing performance due to fine-
tuning, suggesting the encoding of new linguistic
information during fine-tuning. However, when
we change the pooling approach during probing to
mean-pooling, the positive impact of fine-tuning
on probing becomes negligible. This effect is illus-
trated in Figure 2a. For all models, we observe a
large increase in probing performance when using
cls-pooling to construct sentence representations.
However, with mean-pooling, the difference in
probing accuracy between the pre-trained and fine-
tuned models becomes marginal and fine-tuning
even hurts probing performance in lower layers.

Fine-tuning affects attention distribution To
better understand the origin of the positive improve-
ments in probing accuracy for cls-pooling, we in-
vestigate the attention distribution of the cls-token
at every layer. We observe a large increase in en-
tropy in the last three layers when fine-tuning on the
cls-token (orange bars in Figure 2b). This is con-
sistent with our hypothesis that during fine-tuning,
the cls-token learns to take more sentence-level in-
formation into account, thus spreading its attention
over more tokens, which offers an alternative ex-
planation to why fine-tuning has a positive impact
on probing performance.

3.3 Discussion

Our work provides novel insight into how to per-
form a fine-grained evaluation of the linguistic
knowledge of pre-trained language models and on
the interaction between probing performance and
fine-tuning. Our findings demonstrate that there
is no straightforward causal relationship between
the linguistic information encoded by a model and
its performance on NLP downstream tasks, which
calls for a careful interpretation of changes in prob-
ing performance as a result of fine-tuning.

4 Investigating fine-tuning stability
(Mosbach et al., 2021)

Our next contribution focuses on the second step
of the pre-train then adapt pipeline. We analyze
the fine-tuning process itself and study the intrigu-
ing finding that fine-tuned models tend to exhibit
a large variance in performance, a phenomenon
commonly referred to as fine-tuning instability.

4.1 Previous work

Previous work (Devlin et al., 2019; Lee et al., 2020;
Dodge et al., 2020) has observed large differences
in downstream task performance simply when fine-
tuning models with different random seeds. Devlin
et al. (2019) report instabilities when fine-tuning
BERT-large on small datasets and resort to perform-
ing multiple restarts of fine-tuning and selecting the
model that performs best on the development set.
Dodge et al. (2020) performed a large-scale empir-
ical investigation of the fine-tuning instability of
BERT and found dramatic variations in fine-tuning
accuracy across multiple restarts and argue how
it might be related to the choice of random seed
and the dataset size. Few approaches have been
proposed to address the observed fine-tuning in-
stability. Phang et al. (2018) study intermediate
task training before fine-tuning with the goal of im-
proving performance on the GLUE benchmark and
find that their proposed method leads to improved
fine-tuning stability. Lee et al. (2020) propose a
new regularization technique termed Mixout which
improves stability during fine-tuning.

Limitations While previous work on fine-tuning
instability commonly states two hypotheses for the
observed instability: catastrophic forgetting (Lee
et al., 2020) and the small size of the training data
(Dodge et al., 2020), there is no previous work that
provides a sufficient understanding of why fine-
tuning is prone to instability in the first place.

4.2 Our contributions

Motivated by the anecdotal observations stated in
previous work, we perform a rigorous investigation
of fine-tuning instability in order to determine its
root cause.

Setup We analyze three different pre-trained
language models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), and ALBERT (Lan
et al., 2020) and fine-tune them on widely used
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Figure 3: Previous hypotheses fail to explain fine-tuning stability. (a) shows average training loss and validation
accuracy across 3 failed fine-tuning runs on RTE. (b) shows validation performance of models fine-tuned on
down-sampled CoLA.

datasets from the GLUE benchmark (Wang et al.,
2018). We summarize our contributions below.

Previous hypotheses fail to explain instability
First, we show that both catastrophic forgetting and
the small size of the training data fail to explain
the observed instability phenomenon. As shown
in Figure 3a, failed fine-tuning runs in fact do not
learn at all, violating the core assumption of catas-
trophic forgetting that the model performs well on
the new task.

Regarding the small size of the training data, Fig-
ure 3b shows that fine-tuning on a down-sampled
dataset for a small number of epochs does increase
variance on the downstream task, however simply
training for more iterations fully recovers the origi-
nal variance in fine-tuning performance. This sug-
gests that the observed instability on small datasets
is connected to the number of training steps and
not the size of the training set.

Optimization difficulties cause instability Next,
we demonstrate that the observed instability is
caused by optimization difficulties during fine-
tuning that lead to vanishing gradients and models
converging to sub-optimal local minima (illustrated
in Figure 4). As we show in our work, this behav-
ior is further amplified by choosing too large step
sizes, fixing the number of epochs, and not warm-
ing up learning rates during the initial phase of
fine-tuning.

A strong baseline for fine-tuning Based on our
analysis, we present recommendations and a simple
but strong baseline approach for fine-tuning. We

Approach
RTE MRPC CoLA

std mean max std mean max std mean max

Devlin 4.5 50.9 67.5 3.9 84.0 91.2 25.6 45.6 64.6
Lee 7.9 65.3 74.4 3.8 87.8 91.8 20.9 51.9 64.0

Ours 2.7⋆ 67.3 71.1 0.8⋆ 90.3 91.7 1.8⋆ 62.1 65.3

Table 1: Standard deviation, mean, and maximum
performance on the development set of RTE, MRPC,
and CoLA when fine-tuning BERT over 25 random
seeds. Standard deviation: lower is better, i.e., fine-
tuning is more stable. ⋆ denotes significant difference
(p < 0.001) when compared to the second smallest
standard deviation.

recommend using small learning rates combined
with warmup to avoid vanishing gradients during
the initial fine-tuning phase. Additionally, when
fine-tuning on small datasets, we suggest not fixing
the number of epochs a priori (as was common
practice) but rather fix the number of training steps.

As can be seen in Table 1, our baseline makes
fine-tuning pre-trained language models signifi-
cantly more stable than previously proposed ap-
proaches while at the same time maintaining or
even improving performance.

4.3 Discussion
Our work answers an open question about the
instability of fine-tuning and shows that neither
catastrophic forgetting nor small dataset sizes suffi-
ciently explain fine-tuning instability. Instead, our
analysis reveals that fine-tuning instability can be
characterized by two distinct problems: (1) opti-
mization difficulties early in training, characterized
by vanishing gradients, and (2) differences in gen-
eralization, characterized by a large variance of de-
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Figure 4: Fine-tuning instabilities are characterized by vanishing gradients (a) and convergence to sub-optimal local
minima. The 2D loss surface in (b) is spanned by δ1 = θf − θp and δ2 = θs − θp on RTE.

velopment set accuracy for runs with almost equiv-
alent training performance. Based on our analysis,
we propose a simple but strong baseline strategy
for fine-tuning BERT which outperforms previous
works in terms of fine-tuning stability while main-
taining or even increasing overall performance.

5 Generalization of task-adapted models
(Mosbach et al., 2023)

Our final contribution is concerned with the last
step of the NLP pipeline, namely, inference.
We compare the generalization behavior of task-
adaptation via few-shot fine-tuning and in-context
learning (ICL), which has recently gained popular-
ity over fine-tuning due to its simplicity and strong
performance on challenging reasoning tasks.

5.1 Previous work
Brown et al. (2020) compared GPT-3’s few-shot
in-context learning performance with fine-tuned
language models trained in the fully supervised set-
ting and found that both approaches lead to similar
results in question answering. More recently, Liu
et al. (2022) compared parameter-efficient few-shot
FT of T0 (Sanh et al., 2022) to in-context learning
with GPT-3, finding that their parameter-efficient
fine-tuning approach outperforms in-context learn-
ing when evaluated on in-domain data. Focusing on
out-of-domain (OOD) performance, Si et al. (2023)
investigated the generalization of GPT-3 along var-
ious axes, including generalization under covariate
shift. They observed much better OOD perfor-
mance for in-context learning than fine-tuning, con-
cluding that in-context learning with GPT-3 is more

robust than fine-tuning using BERT or RoBERTa.
Another work that compares the OOD generaliza-
tion of different adaptation approaches is Awadalla
et al. (2022). They investigate the robustness of
question answering models under various types of
distribution shifts and find that in-context learning
is more robust to distribution shifts than fine-tuning.
Moreover, they argue that for fine-tuning, increas-
ing model size does not have a strong impact on
generalization.

Utama et al. (2021) investigate the OOD general-
ization of encoder-only models adapted via pattern-
based few-shot fine-tuning. For MNLI and HANS,
they find that these models adopt similar inference
heuristics to those trained with vanilla fine-tuning
and hence perform poorly OOD. They observe that
models rely even more on heuristics when fine-
tuned on more data. Lastly, Bandel et al. (2022)
show that masked language models can generalize
well on HANS if fine-tuned for a sufficient number
of steps.

Limitations A common limitation in the previ-
ous literature is the comparisons of generalization
abilities under unequal conditions. Most studies ei-
ther compare the in-context learning abilities of
large models (e.g., GPT-3, 175B; Brown et al.,
2020) to the fine-tuning abilities of much smaller
models (e.g., RoBERTa-large, 350M; Liu et al.,
2019b), or compare models fine-tuned on large
datasets to few-shot in-context learning (Si et al.,
2023). These comparisons raise the question of
whether fine-tuning leads to weaker OOD general-
ization than in-context learning, or whether this is
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Figure 5: In-domain (RTE) and out-of-domain performance (HANS) for in-context learning and fine-tuning with
OPT models of various sizes. We fine-tune models using pattern-based fine-tuning. We report results using 10
different data seeds. When using 16 samples, in-context learning’s performance with a 30B model is comparable to
that of fine-tuning with smaller models (6.7B) and for most model sizes, fine-tuning outperforms in-context learning.
− in the x- and y-axes indicates majority class accuracy.

just a byproduct of the experimental setup.

5.2 Our contributions

In our work, we investigate whether the observed
weaker out-of-domain generalization of fine-tuned
models by previous work is an inherent property of
fine-tuning or an artifact of their experimental setup
and provide a fair comparison between the gener-
alization of fine-tuning and in-context learning.

Setup For our experiments, we consider few-
shot pattern-based fine-tuning (Schick and Schütze,
2021; Gao et al., 2021, inter alia) and in-context
learning (Brown et al., 2020). We perform a
fair comparison of task adaptation focusing on in-
domain and OOD generalization under covariate
shift (Hupkes et al., 2022). We run all experiments
using 7 different OPT models (Zhang et al., 2022)
ranging from 125 million to 30 billion parameters.
During fine-tuning, we update all model parameters
if not stated otherwise.

Fine-tuned models can generalize well OOD
For our first experiment, we compare fine-tuning
and in-context learning using 16 examples for each.
We plot the results of this experiment in Figure 5.
For in-context learning, we observe an increase in
in-domain performance with model size and non-
trivial OOD performance only for the largest model
(30B). For fine-tuning, we similarly observe that

PBFT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M −0.00 0.01 0.02 0.03 0.12 0.14 0.09
350M −0.00 0.01 0.02 0.03 0.12 0.14 0.09
1.3B −0.00 0.01 0.02 0.03 0.12 0.14 0.09
2.7B −0.00 0.01 0.02 0.03 0.12 0.14 0.09
6.7B −0.00 0.01 0.02 0.03 0.12 0.14 0.09
13B −0.04 −0.02 −0.01 −0.00 0.09 0.11 0.05
30B −0.11 −0.09 −0.08 −0.08 0.02 0.03 −0.02

Table 2: Difference between average out-of-domain
performance of ICL and FT on RTE across model
sizes. We use 16 examples and 10 random seeds for both
approaches. We perform a Welch’s t-test and color cells
according to whether: ICL performs significantly better
than FT, FT performs significantly better than ICL. For
cells without color, there is no significant difference.

in-domain performance increases with model size.
However, as model size increases, OOD perfor-
mance increases as well, demonstrating that even in
the challenging few-shot setting, fine-tuned models
can generalize OOD. In Table 2 we provide signif-
icance tests that further support our findings. In-
context learning only outperforms fine-tuning when
comparing large models adapted via in-context
learning to small fine-tuned models, which is un-
fair. Comparing models of the same size however,
reveals that fine-tuned models either perform sig-
nificantly better or similarly to models adapted via
in-context learning.



Generalization improves with more data In
contrast to in-context learning, where the maxi-
mum number of demonstrations is limited by the
context size of a model, fine-tuning allows us to
perform task adaptation using arbitrary amounts of
training data. Therefore, we analyze how the rela-
tionship between in-domain and OOD performance
is impacted by training on more data. For the small-
est models, we find that while in-domain perfor-
mance increases with more training data, OOD
performance remains low, which is consistent with
previous work (Utama et al., 2021). However, for
larger models, OOD performance improves as the
amount of training data increases.

Findings generalize beyond OPT To test the
generality of our findings beyond the OPT models,
we run the same experiments using Pythia models
of different sizes (Biderman et al., 2023). Simi-
larly to OPT, we observe a clear effect of model
size on both in-domain and OOD performance. For
most model sizes, fine-tuning leads to significantly
better OOD performance than in-context learning.
Additionally, both the in-domain and OOD perfor-
mance of Pythia models improve drastically as we
fine-tune on more data.

Findings generalize to parameter-efficient
fine-tuning We additionally experiment with
parameter-efficient fine-tuning via LoRA (Hu et al.,
2022) to demonstrate the generality of our find-
ings beyond full fine-tuning. Using LoRA makes
adaptation via fine-tuning more similar to adapta-
tion via in-context learning as it allows the re-use
of a large fraction of the weights of a pre-trained
language model across tasks. Figure 6 shows that
fine-tuning via LoRA leads to similar performance
as training all parameters (shown in Figure 5b)
which demonstrates the generality of our findings
beyond a specific fine-tuning method.

5.3 Discussion
Our findings are an important first step towards a
better understanding of the fundamental differences
in model behavior between different task adapta-
tion approaches. We demonstrate that fine-tuned
language models can generalize well both in and
out-of-domain. In fact, we find that the generaliza-
tion of fine-tuning and in-context learning is highly
similar as both approaches exhibit large variation
in performance and strongly depend on properties
such as model size and the number of examples.
Hence, our work provides evidence that the poor
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Figure 6: In-domain and OOD performance of
parameter-efficient fine-tuning via LoRA on RTE. − in
the x- and y-axes indicates the accuracy of the majority
class label.

out-of-domain generalization of fine-tuned models
observed in previous work is not a fundamental
flaw of fine-tuning but rather a result of their ex-
perimental setup, highlighting that truly robust task
adaptation remains a challenge.

6 The bigger picture

Adapting pre-trained language models via fine-
tuning or in-context learning is an integral part
of modern-day NLP. While from late 2018 to
mid-2020, fine-tuning was the dominating strategy
for task adaptation, i.e., converting a pre-trained
(masked) language model into a classifier, the in-
troduction of GPT-3 (Brown et al., 2020) in 2020
and the demonstration of its in-context learning
abilities resulted in an increasing interest in in-
context learning as a new promising paradigm for
task adaptation. Recently however, driven by work
on instruction fine-tuning (Sanh et al., 2022; Wang
et al., 2022, inter alia) and alignment to human
preferences (Ouyang et al., 2022; Zhou et al., 2023,
inter alia), fine-tuning1 is again gaining significant
interest from the NLP research community.

Given the ubiquity of language model adaptation
in modern-day NLP and machine learning research,
it is crucial to make progress towards a better under-
standing of the inner workings of commonly used

1Due to the dominance of decoder-only language mod-
els fine-tuning is however no longer used to explicitly adapt
language models into classifiers but is instead used to adapt
language models to assign higher probability to specific distri-
butions, e.g., instructions and information seeking questions.



adaptation techniques as well as their limitations.
The work presented in this paper demonstrates how
empirical research can help to achieve this goal
and hopefully serves as an inspiration for future re-
search that critically investigates the rapid progress
made along the pre-train then adapt pipeline.

7 Summary

Our work makes several contributions towards im-
proving our understanding of pre-trained and fine-
tuned language models by carrying out a detailed
analysis of various parts of the pre-train then adapt
pipeline. Our contributions range from analyzing
the linguistic knowledge of pre-trained language
models and how it is affected by fine-tuning, to a
rigorous analysis of the fine-tuning process itself
and how the choice of adaptation technique affects
the generalization of models. We provide new in-
sights about previously unexplained phenomena
and the capabilities of pre-trained and fine-tuned
language models and overall a better understanding
of a crucial component of the modern NLP toolbox.
Beyond our empirical contributions, we hope that
our work demonstrates the importance of taking
a critical perspective on previous work and shows
that despite the rapid progress in our field, there is a
need for work that critically analyzes this progress.
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