@inproceedings{meoni-etal-2023-large,
title = "Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction",
author = "Meoni, Simon and
De la Clergerie, Eric and
Ryffel, Theo",
editor = "Demner-fushman, Dina and
Ananiadou, Sophia and
Cohen, Kevin",
booktitle = "The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bionlp-1.15",
doi = "10.18653/v1/2023.bionlp-1.15",
pages = "178--190",
abstract = "In clinical and other specialized domains, data are scarce due to their confidential nature. This lack of data is a major problem when fine-tuning language models. Nevertheless, very large language models (LLMs) are promising for the medical domain but cannot be used directly in healthcare facilities due to data confidentiality issues. We explore an approach of annotating training data with LLMs to train smaller models more adapted to our problem. We show that this method yields promising results for information extraction tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meoni-etal-2023-large">
<titleInfo>
<title>Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Meoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">De la Clergerie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Theo</namePart>
<namePart type="family">Ryffel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In clinical and other specialized domains, data are scarce due to their confidential nature. This lack of data is a major problem when fine-tuning language models. Nevertheless, very large language models (LLMs) are promising for the medical domain but cannot be used directly in healthcare facilities due to data confidentiality issues. We explore an approach of annotating training data with LLMs to train smaller models more adapted to our problem. We show that this method yields promising results for information extraction tasks.</abstract>
<identifier type="citekey">meoni-etal-2023-large</identifier>
<identifier type="doi">10.18653/v1/2023.bionlp-1.15</identifier>
<location>
<url>https://aclanthology.org/2023.bionlp-1.15</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>178</start>
<end>190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction
%A Meoni, Simon
%A De la Clergerie, Eric
%A Ryffel, Theo
%Y Demner-fushman, Dina
%Y Ananiadou, Sophia
%Y Cohen, Kevin
%S The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F meoni-etal-2023-large
%X In clinical and other specialized domains, data are scarce due to their confidential nature. This lack of data is a major problem when fine-tuning language models. Nevertheless, very large language models (LLMs) are promising for the medical domain but cannot be used directly in healthcare facilities due to data confidentiality issues. We explore an approach of annotating training data with LLMs to train smaller models more adapted to our problem. We show that this method yields promising results for information extraction tasks.
%R 10.18653/v1/2023.bionlp-1.15
%U https://aclanthology.org/2023.bionlp-1.15
%U https://doi.org/10.18653/v1/2023.bionlp-1.15
%P 178-190
Markdown (Informal)
[Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction](https://aclanthology.org/2023.bionlp-1.15) (Meoni et al., BioNLP 2023)
ACL