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Abstract

I propose a paradigm for scientific progress
in NLP centered around developing scalable,
data-driven theories of linguistic structure. The
idea is to collect data in tightly scoped, care-
fully defined ways which allow for exhaustive
annotation of behavioral phenomena of interest,
and then use machine learning to construct ex-
planatory theories of these phenomena which
can form building blocks for intelligible AI
systems. After laying some conceptual ground-
work, I describe several investigations into data-
driven theories of shallow semantic structure us-
ing Question-Answer driven Semantic Role La-
beling (QA-SRL), a schema for annotating ver-
bal predicate–argument relations using highly
constrained question-answer pairs. While this
only scratches the surface of the complex lan-
guage behaviors of interest in AI, I outline prin-
ciples for data collection and theoretical model-
ing which can inform future scientific progress.
This note summarizes and draws heavily on my
PhD thesis (Michael, 2023).

1 Introduction

Formal representations of linguistic structure and
meaning have long guided our understanding of
how to build NLP systems, e.g., in the traditional
NLP pipeline (Jurafsky and Martin, 2008). How-
ever, this approach has always had limitations:

1. Fully specifying formal representations re-
quires resolving challenging theoretical ques-
tions long contentious among linguists;

2. It is difficult to reliably produce these repre-
sentations with broad coverage using machine
learning; and,

3. Even ostensibly correct linguistic representa-
tions are often hard to apply downstream.

Together with the effectiveness of deep learning,
these challenges led to the proliferation of end-to-
end neural network models which directly perform

tasks without intermediate formal representations
of linguistic structure (He et al., 2017; Lee et al.,
2017; Seo et al., 2017, inter alia). This trend con-
tinues with language model assistants like GPT-4
(OpenAI, 2023) and Claude (Bai et al., 2022) which
can perform a wide range of tasks. However, these
systems are still not robust, often reporting false
or biased answers (Perez et al., 2022; Bang et al.,
2023) and making false claims about their own rea-
soning (Turpin et al., 2023). Ensuring AI systems’
robustness requires us to precisely characterize and
control their generalization behaviors.

To this end, formal theories, e.g., of linguistic
structure, common sense, reasoning, and world
knowledge, provide frameworks for evaluation.
They inform the design and construction of chal-
lenge sets (McCoy et al., 2019; Naik et al., 2018;
Wang et al., 2019), measures of systematicity
(Yanaka et al., 2020; Kim and Linzen, 2020), be-
havioral tests (Linzen et al., 2016), and probing
experiments (Liu et al., 2019; Tenney et al., 2019).
As these theories allow us to characterize general-
ization behaviors we desire, they will likely play
a pivotal role in the design and training of trust-
worthy systems. So core improvements in formal
theories of aspects of intelligent behavior may yield
boons for both the construction and evaluation of
NLP systems. But the question remains of how to
achieve this: decades of work on semantic ontolo-
gies (Baker et al., 1998; Palmer et al., 2005), com-
monsense knowledge bases (Lenat, 1995; Speer
et al., 2017), and formal reasoning systems (Lifs-
chitz, 2008) have largely been superseded in NLP
by deep learning and language models.

Theory-driven approaches in AI have been so
disappointing that Sutton (2019) famously argues
that intelligence and the world are simply too com-
plex for us to capture with domain theories, and
we should instead focus on general-purpose learn-
ing systems that can capture this intrinsic com-
plexity from data. However, I believe this is too



pessimistic, giving up on the intelligibility of AI
systems that is provided by accurate theories of
their behavior, which is necessary for verifying
their safety and usefulness in high-risk, high capa-
bility settings (Ngo et al., 2023). Instead, the deep
learning era presents an opportunity to rethink how
we develop theories of language behavior.

In particular, I propose scalable, data-driven
theory as a paradigm to address the shortcomings
mentioned at the beginning of this article: resolv-
ing or sidestepping theoretical questions, producing
representations with broad coverage, and applying
them effectively in downstream tasks. Inspired by
Pragmatist epistemology (James, 1907), this ap-
proach avoids requiring the linguist or theoretician
to specify the entire theory by hand, instead inte-
grating machine learning in a judicious way which
allows for the scalable, automated induction of for-
mal theoretical constructs (e.g., ontologies) which
are grounded in task-relevant linguistic behaviors.

2 Pragmatist Principles for Scientific
Progress

Church (2007) describes the history of computa-
tional linguistics on a pendulum, swinging between
Rationalist (theory-driven) and Empiricist (data-
driven) paradigms every 20 years. Church lists the
“swings” as follows (with my comments):

• 1950s: Empiricism (Shannon, Skinner, Firth,
Harris) — information theory, psychological
behaviorism, early corpus linguistics

• 1970s: Rationalism (Chomsky, Minsky) —
generative linguistics, logic-based AI

• 1990s: Empiricism (IBM Speech Group,
AT&T Bell Labs) — statistical NLP, machine
learning, modern distributional semantics

• 2010s: A Return to Rationalism?

As the reader may know, the predicted “Return to
Rationalism” did not happen. NLP, for its part, is
more Empiricist than ever.

Why is this? Sutton may say it’s because the
world is too complex: The Rationalist theoreti-
cian carefully formalizing the problems at hand
has no hope of capturing the world’s intricacies
in a manually-crafted theory, though a system im-
plementing that theory can be understood and con-
trolled. The Empiricist tinkerer, on the other hand,
can build a system that mostly works by trial, error,

patching and fastening; so they win on empirical
benchmarks. However, the resulting system is too
complex to fully understand or control, and gener-
alizes in unpredictable ways.

An odd feature of the Rationalism/Empiricism
dichotomy is that neither epistemology accurately
describes the pursuit of science in most fields. In
fields like physics, chemistry, and biology, theoreti-
cal and experimental approaches are not in conflict;
rather, they synergize and inform each other, as
theories are continually updated to align with new
experimental data. To make sense of this, we can
turn to an epistemology inspired by how people
actually operate in the world: Pragmatism.

Pragmatism is an epistemological framework
which conceptualizes knowing in terms of the ac-
tions that the knowledge licenses, i.e., by the predic-
tions that follow from that knowledge. Prominent
Pragmatists include Charles Sanders Peirce (1839–
1914) and William James (1842–1910). Like Em-
piricism, Pragmatism embraces experience as the
primary source of knowledge. But unlike Empiri-
cists, Pragmatists such as James embrace formal
and linguistic categories as comprising the content
of knowledge, on the basis of their usefulness in
making predictions and licensing actions (James,
1907). Unlike in Rationalism, the Pragmatist search
for truth is not a search for one true theory which
fundamentally describes the world, but for an ever-
expanding set of theoretical tools and concepts that
can be picked up and put down according to the
needs of the knower. In pithy terms, a Pragma-
tist might agree with the statistical aphorism that
that “All models are wrong; some are useful” (Box,
1976). Pragmatists such as James (1907) claim that
this perspective more accurately describes human
behavior with respect to knowledge (and indeed,
the pursuit of science) than prior epistemologies.

Combining the core ideology of Pragmatism
with observations from computational linguistics,
we can derive two guiding principles for the devel-
opment of theories that may have prospective use
in NLP: decouple data from theory (Section 2.1),
and make data reflect use (Section 2.2).

2.1 Decouple Data from Theory

One feature that distinguishes much NLP work,
particularly involving linguistic structure, from tra-
ditional sciences is the status of theory with respect
to data. In most empirical sciences, data takes the
form of concrete measurements of the world, and



the task of a theory is to explain those measure-
ments. In NLP, many benchmarks and datasets
are constructed under the assumption of a theory,
whether it be one of syntactic structure (Marcus
et al., 1993; de Marneffe et al., 2021), semantic
structure (Palmer et al., 2005; Banarescu et al.,
2013), or some other task-specific labeling scheme.

A theory, e.g., of syntactic or semantic structure,
is useful for annotation in providing a straightfor-
ward way to annotate disambiguation of text, which
is important for understanding language. However,
errors and inconsistencies in annotation resulting
from complexity, vagueness, or underspecification
in the theory limit what can be learned by models,
as human performance and inter-annotator agree-
ment can be surprisingly low (Nangia and Bowman,
2019). For example, the OntoNotes compendium
of semantic annotations (Hovy et al., 2006) was
presented as “The 90% solution” because of 90%
agreement rates — implying that the dataset cannot
validate performance numbers higher than 90%.

As another example, Palmer et al. (2006) find
that fine-grained sense distinctions produce con-
siderable disagreement among annotators of En-
glish text. But fixing the problem can’t just be
a matter of improving the sense inventory: they
find that coarser-grained sense groups designed
to improve agreement lack the distinctions from
fine-grained senses that are necessary for predict-
ing how words should translate into typologically
distant languages like Chinese and Korean. When
different tasks require different theoretical distinc-
tions, setting them in stone during annotation is a
problem, especially considering that there will al-
most certainly be missing categories, as new word
senses or distinctions may show up in more exhaus-
tive data or under domain shift. More generally, re-
fining annotation guidelines to increase agreement
between annotators does not necessarily solve the
problem, as the extra assumptions built into the
annotation process do not necessarily encode any
more scientifically meaningful information in the
data — a problem known in the philosophy of sci-
ence as the problem of theoretical terms.1

Building a robust theory that can scale to unex-
pected phenomena and new data, and be adjusted
for new tasks, requires theoretical agility which is
precluded by committing to a theory-based annota-
tion standard. An alternative is to directly annotate
the phenomena that the theory is meant to explain,

1See Riezler (2014) for a discussion of this issue in NLP.

and derive the theory on the basis of this data. This,
for example, is how grammar engineering is done
in the DELPH-IN consortium (Bender and Emer-
son, 2021). For each language, a broad-coverage
Head-driven Phrase Structure Grammar (HPSG) is
maintained separately from its associated treebank,
which is annotated not with full syntactic analy-
ses but with discriminants (Carter, 1997) such as
prepositional phrase attachment sites which con-
strain the set of possible parses in a way that is
independent of the grammar. Then, when the gram-
mar is updated, the discriminants are used to auto-
matically update the treebank while also providing
data to validate the updated theory (Oepen et al.,
2004; Flickinger et al., 2017). Pushing the envelope
further are the Decompositional Semantics Initia-
tive (White et al., 2016) and MegaAttitude project
(White and Rawlins, 2016).2 In these projects,
annotating large-scale corpora with the phenom-
ena that are posited to underly linguistic theories
in question — such as Dowty (1991)’s proto-role
properties, or entailments corresponding to neg-
raising (An and White, 2020) and projection (White
and Rawlins, 2018) — has facilitated insights re-
garding argument selection (Reisinger et al., 2015)
and lexically-specified syntactic subcategorization
rules (White, 2021), as well as automatically in-
ducing lexicon-level ontologies of semantic roles
(White et al., 2017) and event structure (Gantt et al.,
2021) that are derived directly from the phenomena
they are designed to explain.

The lesson of Empiricism is that for a model to
work, it must be learned from data; while Rational-
ism tells us that for a model to be intelligible and
general, it must be grounded in theory. A wealth of
innovative prior work shows us that Pragmatism is
possible: we can have both.

2.2 Make Data Reflect Use

A satisfying data-driven theory of a few linguistic
phenomena is not sufficient as a backbone for gen-
eral language understanding systems. The second
relevant lesson of Pragmatism is that the model
must be fit to its use. The approaches reviewed in
Section 2.1 are, by and large, targeted at theoretical
questions in language syntax and semantics, e.g.,
regarding the nature of syntactic structure across
many languages (Bender et al., 2002) or the syn-
tactic realization of a verb’s arguments (Reisinger
et al., 2015). On the other hand, general-purpose

2https://decomp.io, https://megaattitude.io

https://decomp.io
https://megaattitude.io


language processing relies on a huge amount of
lexical and world knowledge and inferential ability
which is outside the scope of traditional linguis-
tic theories. While general-purpose syntactic and
semantic representations have some direct uses in
NLP end-tasks, such as for search and retrieval
(Schäfer et al., 2011; Shlain et al., 2020), their
application in downstream tasks requiring higher-
level reasoning or inference, like reading compre-
hension, translation, and information extraction has
been less fruitful. This is at least in part because
these theories are far insufficient to serve as mecha-
nistic accounts of the inferential phenomena which
are required to perform those tasks.

Constructing theories which can account for
such phenomena is a monumental challenge. But
it is a challenge which, I argue, we must address
if we want to pursue the goal of accurate, reliable,
and intelligible systems. Pragmatism tells us the
first step is to catalog the phenomena we wish to
explain in a way that is amenable to theoretical
modeling. This will require carefully carving up
the space of phenomena in such a way that use-
ful abstractions can be designed to facilitate future
progress (Dijkstra, 1974); Section 4 will discuss
considerations on how to do this well.

3 Scalable, Data-Driven Theory

The principles in Section 2 imply a general frame-
work for building useful theories, which I call data-
driven theory: First, annotate data in a theoretically-
minimal way, scoped carefully to reflect specific
phenomena that we want to explain; then, automat-
ically induce theories to explain those phenomena
using computational methods like machine learn-
ing. But how does this method scale in practice?
Even if the resulting theories are high-quality, re-
quiring annotated data limits their scope to orders
of magnitude less than what is leveraged by stan-
dard pretrained models (Brown et al., 2020; Ope-
nAI, 2023; Bai et al., 2022).

Black-Box Data Simulators This is where black-
box models may actually be able to help. Even if
they are uninterpretable on their own, their high ac-
curacy and data efficiency means they can be used
as data simulators, generating phenomenological
data — potentially at a level of granularity or ex-
haustivity unobtainable from humans — which can
be fed into another, more interpretable algorithm
to distill a theory from it. This is the approach
we take in Michael and Zettlemoyer (2021), de-

scribed in Section 5: We first train a black-box
model to generate QA-SRL questions, where each
role is labeled with only a single question in the
training data. Then we decode full question distri-
butions from this model, and induce an ontology
of semantic roles by clustering arguments based on
the overlap of their question distributions. While
this work required a large training set of QA-SRL
annotations (FitzGerald et al., 2018), it may now
be possible to do such experiments without large-
scale human data annotation at all, thanks to recent
advances in instruction following by language mod-
els (OpenAI, 2023; Bai et al., 2022).

It may seem like the use of a black-box model as
a data simulator begs the question: if our concern
is that the black-box model isn’t learning the un-
derlying function we hope it is, then doesn’t using
it to simulate data risk leading us to a theory of the
wrong function? Well, yes — but the theory lets
us do something about it. Examining the “wrong”
parts of the resulting theory (e.g., induced semantic
roles that don’t match what we intuitively expect,
or that lead to downstream predictions we think are
wrong), and their connection to the training data,
will identify one of the following:

• Systematic gaps in the data or mistakes in the
model used for data simulation — which can
then be filled or corrected.

• Mistakes in the modeling assumptions used
in the theory induction algorithm — giving us
information useful for improving our theories.

• Mistakes in our intuition about what the theory
should have looked like in the first place —
which means we’ve learned something.

All of these are positive outcomes for scientific
progress. See Michael and Zettlemoyer (2021) for
an in-depth analysis of this kind.

Scaling in Complexity Even if we can scale a
theory’s size, e.g., to a large knowledge base or
linguistic ontology, this does not handle the case
of more complex tasks, with more nuanced re-
lations between input and output (such as open-
ended question answering or common sense in-
ference tasks). Since theoretical modeling re-
quires narrowly-scoped data (discussed more in
Section 4), I do not expect that we can construct
theories of such broad capabilities in the short term.
However, if we carve up the space of tasks to start
with theories of simple sub-phenomena of reading



and inference, then we may be able to bootstrap
from these theories to annotate and make sense of
more complex data — for example, one can imag-
ine eventually inducing rich, broad-coverage entail-
ment graphs in the style of Berant et al. (2015) or
McKenna et al. (2023) on the basis of comprehen-
sive annotations of structured inferences in context.
A complete or “true” theory of complex NLP tasks
may be impossible even in principle, but — in the
spirit of Pragmatism — that doesn’t mean we can’t
construct theories that are useful for understand-
ing and controlling AI systems. How my proposed
framework scales with task complexity is unclear
as of yet, but scalable theories of narrow phenom-
ena provide a step in the right direction.

4 Data: Scoping Language Behaviors

The first step to developing theories of linguistic
structure in an empirical, data-driven way is to
carefully choose the data. To guide this, I propose
Four Principles of Scientific Data for NLP:

1. Theoretical minimalism. The data should
rely on as few theoretical assumptions as pos-
sible. For example, to capture natural lan-
guage syntax, you should directly annotate
the phenomena that you intend your syntactic
theory to explain rather than directly annotat-
ing theoretical constructs like syntactic trees.
This creates the space for an underlying theory
to meaningfully explain this data.

2. Broad comprehensibility. To facilitate on-
demand data collection at large scale in new
domains, it should be possible and affordable
to recruit non-expert annotators to label large
amounts of data (e.g., through crowdsourc-
ing), or it should be feasible to automatically
generate the data (e.g., with language models).

3. Annotation constraints. The output space
of the task should be sufficiently constrained
to allow for exhaustive coverage of the phe-
nomena of interest. A task which is too open-
ended leads annotators to produce a conve-
nience sample of the output space, resulting
in biased data that doesn’t capture the full
complexity of the phenomena of interest (Cai
et al., 2017; Gururangan et al., 2018).

4. Narrow scope. The task should not capture
too much complexity in the relationship be-
tween input and output. Not only can this

make it difficult for annotators to reliably pro-
duce high-quality data, but it makes it more
difficult to model the phenomena expressed in
the data with a comprehensible theory.

Principles 1 and 2 instantiate Section 2.1’s rec-
ommendation to decouple data from theory, while
Principles 2, 3 and 4 help make it tractable to
develop broad-coverage, comprehensible theories
from this data. The final requirement is that the
data reflect relevant downstream use cases (Sec-
tion 2.2), which in our case means it should encode
phenomena representing the intended behavior of
AI systems performing language tasks.3 I focus
on a key strategy to meet these requirements: an-
notating natural language with natural language
question-answer pairs. Question answering has
long been used as a general-purpose format for test-
ing language comprehension or executing practical
language tasks (Gardner et al., 2019b; McCann
et al., 2018; McCarthy, 1976), as nearly any task
can be phrased as a question and questions which
test a reader’s comprehension of a text need not
require specialized linguistic or theoretical exper-
tise to answer. The downside of this great gen-
erality is that data annotation tends to be highly
under-constrained and unsystematic (Gardner et al.,
2019a), so we must judiciously constrain the space
of question-answer pairs we use in accordance with
the Four Principles.

This work is focused on annotations of shallow
semantic structure: syntax, semantic roles, and
other predicate–argument structure relations ex-
pressed in text. He et al. (2015) pioneered the
use of question-answer pairs as a proxy for such
structure in Question-Answer driven Semantic Role
Labeling (QA-SRL), a framework for annotating
English verbal predicate–argument relations using
simple, highly constrained question-answer pairs.
In the rest of this section, I will describe three data
annotation projects which explored variations of
this approach, illustrating some of the basic ten-
sions between the Four Principles.

3This work is concerned with normative theories of AI
behavior when performing language tasks. Insofar as we wish
to produce theories of AI behavior which are comprehensible
to us, aligned with our intuitions, and allow us to interface
fluidly with machines using language, this goal should mostly
be aligned with developing descriptive theories of human lan-
guage behavior, which can then be used to constrain and guide
AI behavior. The relationship between these theories and their
importance for interacting with machines are discussed more
in Chapter 2 of Michael (2023).



I want to eat the pizza you put on the table

subj
xcomp
subj

obj obj

subj prep
pobj

subj Verb obj prep xcomp
you put the pizza on the table

I want to eat the pizza

I eat the pizza

Dependency Question Answer
want→ I What wants to eat something? I

eat→ I What would eat something? I
eat→pizza What would something eat? the pizza
put→you What put something? you
put→pizza What did something put? the pizza
on→ table What did something put something on? the table

Figure 1: Question-answer pair generation for human-
in-the-loop parsing (He et al., 2016). We use the pre-
dicted CCG category of each verb to generate the ques-
tions, which are in in one-to-one relation with syntactic
dependencies in the sentence. This one-to-one assump-
tion was ultimately too strong, as workers answer these
questions according to semantics and not just syntax.

4.1 Human-in-the-Loop Parsing

He et al. (2016) introduces human-in-the-loop pars-
ing. We construct multiple-choice questions from
syntactic attachment ambiguities in a parser’s n-
best list, get crowdsourced workers to answer these
questions, and then re-parse the original sentence
with constraints derived from the results (Figure 1).
Testing on the English CCGbank (Hockenmaier
and Steedman, 2007), we find only a small im-
provement in parser performance. A core challenge
is the syntax–semantics mismatch, where workers
provide answers which are semantically correct but
correspond to the wrong syntactic attachment. For
example, in the sentence “Kalipharma is a New
Jersey–based pharmaceuticals concern that sells
products under the Purepac label”, workers unan-
imously answer the question “What sells some-
thing?” with “Kalipharma”, which is not the syn-
tactic subject of sells but a more natural way of
referring to the same entity. So even though our an-
notation task is tightly scoped, our interpretation of
the results requires theoretical assumptions which
do not match the intuitions of non-expert workers.

4.2 Crowdsourcing Question-Answer
Meaning Representations

Michael et al. (2018) takes the opposite tack, broad-
ening the task’s scope by gathering open-ended
questions from annotators to capture as many se-
mantic relationships as possible in the source sen-
tence. This requires adding many careful con-

Pierre Vinken, 61 years old, will join the board as a nonex-
ecutive director Nov. 29.

Who will join as nonexecutive director? - Pierre Vinken
What is Pierre’s last name? - Vinken
Who is 61 years old? - Pierre Vinken
How old is Pierre Vinken? - 61 years old
What will he join? - the board
What will he join the board as? - nonexecutive director
What type of director will Vinken be? - nonexecutive
What day will Vinken join the board? - Nov. 29

Figure 2: Example Question-Answer Meaning Repre-
sentation (Michael et al., 2018). Non-stopwords drawn
from the source sentence are in bold. QAMR question–
answer pairs capture a wide variety of relations, but are
unstructured and hard to use downstream without extra
tools such as a syntactic parser — here, our annotation
task was too unconstrained and task scope too broad.

straints and incentives to the crowdsourcing proce-
dure, but we are careful to allow for open-ended
questions that express annotator creativity. The
result is a dataset of Question-Answer Meaning
Representation (QAMR) annotations over English
encyclopedic and news text covering many inter-
esting phenomena (see Figure 2). However, achiev-
ing high recall of predicate–argument relations is
not economical, requiring high annotation redun-
dancy, and the unstructured question-answer pairs
are hard to use downstream. The most success-
ful use of QAMR in follow-up work is probably
Stanovsky et al. (2018), where we convert QAMRs
into Open Information Extraction tuples, but have
to run the questions through a syntactic parser to
do so. The lesson from these results is that leaving
the annotation space too open and unconstrained
leads to difficulties with recall and challenges with
downstream modeling and theory.

4.3 Large-Scale QA-SRL Parsing

FitzGerald et al. (2018) returns to QA-SRL. In the
original QA-SRL work (He et al., 2015), trained
annotators specify the questions using drop-down
menus in an excel spreadsheet. In this work, we
streamline and scale up data collection, gather-
ing high-coverage annotations for over 64,000 sen-
tences with a two-stage generate/validate crowd-
sourcing pipeline (see Table 1 for examples). We
increase annotation speed, reliability, and cover-
age using an autocomplete system which tracks
the syntactic structure of QA-SRL questions as the
annotator types, using it to suggest completions as
well as whole questions. In terms of semantic rich-
ness and annotation constraints, these annotations



The plane was diverting around weather formations over the Java Sea when
contact with air traffic control (ATC) in Jakarta was lost.

wh aux subj verb obj prep obj2 ? Answer

What was being diverted around ? weather formations
What was diverting ? The plane
What was being diverted ? The plane
What was lost ? contact with air traffic control

Where was something lost ? over the Java Sea

Table 1: QA-SRL question-answer pairs from the development set of the QA-SRL Bank 2.0 (FitzGerald et al.,
2018). We constrained the questions with a non-deterministic finite automaton (NFA) encoding English clause
structure for question autocomplete and auto-suggest. This facilitated high-quality, high-coverage annotation at
scale while providing the expressiveness to represent the semantic role relations within each sentence.

are somewhere between our work on human-in-the-
loop parsing and question-answer meaning repre-
sentations. The constrained task and high coverage
allow us to train high-quality QA-SRL predictors
and enables future work on semantic role induc-
tion (Section 5.1) and controlled question genera-
tion (Section 5.2).

Takeaways Our results over the course of these
projects suggests that we should search for tasks
in a “goldilocks zone”: Their scope should not be
so constrained or beholden to prior theory as to
be unintuitive, but not so unconstrained that it is
hard to get exhaustive and reliable annotation of
interesting phenomena. As annotation constraints
depend on some prior theory of the phenomena to
be captured, these constraints need to be carefully
chosen so as to minimize arbitrary assumptions in
the task setup and make sure the task is natural for
annotators. In the case of QA-SRL, the prior theory
we incorporated is a small grammar fragment of
English encompassing QA-SRL questions. Our
findings support that QA-SRL, with the annotation
aids developed in FitzGerald et al. (2018), strikes a
good balance of the Four Principles.

5 Theory: From Language, Structure

In this section, I will describe two projects which
show how QA-SRL can be used to build a data-
driven theory which is directly applicable in down-
stream tasks.

5.1 Inducing Semantic Roles Without Syntax
Michael and Zettlemoyer (2021) show how to use
QA-SRL to automatically induce an ontology of
semantic roles, leveraging a key insight: the set of
QA-SRL questions that are correctly answered by a
given answer span identifies an underlying seman-
tic role through its syntactic alternations, which are
representative of the phenomena that a semantic

Labels Questions

A1 (98%) What is given? .30
What does something give something? .21
What does something give? .20
What is something given? .11

A0 (98%) What gives something? .44
What gives something something? .27
What gives something to something? .08

A2 (94%) What is given something? .28
What does something give something to? .18
What does something give something? .14
What is given? .09
What is something given to? .07

TMP (46%), When does something give something? .20
ADV (22%), How does something give something? .09
MNR (12%) When is something given? .09

When is something given something? .09

PNC (30%), Why does something give something? .18
ADV (22%), Why does something give up something? .07
TMP (14%) Why is something given something? .07

Table 2: Roles for give produced by Michael and Zettle-
moyer (2021). For each predicate, we cluster its ar-
guments in PropBank based on the similarity of the
distributions of QA-SRL questions our model generates.
In this case, core arguments are captured almost per-
fectly, exhibiting both passive and dative alternations.

role ontology like PropBank is designed to explain.
We leverage this insight by using a trained QA-
SRL question generator as a data simulator, gener-
ating a full distribution over (simplified) QA-SRL
questions for each argument of a verb appearing
through an entire corpus. Clustering these distribu-
tions of questions according to a simple maximum-
likelihood objective yields a set of discrete seman-
tic roles that exhibits high agreement with existing
resources (see Table 2). This presents an approach
which could potentially be used to develop seman-
tic role ontologies in new domains where they are
not currently available, with directions for improv-
ing QA-SRL data toward the end of automatically
inducing better semantic roles.



Figure 3: Overview of Pyatkin et al. (2021)’s approach. The natural correspondence between QA-SRL questions
and semantic roles allows us to use QA-SRL question templates in a planning step to successfully generate
questions for any PropBank semantic role, even when the corresponding argument doesn’t appear in the source
sentence (a situation never encountered in training data). A: Construction of Frame-Aligned QA-SRL using
syntactic information inferred by the autocomplete NFA from FitzGerald et al. (2018), i.e., leveraging our (minimal)
theoretical assumptions about argument structure. B: Contextualizing questions by feeding a prototype question
and context into a neural model that outputs a Frame-Aligned QA-SRL question. C: Selecting prototype questions
by testing each prototype (1) against a sample of arguments for each role (2). After contextualization (3), each
question is fed into a QA model and we choose the prototype that most often recovers the correct argument (4).

5.2 Asking it All: Generating Contextualized
Questions for any Semantic Role

Pyatkin et al. (2021) use QA-SRL to build a con-
trollable question generation system. The task is
to generate fluent questions asking about the argu-
ments corresponding to specific semantic roles in
context (see Figure 3 for an overview). The chal-
lenge is a lack of training data, as QA-SRL ques-
tions are not fully natural and are not annotated
for roles which aren’t expressed in a sentence. We
leverage two key insights: First, we find that QA-
SRL questions generally correspond to the same
role across many contexts. So we prime our ques-
tion generation system with a template QA-SRL
question corresponding to the correct role, lead-
ing it to generate semantically correct questions
even when the answer isn’t present in the sentence.
Second, we use the syntactic structure of QA-SRL
questions to align the placeholders (someone, some-
thing) in each question with the answers of other
questions, translating QA-SRL questions into more
fluent ones closer to those in QAMR.

Takeaways Together this work illustrates not
only the promise for the development of large-scale
ontologies in a data-driven way (Section 5.1), but it
also illustrates how having these ontologies compu-
tationally grounded in the phenomena they are de-
signed to explain, i.e., question-answer pairs, facil-

itates ontology’s the downstream use (Section 5.2).
It’s not hard to imagine next steps incorporating
an induced ontology of semantic roles into Pyatkin
et al. (2021)’s system to obviate the need for a
pre-specified role ontology altogether.

6 Concluding Thoughts

I have proposed scalable, data-driven theory as a
Pragmatist paradigm for scientific progress in NLP.
To develop scalable theories, one should:

1. Collect carefully-scoped data that directly rep-
resents a phenomenon of interest while impos-
ing minimal prior theoretical assumptions,

2. Increase the data’s scale and coverage using a
learned black-box data simulator,

3. Induce comprehensible models of this high-
coverage data with machine learning, and

4. Examine the results to debug and improve
the theory and data, progressing our scientific
understanding of the phenomenon of interest.

Using QA-SRL, I have shown how to leverage
black-box data simulation together with simple
probabilistic modeling to automatically induce an
ontology of semantic roles which is directly and
comprehensibly grounded in phenomena that the
theory of semantic roles is meant to explain. This



not only lays the groundwork for new scalable the-
oretical developments in semantic representation,
but can serve as an example to guide future work
on scalable theories in other domains.

Why now?
The justification for building scalable, data-driven
theories can be summarized as follows:

1. To build systems which generalize in control-
lable, predictable ways, we need comprehen-
sible theories of their desired behavior.

2. However, the behaviors we wish to produce in
AI and NLP are too complex for us to easily
write down theories of how they should work.

3. So instead, we must use machines (i.e., statis-
tical models) to construct our theories on the
basis of data in a scalable way. The role for
the scientist here is twofold:

• to carefully determine the scope of the
phenomena to be explained and curate
the data accordingly, and

• to define the meta-theory which relates
the learned theory to the data.

This argument could have been made at any point
in the history of NLP, so why do I make it now?4 I
think the argument would have been viewed as pre-
mature in the era of underfitting prior to the deep
learning revolution. Statistical models like CRFs
(Lafferty et al., 2001) struggle even in-distribution
on tasks like syntactic and semantic parsing, let
alone complex end tasks involving question an-
swering or language generation. The problem at
that time was to build models expressive enough
to perform well while tractable enough to learn
from data. Pre-neural systems were weak enough
that many thought they would benefit from hand-
curated linguistic resources like PropBank (Palmer
et al., 2005).

With deep learning, these factors all changed:
the limits of hand-curated resources like PropBank
have been surpassed, and neural models fit all kinds
of data distributions, leaving us face-to-face with

4Similar arguments have been made before in grammar
engineering (Oepen et al., 2004; Flickinger et al., 2017) and
the Decompositional Semantics Initiative (White et al., 2016),
while in linguistic typology, Haspelmath (2010)’s framework-
free grammatical theory makes similar points about the rela-
tionship between data and theory. My approach differs from
these in my focus on applications in NLP where the vastness
and complexity of the domain becomes more of a challenge.

the problem of generalization and the need for data-
driven theory. Furthermore, we have new tools for
data simulation; the role induction algorithm in
Michael and Zettlemoyer (2021) would not have
been workable without a neural model to simulate
dense annotation of QA-SRL questions. So we are
finally in a position to make such theories scalable.

Looking forward

As argued above, a critical role for the scientist in
developing data-driven theories is to define scopes
of phenomena to be explained, carving linguistic
behavior at useful joints. I hope to have demon-
strated that the concept of semantic roles provides
such a useful scope, where its corresponding phe-
nomena (as QA-SRL) can be effectively annotated
at scale (Section 4.3), tractably modeled with a
comprehensible theory (Section 5.1), and used for
downstream tasks (Section 5.2). Moving forward
requires carefully choosing more such useful con-
cepts and using them to scope phenomena, define
and induce theories, and tie these data and theories
into downstream applications.

Extending the paradigm of scalable theory to
more facilities of language (e.g., syntax, word
sense, or coreference) and more complex phenom-
ena (e.g., representations of world knowledge, com-
mon sense, or reasoning) remains a major chal-
lenge. As the scope of the phenomena to be rep-
resented increases, greater annotation constraints
will be necessary in order to ensure that these phe-
nomena are adequately covered. However, doing
so while maintaining theoretical minimalism is
challenging. My hope is that scalable theories
of narrowly-scoped subphenomena (e.g., seman-
tic roles) will provide constraints that make more
complex tasks tractable to exhaustively annotate,
without introducing the same problems as in the
Rationalist paradigm where inconsistencies, under-
specification, and arbitrary theoretical choices limit
the usefulness of the data. In this way, it may be
possible to bootstrap from narrowly-scoped theo-
ries into progressively broad accounts of language
structure, meaning, and intelligent behavior.

At this point, such talk is speculation. It is un-
clear how data-driven theory will generalize to
more complex tasks. However, in this work I hope
to have provided an argument this kind of work is
at least worth attempting, and perhaps laid some
groundwork and principles which can be used as a
starting point for it to be done in the future.
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