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Abstract

The use of seed articles in information retrieval
provides many advantages, such as a longer
context and more details about the topic be-
ing searched for. Given a seed article (i.e.,
a PMID), PubMed provides a pre-compiled
list of similar articles to support the user in
finding equivalent papers in the biomedical lit-
erature. We aimed at performing a quantita-
tive evaluation of the PubMed Similar Arti-
cles based on three existing biomedical text
similarity datasets, namely, RELISH, TREC-
COVID, and SMAFIRA-c. Further, we car-
ried out a survey and an evaluation of various
text similarity methods on these three datasets.
Our experiments considered the original title
and abstract from PubMed as well as auto-
matically detected sections and manually an-
notated relevant sentences. We provide an
overview about which methods better perform
for each dataset and compare them to the rank-
ing in PubMed similar articles. While results
varied considerably among the datasets, we
were able to obtain a better performance than
PubMed for all of them. Datasets and source
codes are available at: https://github.com/
mariananeves/reranking

1 Introduction

Tools for searching for relevant publications in the
biomedical literature need to rank results with re-
spect to their relevance to the user (Fiorini et al.,
2018). However, different users are often interested
in different aspects of the publications.

A study of the search logs from PubMed showed
many interesting aspects of the user interaction
with the tool (Islamaj Dogan et al., 2009). Since
80% of the viewed abstracts derived from the top
20, a good ranking algorithm is important. Further,
queries are rather short (less than four tokens) and
usually composed of a mix of semantic associa-
tions, including abbreviations, diseases, chemicals,
author names, etc. However, in some situations,

such as when searching for a particular research
goal, it is a complex task to precisely define the
search using just a couple of words.

PubMed similar articles allow a search based
on seed articles, i.e., it provides a pre-compiled
list of articles that are similar to the given seed
article1 (Lin and Wilbur, 2007). It is a valuable
resource with many applications, e.g., for building
clusters of articles (Boyack et al., 2020), entity
networks (Lee et al., 2016), or similarity-based
datasets (Brown et al., 2019; Butzke et al., 2020).

In comparison with keywords-based queries,
seed articles provide a larger context, and poten-
tially, more information about the subject being
searched, e.g., details about the research goal, or
long names for some abbreviations. Seed articles
have been previously used for a variety of tasks in
information retrieval, such as in the construction of
bag of words (White, 2018), recommendation sys-
tems (Zhang et al., 2022), or in systematic reviews
(Wang et al., 2022).

The PubMed similar articles can easily be
queried with the Entrez Programming Utilities (E-
utilities)2. The methods behind the Pubmed similar
articles are based on a probabilistic topic-based
model for content similarity (called “PMRA”) (Lin
and Wilbur, 2007). The developers of the function
evaluated their method on the data of the TREC
2005 Genomics track (Hersh et al., 2005) and com-
pared it to BM25 (Robertson et al., 1994).

In this manuscript we aimed at evaluating the
ranking from PubMed similar articles for a set of
available text similarity datasets. Our goal was to
analyze the performance of this function in compar-
ison with state-of-the-art algorithms for text simi-
larity. We did neither train nor fine-tune any of the
methods we used, i.e., we relied only on methods
which either do not need to be trained (e.g., BM25)

1https://pubmed.ncbi.nlm.nih.gov/help/
#computation-of-similar-articles

2https://www.ncbi.nlm.nih.gov/books/NBK25497/
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or which were pre-trained ones (e.g., language mod-
els). Further, in order to be able to compare re-
sults to PubMed similar articles, we relied only on
datasets based on PubMed. In our experiments, we
considered the original abstracts in PubMed as well
as automatically selected sections and manually an-
notated facets (relevant sentences).

We are only aware of three previous similar eval-
uations of the PMRA algorithm: (i) the RELISH
database, in which the authors compared PMRA to
BM25 and TF-IDF for a large collection of more
than 180k articles and more than 3k seed articles
(Brown et al., 2019); (ii) the SMAFIRA-c dataset,
in which an evaluation was carried out for three
seed articles (Butzke et al., 2020); and (iii) an eval-
uation for seven seed articles with the focus on the
abstracts’ sections (Neves et al., 2019). A couple
of previous projects also carried out an evaluation
on some of the datasets that we used (Medić and
Šnajder, 2022; Mysore et al., 2022). However, they
did not aim at evaluating the performance of the
PMRA algorithm.

The contributions of our work are the follow-
ing: (a) a short review of the various text similarity
methods and datasets; (b) an evaluation of these
methods on the three selected datasets, and based
on a variety of semantic features; (c) a comparison
of these methods to PubMed similar articles; and
(d) making available the derived datasets, manual
annotations, and source code of our experiments
and evaluation.

2 Datasets

We selected datasets composed of PubMed ab-
stracts and which included annotations with respect
to relevance or similarity to a particular seed article.
Therefore, we skipped datasets that did not comply
with one or more of these conditions, such as CS-
FCube (Mysore et al., 2021), which is composed
of publications from the areas of computational
linguistics and machine learning. We considered
each dataset in two settings: (a) as originally re-
leased by the authors, and (b) their overlap with
the recent list of similar articles from PubMed. We
describe the three selected datasets in detail below.
An overview of the datasets is shown in Table 1
and in Figure 1.

RELISH. It is a large database in which more
than 180k PubMed abstracts were validated in
terms of similarity to a seed article (Brown et al.,
2019). We utilized the dataset used in the devel-

opment of the Aspire tool (Mysore et al., 2022),
which is available for download3. It contains three
levels of similarity and we mapped them as follows:
similar (1 or 2), and not similar (0).

TREC-COVID. It is a dataset based on COVID-
19 publications that was used in a series of evalua-
tions for information retrieval (Roberts et al., 2020).
We utilized the dataset used in the development of
the Aspire tool (Mysore et al., 2022), which is
available for download4. Since the articles were
not associated with their corresponding identifiers
in PubMed, we first matched them automatically,
by querying their titles in PubMed, followed by
a manual checking of many of them which were
matched to either none or more than one PMID. Af-
ter the mapping step, we noticed that many of the
seed articles contained only a couple of articles in
their list. Therefore, we kept only the seed articles
with at least 50 articles in their list, thus obtaining
a total of 33 seed articles. From these 33 seed arti-
cles, one had to be removed because it contained no
similar articles among the candidates. The dataset
contains three levels of similarity and we mapped
them as follows: similar (1 or 2), and not similar
(0). Our manually edited dataset is available in our
GitHub repository.

SMAFIRA-c. It is a small dataset which contains
four case studies from the area of alternative meth-
ods to animal experiments (Butzke et al., 2020).
For each seed article, the authors retrieved the sim-
ilar articles from PubMed and carried out an anno-
tation based on the similarity of the research goal.
We mapped the original labels as follow: (a) sim-
ilar: equivalent “++”, partially equivalent “+(+)”
and noteworthy “+”; and (b) non similar: limbo “L”
and not equivalent “-”.

Evaluation sets based on PubMed similar
articles (sa-eval)
We considered PubMed similar articles as a base-
line for comparing the methods. For each of the
datasets above, we retrieved the PubMed similar
articles (around Nov/22 and Jan/23). We com-
puted an overlap between articles contained in both
lists, i.e., PubMed similar articles and the original
dataset. The evaluation set derived of this over-
lap, hereafter called “sa-eval”, was usually smaller

3https://figshare.com/articles/dataset/
RELISH-Aspire/19425506

4https://figshare.com/articles/dataset/
TRECCOVID-RF-Aspire/19425515
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Datasets No. seeds
eval sa-eval

total similar total similar
RELISH 1,618 60 [53;60] 45 [1;60] 28 [0;58] 21 [0;56]

TREC-COVID 32 58 [44;73] 34 [0;60] 58 [44;73] 34 [0;60]
SMAFIRA-c 4 99 [95:102] 12 [10;33] 72.5 [38;78] 10.5 [8;31]

Table 1: Overview of the datasets, the complete sets (eval) and the sets based on PubMed similar articles (sa-eval).
The number of articles are shown in the following format: median [min;max].

than the original one, except for the TREC-COVID,
which had all of its PMIDs included in the list of
PubMed similar articles. The resulting sa-eval sets
are shown in Figure 1, with more details in Table 1.

3 Methods

When selecting the methods for our experiments,
we started with the ones considered in Mysore,
Cohan, and Hope (2022), followed by adding some
additional ones that we found while researching
the literature. We did not consider models trained
specifically on one of the datasets, which is the case
of ASPIRE (Mysore et al., 2022). We describe our
methods in this section and we split them into three
parts: text processing (cf. 3.1), text representation
(cf. 3.2), and ranking (cf. 3.3).

3.1 Text processing
Except when explicitly mentioned, for both the
seed and the candidate article, we considered the
title and abstract of the articles for all datasets,
which we obtained from PubMed using the Entrez
Programming Utilities (E-utilities)5. We concate-
nated the title and the abstract into a single text.
For methods for which sentences were necessary,
e.g., sentence embeddings, we split the text into
sentences with Python SciSpacy6. Besides titles
and abstracts, we also considered other kinds of
text in our experiments, as discussed below.

Discourse elements. We considered selected sec-
tions of the abstracts, which we extracted using a
tool trained on PubMed abstracts (Jin and Szolovits,
2018). We tagged only the abstract of the articles,
and did not consider the titles. The tool returns the
following discourse elements: background, objec-
tive, methods, results, and conclusions. For these
experiments, we considered each discourse ele-
ment separately, by concatenating the sentences
that were tagged with each one of them, following
their original order in the abstracts.

5https://www.ncbi.nlm.nih.gov/books/NBK25497/
6https://allenai.github.io/scispacy/

Facets. As carried out in Mysore, O’Gorman,
McCallum, and Zamani (2021), we manually an-
notated the relevant sentences (i.e., facets) for the
seed articles in the SMAFIRA-c dataset, given that
it contains only four seed articles. Our goal was
to evaluate whether the facets could improve the
results. The annotation was carried out by three
annotators (ann1, ann2, ann3) with a PhD either in
veterinary medicine or biology. We did not require
any previous experience with annotation. We auto-
matically split the sentences of the abstract using
Python SciSpacy and asked the annotators to select
sentences which were part of the research goal. No
further instruction was given with respect to the
annotation process. We ran experiments with the
facets from each annotator, but also considered a
union and an intersection of all of them. For all ex-
periments, we concatenated the manually selected
sentences as a single text, following their original
order in the abstracts.

3.2 Text representation
We describe the various methods that we consid-
ered in our experiments below.

TF-IDF. We used the term frequency–inverse
document frequency (TF-IDF) (Salton and Buck-
ley, 1988) as implemented in Python Scikit-learn7.

Word Embeddings. For the text similarity based
on word embeddings, we vectorized the text using
embeddings which are specific for the biomedi-
cal domain, namely: NCBI (Zhang et al., 2019),
BioNLP-EVEX8, Cambridge (Chiu et al., 2016),
and ChemPatent (Zhai et al., 2019).

Pre-trained language models. For the sentence
embeddings, given the automatically split sen-
tences (cf. 3.1 above), we tokenized and vectorized
them with each of the language models, which were

7https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

8http://evexdb.org/pmresources/
vec-space-models/
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Figure 1: Variation of the number of abstracts per seed article and the corresponding number of similar articles. We
show the complete datasets (on the left in each figure) and the sa-eval evaluation sets (on the right in each figure).
Only one is shown for the TREC-COVID dataset since eval and sa-eval sets are the same.

the following: BioBERT (Lee et al., 2019), BLUE-
BERT (Peng et al., 2019), PubMedBERT (Gu et al.,
2020), BioELECTRA (Kanakarajan et al., 2021),
SPECTER (Cohan et al., 2020), SciBERT (Belt-
agy et al., 2019), and SimCSE (Gao et al., 2021)
(both unsupervised and supervised models). We
calculated the similarity between every pairwise
combinations of sentences. The final score was
given by the average of the scores of all pairwise
combinations.

3.3 Ranking functions

For all text representations described above (cf.
3.2), we utilized the cosine similarity as imple-
mented in Python Scikit-learn9. Next, we ranked
the articles based on their similarity scores, from
the most similar to the least similar. In addition to
these, we tried one method which already includes
its text representation, namely, Okapi BM25 algo-
rithm (Robertson et al., 1994), as available in the
rank-bm25 library10.

Finally, for the sa-eval datasets, we evaluated
re-ranking the candidates by considering two ranks:
(i) the original one provided by PubMed simi-
lar articles (rank1), and (ii) the one returned by
the corresponding method (rank2), as described
above. We calculated the average between both
ranks using three methods: (i) arithmetic average,
i.e., (rank1 + rank2)/2, (ii) geometric average,

9https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.pairwise.cosine_
similarity.html

10https://pypi.org/project/rank-bm25/

i.e.,
√
rank1 ∗ rank2, and (iii) L2-Norm average,

i.e.,
√
rank12 + rank22.

4 Results

We show in this section the results that we obtained
with our experiments. For the evaluation, we con-
sidered the metrics of Precision@20, Recall@20,
R-Precision, and NDCG@2011. We considered
the top 20 since this is the number of articles that
most users usually screen during their search (Isla-
maj Dogan et al., 2009). We summarize the results
in two tables, one for an overview of the highest
scores (cf. Table 2) and one for an overview of the
best performing methods (cf. Table 3).

Evaluation of the full datasets (eval sets). We
first evaluated the full datasets (cf. first columns
of Table 1). The best performance methods varied
for the different metrics and datasets (cf. “E-Ta”
row in Table 2). The recall was similar across
the datasets, but precision, r-precision, and NDCG
were much higher for the RELISH dataset. Indeed,
the proportion of relevant articles is much higher
for this dataset (cf. Figure 1).

Evaluation of the dataset based on similar arti-
cles (sa-eval). The results for the sa-eval datasets
(S-Ta row in Table 2) were rather similar to the
ones obtained for the full datasets, except for a
few exceptions. The r-precision for the RELISH
dataset was much lower than the ones for the “eval”

11https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.ndcg_score.html
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Exp.
RELISH TREC-COVID SMAFIRA-c

r p r-p ndcg r p r-p ndcg r p r-p ndcg
E-Ta 0.39 0.78 0.76 0.79 0.38 0.59 0.59 0.62 0.40 0.33 0.36 0.49
E-Sc 0.40 0.78 0.76 0.79 0.40 0.61 0.59 0.65 0.43 0.33 0.36 0.49
E-Fc - - - - - - - - 0.52 0.43 0.44 0.57
P-SA 0.37 0.73 0.48 - 0.39 0.59 0.56 - 0.52 0.39 0.43 -
S-Ta 0.37 0.74* 0.49* - 0.38 0.59 0.59* - 0.48 0.38 0.41 -
S-Sc 0.37 0.74* 0.49* - 0.40* 0.61* 0.59* - 0.51 0.40* 0.43 -
S-Rr 0.75* 0.51 0.58* - 0.41* 0.63* 0.59* - 0.40 0.33 0.33 -
S-Fc - - - - - - - - 0.54* 0.41* 0.48* -

Table 2: Summary of the best scores for all experiments in terms of Recall@20 (r), Precision@20 (p), R-Precision
(r-p), and NDCG@20 (ndcg). The first three rows correspond to experiments with the complete datasets (eval), when
relying on title and abstracts (E-Ta), sections (E-Sc), and facets (E-Fc). The following row (P-SA) is the Pubmed
similar articles (PMRA algorithm, baseline), as originally retrieved from PubMed. The last four rows correspond to
the experiments with the modified datasets (sa-eval), when relying on title and abstracts (S-Ta), sections (S-Sc),
re-ranking (S-Rr), and facets (S-Fc). Only the results below the P-SA row can be compared to the PubMed baseline.
* indicates results that outperformed PubMed ranking (P-SA baseline).

Methods
RELISH TREC-COVID SMAFIRA-c

Total
eval sa-eval eval sa-eval eval sa-eval

tfidf-cosine Rta Pta

RPta

Nta Rsc

Psc RPsc

Nsc

Rta P ∗
ta

RP ∗
ta Rsc

P ∗
sc RP ∗

sc

Psc Nsc P ∗
sc RPta

Nta Nsc

RPfc

Nfc

Rta Pta

RPrr

25

bm25 Rsc 1
w2v-ncbi Rrr 1
w2v-bionlp P ∗

fc 1
w2v-cambridge -
w2v-chempat -
biobert Pta Psc

Pfc

Rsc P ∗
sc

RPsc

6

pubmedbert Rta RPta 2
bluebert N∗

ta Rsc R∗
sc RP ∗

fc 4
bioelectra -
specter Rta Pta

Psc RPsc

Rta P ∗
ta

Rsc P ∗
sc

R∗
rr Prr

RP ∗
rr

P ∗
ta RP ∗

ta

N∗
ta Rsc

RPsc

Pta RP ∗
ta

R∗
sc RP ∗

sc

P ∗
rr RP ∗

rr

RPsc 23

scibert Rsc P ∗
ta Pta 3

simcse_sup Rsc R∗
ta Rsc Rta R∗

sc

R∗
rr

RP ∗
rr

RPsc R∗
fc 9

simcse_usup Rsc Psc Rfc Rrr

Prr P ∗
fc

RP ∗
fc

7

Table 3: Summary of the best scoring methods for all experiments. Upper cases letters refer to the metrics: r@20
(R), p@20 (P), r-prec (RP), and ndcg (N). Subscripts refer to the text processing or re-ranking: text from title and
abstract (ta), sections (sc), re-ranking (rr), and facets (fc). * indicates results that outperformed PubMed ranking
(PMRA algorithm).
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dataset, and all results for the SMAFIRA-c dataset
were sligtly higher. It should be noted that the an-
notation of SMAFIRA-c and the RELISH datasets
were based on the PubMed similar articles avail-
able at the time. In comparison to the results from
PubMed Similar articles (P-SA), only few scores
were somewhat higher than these, namely, preci-
sion and r-precision for RELISH, and r-precision
for TREC-COVID. We did not calculate the NDCG
score for PubMed similar articles (P-SA), since the
metric is based on similarity scores, e.g., probabil-
ity or confidence values. While the PMRA algo-
rithm returns scores for the similar articles, they
are not suitable for such calculation.

Experiments with discourse elements (sections).
Table 2 (E-Sc and S-Sc rows) shows only the best
performing scores across all the sections. In gen-
eral, we obtained a small improvement over the
results based on the title and abstract, and more
scores outperformed the ones from PubMed, also
for the SMAFIRA-c dataset. Different sections ob-
tained the best results for different datasets, and
more than one were often equally good (cf. Ta-
ble 4). “Background”, “objective”, and “conclu-
sion” were the ones which obtained the best results,
while “methods” and “discussion” were rarely the
best performing ones.

eval r@20 p@20 r-p ndcg
RELISH BO BO BO BO
TREC-COVID BC C O C
SMAFIRA-c B BOC BO O
sa-eval r@20 p@20 r-p -
RELISH all all BO -
TREC-COVID BC C O -
SMAFIRA-c B B C -

Table 4: Summary of the sections that best performed
for each dataset, also for eval and sa-eval. The sections
are represented by their first letter: background (B),
objective (O), methods (M), results (R), and conclusions
(C). “all” means all of the five sections, i.e., BOMRC.

Re-ranking. Table 2 (S-Rr row) presents the re-
sults based on both PubMed and the methods’ ranks
and based on the three averages (cf. Section 3.3).
The results were much worse for SMAFIRA-c, but,
in general, a minor improvement was achieved for
the other datasets. Two exceptions were the recall
and precision for the RELISH dataset: the first had
a large improvement, while the latter decreased. In

eval r@20 p@20 r-p ndcg
title-abs 0.40 0.33 0.36 0.49
ann1 0.44 0.36 0.36 0.57
ann2 0.44 0.43 0.44 0.55
ann3 0.46 0.36 0.42 0.54
union 0.46 0.36 0.41 0.56
intersection 0.52 0.40 0.41 0.51
sa-eval r@20 p@20 r-p -
pubmed 0.52 0.39 0.43 -
title-abs 0.48 0.38 0.41 -
ann1 0.54* 0.40* 0.45* -
ann2 0.53* 0.41* 0.48* -
ann3 0.51 0.39 0.48* -
union 0.54* 0.40* 0.45* -
intersection 0.53* 0.41* 0.44* -

Table 5: Results using the original text based on the title
and abstracts (title-abs), and based on the selected text
annotated by each annotator (ann1, ann2, ann3), as well
as their union and intersection. * indicates results that
outperformed PubMed ranking (PMRA algorithm).

general, the geometric average was the best per-
forming one, followed by the arithmetic average in
some cases (results not shown).

Experiments with facets. We asked three ex-
perts to annotate the four seed articles of
SMAFIRA-c with respect to the research goal (cf.
Section 3.1). For a total of 51 sentences (sum
from all four reference articles), the kappa coef-
ficient and level of agreement (McHugh, 2012)
were the following: 0.51 (weak) between ann1-
ann2, 0.25 (minimal) between ann1-ann3, and 0.33
(minimal) between ann2-ann3. Table 2 (E-Fc and
S-Fc rows) shows that it brought an improvement
for SMAFIRA-c, for both the complete (eval) and
modified (sa-eval) datasets. Further, the scores
were higher than the ones from the PMRA algo-
rithm.

We experimented with facets from each of the
annotators, as well as a union and intersection of
their annotations. For the union, we considered
any sentence that one of the annotator had selected,
while the intersection consisted of the sentences
that were annotated by at least two of them. Table 5
shows the results for each of these approaches, for
both evaluation sets (eval and sa-eval). None of the
results was lower than the ones obtained with the
title and abstract, and many of them outperformed
the PMRA algorithm.
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5 Discussion

In this section we discuss some interesting points
of our results, such as the best performing methods
and a comparison between the datasets, as well as
an error analysis.

Best performing methods. Table 3 presents the
overview of the best performing methods for each
dataset, for both evaluation sets (eval and sa-eval),
and for the various text representations that we
considered. On the one hand, some few methods
never obtained the best performance, e.g., some
of the word2vec embeddings and BIOELECTRA
language model. On the other hand, two meth-
ods were the best performing ones, curiously, a
simple one (TF-IDF), and a more complex re-
cent one (SPECTER). While TF-IDF performed
better for the RELISH and SMAFIRA-c datasets,
SPECTER obtained the best results for the REL-
ISH and TREC-COVID datasets. We could not
observe that the best results for a particular type of
experiment (e.g. facets or section) or metric (e.g.,
precision or recall) were correlated with some par-
ticular methods.

Different methods performed better for the dif-
ferent datasets. The best results for the RELISH
dataset was restricted to two methods, namely
TF-IDF and SPECTER. The ones based on dis-
course elements performed better with TF-IDF,
while the ones with re-ranking averages were based
on SPECTER. For the TREC-COVID datsets, best
results involved many methods, most of them on
the bottom part of Table 3, i.e., methods based
on pre-trained language models. Finally, the best
results for SMAFIRA-c were spread all over the
table, and included the only best results obtained
by BM25 and word2vec embeddings.

Comparison between the datasets. The three
datasets are very different to each other, thus results
cannot be compared between them. However, to-
gether, they provide a good overview of the perfor-
mance of the available methods. On the one hand,
the results that we obtained might be more reliable
for datasets with more seed articles (i.e., RELISH),
than with shorter ones (i.e. SMAFIRA-c). On the
other hand, the RELISH dataset has a higher rate
of similar articles (cf. Table 1 and Figure 1) than
SMAFIRA-c. The TREC-COVID dataset lies be-
tween the two of them, having a higher number of
seed articles than SMAFIRA-c, and a lower rate of
similar articles than RELISH.

Two of the datasets (RELISH and SMAFIRA-c)
relied on the output of the PubMed similar arti-
cles during their annotation. Indeed, we observed
higher scores for SMAFIRA-c for the sa-eval eval-
uation set. However, the same did not occur for nei-
ther the RELISH nor the TREC-COVID datasets.

In order to reduce the high rate of similar ar-
ticles in some of the datasets, we ran additional
experiments by removing seed articles with such
high rates from the evaluation set. We considered
three values of rates (0.5, 0.25, and 0.1) and au-
tomatically removed seed articles with a rate of
similar articles higher than these values. The re-
sulting number of seed articles for the three rates
were the following, respectively: 406, 114, 30 for
RELISH, 13, 7, 5 for TREC-COVID, and 4, 3,
0 for SMAFIRA-c. We show our results in Ap-
pendix A.1. As expected, we noticed a decrease
of the precision, since it is harder to find a similar
article among the many candidates, and an increase
in the recall, since there are less similar articles to
be ranked.

Annotation of the facets. The annotation of the
relevant sentences varied among the annotators (cf.
Appendix A.2). While two of the annotators (ann1
and ann2) usually obtained similar annotations, one
of them (ann3) annotated less sentences. However,
annotations from any of them obtained good results,
as presented in Table 5, even though it is a very
subjective task, and though we practically provided
no guidelines to the annotators. Further, it is not
a very time-consuming task, since only the seed
articles need to be annotated, thus allowing the
integration of such type of input into search tools.

In general, sentences with more agreement be-
tween the annotators described the hypothesis or
results of the experiments, usually with expressions
such as “the aim of the study” or “we hypothe-
sized”. The sentences that were selected by only
one annotator comprised some additional details to
the experiments, e.g., mutations in particular genes.
In many cases, the sentences also contained details
about the experimental models, i.e., an animal ex-
periment, which was not relevant to the definition
of similarity in the SMAFIRA-c dataset, nor did it
belong to the research goal. However, this did not
seem to compromise the results.

Error analysis. We ran an error analysis to detect
interesting aspects of the predictions that we ob-
tained from the various methods. For this analysis,
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Figure 2: Visualizations of the number of methods (x-axis), including Pubmed PMRA, and the number of true
positives, extra true positives, false positives, and false negatives (y-axis) that they returned. The graphic for extra
TPs does not consider Pubmed PMRA, thus only 14 methods in the x-axis.

we considered the top 20 predictions of all meth-
ods (including the PMRA algorithm) and compiled
the usual true positives (TPs), false positives (FPs),
and false negatives (FNs). In addition to these, we
also checked the TPs which were only predicted by
the other methods, but not by the PMRA algorithm
(hereafter called “extra TPs”). We plotted these
analyses in Figure 2.

While any of the methods could predict many
TPs for the RELISH dataset (cf. high gray bar for
value “15” on the right), this does not occur for the
TREC-COVID dataset, for which relatively high
bars can be seen by low values (cf. white bars for
values “1” to “4”). This means that, sometimes,
just a couple of the methods were able to place
relevant PMIDs in the top 20. Further, extra TPs,
i.e., TPs in addition to the ones placed on the top
20 by the PMRA algorithm, are usually only found
by some few methods (cf. high white and black
bars for values up to “6”), thus proving that some
methods are indeed better than others for particu-
lar datasets, and particularly for SMAFIRA-c and
TREC-COVID.

On the one hand, the graphic for FPs shows that,
for the SMAFIRA-c and TREC-COVID datasets,

the highest rates of these errors are due by a couple
of methods (cf. black bars on the left of the graph).
On the other hand, many of the FPs for the RELISH
dataset is common by all of the methods (cf. high
grey bar on the right of the graph). Regarding the
FNs, many of the mistakes are made by all of the
methods (cf. the three highest bars on the right of
the graph).

6 Conclusions

We presented an overview of available methods
for the task of text similarity and provided a com-
prehensive evaluation for three datasets from the
biomedical domain. We considered only datasets
derived from PubMed and, in our experiments, eval-
uated various kinds of inputs, such as the title and
the abstract of the articles as well as some (poten-
tially relevant) parts of the abstracts, which have
been either manually or automatically selected. We
provided a variety of evaluations, based on the com-
plete datasets, as well as a modified version of them
for a comparison to the ranking algorithm from
PubMed similar articles.

The results were diverse and the best perform-
ing methods were different for each of the datasets,
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and for the various experiments that we carried
out. However, both former and recent methods,
e.g., TF-IDF and SPECTER, respectively, obtained
good results for some of the datasets. Further, for
all datasets, at least one of our experiments could
outperform the ranking algorithm from PubMed
similar articles. We hope that our survey can sup-
port the researchers when deciding about the most
appropriate method to be used for a particular sit-
uation, based on either the dataset or hardware
availability.

Limitations

Our experiments only used the abstracts of the arti-
cles and we did not consider the full text. Actually,
the full text might provide valuable information
for the decision about the similarity, while making
it harder at the same time, since the text is much
longer. However, full text is usually not available
for many of the articles in PubMed, which would
result in even shorter datasets.

We did not train any model based on the avail-
able datasets, as carried out by (Mysore et al.,
2022). Indeed, our goal was to evaluate the dataset
based on general-purpose text similarity algorithms
that had not been fine-tuned for a particular dataset.

For the annotation of the facets, we simply asked
the annotators to select sentences that were part
of the research goal. However, it might not have
been carried exactly as in the annotation of the
SMAFIRA-c dataset.

Ethics Statement

Our experiments relied on published datasets de-
rived from abstracts from PubMed. The various
definitions of similarity in these datasets are solely
based on scientific aspects of the abstracts and
should not raise any ethical concerns.
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A Appendix

A.1 Results for lower rates of similar articles
Table 6 shows results with the various values of
rate of similar articles that we considered.

A.2 Annotation of the facets
We show the annotations from each annotator, as
well as the union and intersection of these, for the
seed articles 16850029 (Table 7), 19735549 (Ta-
ble 8), 21494637 (Table 9), and 24204323 (Ta-
ble 10).
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RELISH r@20 p@20 r-p ndcg
all 0.39 0.78 0.76 0.79
0.5 0.48 0.47 0.47 0.57

0.25 0.54 0.24 0.32 0.49
0.1 0.61 0.12 0.26 0.46

TREC-COVID r@20 p@20 r-p ndcg
all 0.38 0.59 0.59 0.62
0.5 0.37 0.24 0.27 0.31

0.25 0.39 0.09 0.13 0.24
0.1 0.32 0.05 0.10 0.19

SMAFIRA-c r@20 p@20 r-p ndcg
all 0.40 0.33 0.36 0.49
0.5 0.40 0.33 0.36 0.49

0.25 0.41 0.23 0.29 0.45
0.1 - - - -

Table 6: Best results for the complete dataset (all) and
modified version of the datasets with lower rates of
similar articles.

16850029 ann1 ann2 ann3 U I
1 x x
2
3
4 x x x x x
5
6
7 x x
8
9

10
11 x x
12
13
14
15 x x x x

Table 7: Facets annotation for PMID 16850029, for
each of the sentences in its abstract. We show the anno-
tations by the three annotators, as well as union (U) and
intersection (I) of these.

19735549 ann1 ann2 ann3 U I
1 x x x x
2
3 x x
4 x x x x x
5
6 x x x x
7
8
9
10 x x
11 x x
12 x x
13
14 x x x x
15 x x x x x

Table 8: Facets annotation for PMID 19735549, for
each of the sentences in its abstract. We show the anno-
tations by the three annotators, as well as union (U) and
intersection (I) of these.

21494637 ann1 ann2 ann3 U I
1 x x x x
2 x x
3
4
5 x x x x x
6 x x x x
7
8 x x x x x

Table 9: Facets annotation for PMID 21494637, for
each of the sentences in its abstract. We show the anno-
tations by the three annotators, as well as union (U) and
intersection (I) of these.
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24204323 ann1 ann2 ann3 U I
1 x x x x
2 x x
3 x x x x x
4
5
6 x x
7 x x
8
9 x x

10
11
12
13 x x x x

Table 10: Facets annotation for PMID 24204323, for
each of the sentences in its abstract. We show the anno-
tations by the three annotators, as well as union (U) and
intersection (I) of these.
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