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Abstract

Over the past few years, domain-specific pre-
trained language models have been investi-
gated and have shown remarkable achieve-
ments in different downstream tasks, espe-
cially in biomedical domain. These achieve-
ments stem on the well-known BERT archi-
tecture which uses an attention-based self-
supervision for context learning of textual
documents. However, these domain-specific
biomedical pre-trained language models mainly
use English corpora. Therefore, non-English,
domain-specific pre-trained models remain
quite rare, both of these requirements being
hard to achieve. In this work, we proposed
AliBERT, a biomedical pre-trained language
model for French and investigated different
learning strategies. AliBERT is trained using
regularized Unigram based tokenizer trained
for this purpose. AliBERT has achieved state-
of-the-art F1 and accuracy scores in different
down-stream biomedical tasks. Our pre-trained
model manages to outperform some French
non domain-specific models such as Camem-
BERT and FlauBERT on diverse down-stream
tasks, with less pre-training and training time
and with much smaller corpora.

1 Introduction

Recent contextual language models have achieved
tremendous results in almost all domains using
textual information. Transformers (Vaswani et al.,
2017) based pre-trained language models (T-PLM)
have contributed and continue to contribute to the

∗The first two authors have equal contribution.

success of natural language processing (NLP) in
multiple domains of expertise. Furthermore, very
large transformer based models which require hun-
dreds of billions of parameters have shown extra-
ordinary achievements and became more accessi-
ble.

The biomedical field is one of the most important
domain and its associated textual corpora is one
of the fast-growing sources of information in sev-
eral languages. Hence, researchers have leveraged
PLMs to represent biomedical knowledge from
different sources, following their success in the
general domain. There are plenty of Biomedical
Pre-trained Language Models (B-PLMs) that have
achieved interesting results and that help decision
making in the biomedical field, such as BioBERT
(Lee et al., 2020), PubMedBERT (Gu et al., 2022),
BioELECTRA (raj Kanakarajan et al., 2021), etc.

PLMs are trained using different training mech-
anisms. The most common are masked language
modeling (MLM) (Devlin et al., 2019), replaced
token detection (RTD) (Clark et al., 2020) or next
sentence prediction (NSP) (Devlin et al., 2019).
Training a biomedical language model using dif-
ferent strategies does benefit the different down-
stream tasks. Furthermore, B-PLMs apply vari-
ous pre-training methods since they borrow some
characteristics from already existing PLMs. Com-
monly used pre-training methods includes contin-
ual pre-training (CPT), mixed domain pre-training
and domain-specific pre-training (DSPT). In this
work, DSPT was used for training our proposed
model from scratch using domain-specific French
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corpora. Furthermore, B-PLMs use tokens as in-
put. Tokenization is indeed the basic step of lan-
guage model training since it is the tokens that
are directly used as discrete input for model pre-
training. There are different ways to tokenize a
text input. The most common tokenization tech-
niques are Byte Pair Encoding (BPE) (such as; Sen-
tencePiece, WordPiece, etc.) and Unigram sub-
word based tokenization. Consideration and imple-
mentation of different tokenization techniques are
equally important to achieve better performance of
B-PLMs, especially when the model is language-
specific. Language-specific PLMs can use common
tokenization techniques like BPE, but they can also
tailor the tokenization process and train a tokenizer
that can fit a specific language and domain under
consideration. In a similar way the biomedical text
differs from general domain texts, so the use of cus-
tom tokenization allows for better representation
of most biomedical vocabulary (words).

Biomedical language models in languages other
than English, i.e. PLMs that are both domain and
language-specific, are quite rare. In the field of non-
English language-specific models, there are a few
that focus on French language, such as Camem-
BERT (Martin et al., 2020) and FlauBERT (Le
et al., 2020). French is a very rich language and
French-based PLMs (Martin et al., 2020; Le et al.,
2020) have shown the importance of such language-
specific model for different purposes. However,
French biomedical textual information have not
been implemented using transformers based PLM.
Yet, there are a few French language word embed-
ding in biomedical domains. (Dynomant et al.,
2019) compared different word embedding tech-
niques (word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014)) for French health-related
documents. Given the disadvantages of embed-
ding words for their representation it is neces-
sary to build B-PLMs for better representation.
In this work, we propose AliBERT (named af-
ter Jean-Louis-Marc AliBERT the French pioneer
of dermatology), a BERT-based language-specific
and domain-specific Biomedical language model.
AliBERT uses a masked language model (MLM)
pre-training mechanism which randomly masks
some of the tokens from the input biomedical text
and predicts the masked tokens based on the con-
text of the input. Thereby learning the context
of each word according to the biomedical text in-
put. A Unigram based tokenizer with a novel regu-

larization algorithm has been trained for AliBERT
pre-training. In addition to the MLM, we have
also trained an ELECTRA-based (Clark et al.,
2020) model called AliBERT-ELECTRA. AliBERT-
ELECTRA is trained using the replaced token de-
tection mechanism using the same vocabularies
and tokenization steps as AliBERT. In addition, the
LAMB optimizer is studied to analyze its computa-
tional speed gain during model pre-training. Here
are the main contributions of our work:

• A French biomedical language model, a
language-specific and domain-specific PLM,
which can be used to represent French biomed-
ical text for different downstream tasks.

• A normalization of a Unigram sub-word tok-
enization of French biomedical textual input
which improves our vocabulary and overall
performance of the models trained.

• AliBERT outperforms other French PLMs in
different downstream tasks. It is a foundation
model that achieved state-of-the-art results on
French biomedical text. Models are available
on HuggingFace hub1 and datasets are avail-
able to the public 2.

This paper is organized in the following manner:
first the related work is discussed in section 2, dif-
ferent language-specific and domain-specific PLMs
and their pre-training objectives and strategies are
discussed. Second, section 3 presents our B-PLM
AliBERT with details on architecture, tokenization
and optimization. Then, section 4 discusses the
fine-tuning and evaluation of our models in down-
stream tasks. Next, section 5 explain the experi-
ments and results on the down-stream tasks. Then,
section 6 discusses the results found and the draw-
backs we encountered in detail. Finally, section 7
concludes the findings of this paper and points
out our future directions concerning the domain-
specific and language-specific PLMs.

2 Related Work

In recent years, the number of language models
based on Transformers (Vaswani et al., 2017) has
grown rapidly and their performance has been re-
markable in many areas. The pioneers of Trans-
formers based PLMs (T-PLMs) are BERT (Devlin

1Quinten-datalab/AliBERT
2https://gitlab.par.quinten.io/qlab/alibert
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et al., 2019) and GPT (Radford et al., 2018) which
are a stack of encoders and decoders of transform-
ers, respectively. Consequently, the T-PLMs can be
mainly divided as transformer encoder based mod-
els such as ALBERT (Lan et al., 2020), RoBERTa
(Zhuang et al., 2021), ELECTRA (Clark et al.,
2020), and transformer decoder based model such
as BART (Lewis et al., 2019), PEGASUS (Zhang
et al., 2019), and T5 (Raffel et al., 2020). De-
vlin et al. (2019) played an important role for the
increase of T-PLMs and fine-tuning many down-
steam tasks. They also paved the way for other
languages (other than English), such as (Martin
et al., 2020; Le et al., 2020; Delobelle et al., 2020;
Cañete et al., 2020), to develop language-specific
(monolingual) language models.

There are very few French language models
(Martin et al., 2020; Le et al., 2020; Copara et al.,
2020; Douka et al., 2021; Cattan et al., 2021).
CamemBERT (Martin et al., 2020) and FlauBERT
(Le et al., 2020) are trained on general knowl-
edge French corpora. CamemBERT used OSCAR
dataset which is composed of 130 Gigabytes (GB)
of raw French text with 32.7 Billion tokens whereas
FlauBERT utilized 71 GB of raw text with 12.7 Bil-
lion of token. BERTweetFR (Guo et al., 2021)
is another French PLM trained on French tweets.
BERTweetFR is a general domain which is ini-
tialized using CamemBERT utilizing the largest
French tweet corpora which is composed of 16 GB
of 226 Million tweets. They took tweets with an
average length of 30 tokens. Kamal Eddine et al.
(2021) developed a BART based French language
model called BARThez which is a generative lan-
guage model based on BART3 (Lewis et al., 2019).
BARThez used 66 GB (110 GB after tokenization)
raw text for pre-training. Cattan et al. (2021) inves-
tigated the usability of transformer based models
for French question answering task and provided
a model known as FrALBERT which is based on
the compact language models (parameter efficient
BERT) called ALBERT (Lan et al., 2020). FrAL-
BERT is a compact language model pre-trained on
the French version of the Wikipedia encyclopedia
as of 04/05/2021. Their dataset is composed of 4
GB of text and 17 million sentences. There are
two French domain-specific PLMs. The first one is
JuriBERT (Douka et al., 2021), it is a French legal
language model (language and domain-specific)

3BART: De-noising Sequence-to-Sequence pre-training
for Natural Language Generation, Translation, and Compre-
hension

which is trained on 6.3 GB of raw legal text4. The
second is CamemBioBERT (Copara et al., 2020), it
is a fine-tuned CamemBERT (Martin et al., 2020)
using biomedical text from a French language chal-
lenge known as DEFT ("Défi Fouille de Textes")5.
Dura et al. (2022) introduced their ongoing work on
a clinical French language model, known as EDS
(Entrepôt des Données de Santé), that uses 21 mil-
lion French clinical reports from electronic health
records (EHR) from several hospitals in the Paris
area. Dura et al. (2022) claimed that their prelim-
inary results achieved better results than Camem-
BERT (Martin et al., 2020). They have trained EDS
from scratch (EDS-from-scratch) and continuous
training over CamemBERT (EDS-fine-tuned).

Regarding domain-specific-language models,
Lee et al. (2020) built the first BERT based lan-
guage model in English in the biomedical domain,
known as BioBERT. BioBERT (Lee et al., 2020) is
built on top of the BERT (Devlin et al., 2019) model
using abstracts of biomedical articles. Following
the publication of BioBERT, biomedical language
models have gained considerable momentum. A
survey (Kalyan et al., 2021) studied many publicly
available language models in the biomedical do-
main and provided a survey of systematic literature
review, known as AMMU. AMMU includes 121
articles of biomedical language models.

AMMU investigated the core B-PLMs concepts,
such as pre-training methods, pre-training tasks,
fine-tuning methods and embeddings. Furthermore,
Kalyan et al. (2021) disclosed different types of cor-
pora along with the language models that used the
corpus. The main corpora included were electronic
health record (EHR), radiology reports, social me-
dia texts and scientific literature. They have listed
out the most common learning objectives such as
Masked Language Modeling (MLM), Replaced
Token Detection (RTD), Next Sentence Predic-
tion (NSP), Sentence Order Prediction (SOP) and
Span Boundary Objective (SBO). There are few
non-English transformer-based biomedical PLMs
(Schneider et al., 2020; Bressem et al., 2020; López-
García et al., 2021; Vakili et al., 2022). Most of
the models are pre-trained using the continual pre-
training (CPT) approach which means they used al-
ready pre-trained language-specific general knowl-
edge PTM. We invite readers to refer to the AMMU

4Number of token used in JuriBERT (Douka et al., 2021)
not mentioned in the paper

5DEFT is a scientific evaluation campaign on Francophone
text mining.
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survey for details (Kalyan et al., 2021).
To the best of our knowledge, there is not yet a

French biomedical transformer based PLM trained
from scratch. However, as mentioned above we are
aware of an ongoing work on a PLM for French
clinical reports using proprietary EHR (Dura et al.,
2022) From the literature we can clearly see that
there is a gap in pre-trained language models for
French biomedical text mining. Hence, our primary
goal is to address this gap and enhance the tokeniza-
tion of French biomedical texts. Instead of relying
solely on general tokenization methods, we have
standardized the tokenization process specifically
for French biomedical texts.

3 Methods

This sections focuses on how the proposed pre-
trained language model, AliBERT, was built. It
describes the pre-training strategy and architecture,
pre-training corpora, tokenization and optimization
of our models.

3.1 Pre-training strategies

There are different kinds of pre-training strategies
to train a transformers based models (Kalyan et al.,
2021). Pre-training from scratch (PTS) is the strat-
egy used for training AliBERT and its variants.
They are trained from scratch using biomedical
corpora to better represent the biomedical context
of words. Training our models from scratch helps
to represent vocabulary that only exists in biomedi-
cal text, which will be discussed in subsection 3.3.

The models developed are based on the trans-
formers (Vaswani et al., 2017) architecture and
RoBERTa (Zhuang et al., 2021) a variant of the
BERT (Devlin et al., 2019) model is used as
masked language model (MLM), transformers and
BERT architecture will not be discussed here be-
cause they have been discussed extensively in many
research works (Devlin et al., 2019; Martin et al.,
2020). Therefore, AliBERT is trained in the course
of self-supervised learning by masking 15% of the
words from the input text (sequence of words). All
necessary steps and configurations are discussed in
the following subsections.

3.2 Pre-training data

The pre-training corpus was gathered from differ-
ent sub-corpora of French biomedical textual doc-
uments. The sources used are a database of drug
leaflets ("Base de données publique des médica-

ments"), a French equivalent of Physician’s Desk
Reference i.e. RCP6, biomedical articles from Sci-
enceDirect7, Thesis manuscripts in French and ar-
ticles from Cochrane database8. It can be inferred
from the names of the corpora that they cover vari-
ous topics in the biomedical domain and that they
have different writing styles. Table 1 summarises
the different corpora collected and used for pre-
training AliBERT models.

Name Quantity Size
Drug database 23K 550Mb
RCP 35K 2200Mb
Articles 500K 4300Mb
Thesis 300K 300Mb
Cochrane 7.6K 27Mb

Table 1: Corpora used to pre-train AliBERT

The corpora were collected from different
sources. Scientific articles are collected from Sci-
enceDirect using an API provided on subscrip-
tion and where French articles in biomedical do-
main were selected. The summaries of thesis
manuscripts are collected from "Système universi-
taire de documentation (SuDoc)" which is a catalog
of universities documentation system. Short texts
and some complete sentences were collected from
the public drug database which lists the character-
istics of tens of thousands of drugs. Furthermore,
a similar drug database known as "Résumé des
Caractéristiques du Produit (RCP)" is also used to
represent a description of medications that are in-
tended to be utilized by biomedicine professionals.
Pages of biomedical articles from Cochrane are
also collected. Hence, our corpus for pre-training
is composed altogether of around 7 gigabytes (GB)
textual documents.

When compared with the corpora of already ex-
isting French T-PLMs, our corpus is big enough
to represent a biomedical text. Table 2 compares
the different corpora used for pre-training French
language models.

6The "Résumé des Caractéristiques du Produit" (RCP)
database aims at providing more accurate information than the
instructions note for use of medicines.

7ScienceDirect is a website which provides access to a
large bibliographic database of scientific and medical publica-
tions of the Dutch publisher Elsevier.

8Cochrane is a British international charitable organisa-
tion formed to organise medical research findings to facilitate
evidence-based choices about health interventions involving
health professionals, patients and policy makers.
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Model Domain Size Source
CamemBERT (Martin et al., 2020) general 138 GB OSCAR
FlauBERT (Le et al., 2020) general 71 GB WMT19, OPUS, Wikmedia
BERTweetFR (Guo et al., 2021) general 16 GB French tweets
JuriBERT (Douka et al., 2021) legal 6.3 GB LégalFrance & Court of Causation
FrAlbert (Cattan et al., 2021) general 4.0 GB Wikipedia
AliBERT biomedical 7.0 GB ScienceDirect, SuDoc, Drug databases

and Cochrane

Table 2: Comparison of the AliBERT corpus with that of the existing French PLMs.

3.3 Tokenization

In the context of Pre-trained Language Models
(PLMs), tokenization refers to the process of divid-
ing the input text into subwords or words known
as tokens that will serve as the input to the model.
Most BERT based PLMs use sub-word tokeniza-
tion scheme such as Byte Pair Encoding (BPE),
WordPiece and SentencePiece. However, the tok-
enization process can be adapted or trained to meet
a specific purpose and/or to represent a vocabulary
in a specific domain. We chose to train our own to-
kenizer to ensure that its vocabulary encompasses
the necessary biomedical terms.

A normalization step prior to tokenization, par-
ticularly adapted to French, was used to enhance
our vocabulary. In this step we added a space
after a selected list of punctuation mark. It nor-
malises the representation of the text, and facil-
itates both the tokenization and learning by the
neural network. Hence, this step leads to a sig-
nificant reduction of duplicates, such as, ("MOT",
"_MOT"),("_siècle","_siècles") which were intro-
duced due to punctuation marks like "(", " :", "-",
etc. in the text.

We have trained different tokenizers, such as Un-
igram, WordPiece with different parameters (vocab-
ulary size, regularization). Unlike BPE, Unigram
starts with a large vocabulary and removes tokens
until it reaches the desired vocabulary size. During
training, at every step, Unigram computes a loss
over the corpus given the current vocabulary. Then,
for each symbol it calculates how much the overall
loss would increase if the symbol was removed,
and looks for the symbols that would decrease it
the most. Appendix A discusses the steps taken
during tokenization with an example and compares
Unigram tokenizers trained from scratch and the
tokenizer from CamemBERT (Martin et al., 2020).

3.3.1 Training configurations
When training a large language model, it is neces-
sary to take into account different configurations
needed to build a well-performing model. There-
fore, model architecture, training strategy, opti-
mization and computation are key parameters to
consider.

Model architecture and training: We have
mainly developed two architectures of our French
B-PLM namely AliBERT: a BERT (Lan et al.,
2020) based and AliBERT-ELECTRA an ELEC-
TRA (Clark et al., 2020) based, models. BERT
and ELECTRA differ only in their learning strat-
egy. The former uses masked language modeling
(MLM) and the later uses replaced token detection
(RTD). AliBERTbase has the same architecture as
BERTbasewhich has a length (L) of 12, height (H)
of 512 and a self-attention head (A) of 12.

For MLM, a sequence of words is given as in-
put and 15% of the words are hidden. The input
goes through the tokenization stage and the words
are tokenized. The tokens are padded or truncated
to have a maximum length of 512 tokens. Hence,
special tokens "[CLS]","[PAD]" are added if the
sequence length is less than 512 tokens. Then the
embeddings of the tokens are passed to the trans-
former layers to learn the context of the input and
the relationship of the tokens. Finally, the output of
the transformers is passed to a feed-forward neural
network to compute the probability distribution of
the token to predict the masked tokens/words. For
more detail on this training method see the original
work of BERT (Devlin et al., 2019).

Another strategy different from MLM is RTD,
in RTD the objective is to predict which tokens
have been replaced and which have not. A very
simple pre-trained model is used as a generator to
predict a masked word from the input text. Then,
the predicted words are used to replace the masked
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inputs and the unmasked sentence is used as input
text in the discriminator model. Eventually, the
discriminator model is used to identify the original
words of the original input text. For more details
of the architecture, we invite our readers to refer to
the original work of ELECTRA (Ozyurt, 2020).

Optimization: AliBERT was originally trained
using the ADAM 9 optimizer for faster and bet-
ter training as used in BERT. Meanwhile, a recent
work by You et al. (2020) introduced an optimizer
known as LAMB that reduces the training time
of BERT from 3 days (4320 minutes) to 76 min-
utes. Therefore, AliBERT was also trained using
LAMB optimizer for the purpose of comparing it
with ADAM optimizer which is the default for our
pre-trained models.

The models trained using LAMB optimizer
trained much faster than their counter part (using
ADAM). However the performance of the models
trained with LAMB was not as good as the models
trained with ADAM. The loss of the model quickly
reduces when LAMB optimizer is used during train-
ing. Figure 3 in Appendix B shows the comparison
of time taken to train using LAMB and ADAM at-
omizers on our models. Moreover, AliBERT trained
with ADAM optimizer achieved better results in
NER downstream task. Table 6 compares two
AliBERT models trained with ADAM (AliBERT)
and LAMB (AliBERT-LAMB) optimizers.

4 Fine-tuning and Model Evaluation

In order to evaluate the level of understanding of
French biomedical tasks by AliBERT, we have fine-
tuned AliBERT on standard pre-trained language
model evaluation tasks such as biomedical named
entity recognition (NER), biomedical text classifi-
cation, etc. Below, we discussed how the tasks are
trained.

4.1 Biomedical named entity recognition
(NER)

For the NER task we have used HuggingFace10 to-
ken classification pipeline using our AliBERT mod-
els. The first dataset used is "CAS dataset", from
the work of Grouin et al. (2019), which is used in
different challenges of French biomedical text chal-
lenge known as "DEFT (Défis Fouille de Texte)".

9Adam is an algorithm for first-order gradient-based opti-
mization of stochastic objective functions, based on adaptive
estimates of lower-order moments.

10HuggingFace: the AI community building the future.
https://huggingface.co/

It is composed of clinical French texts which fo-
cuses on specific specialties of medical domains
such as cardiology, urology, oncology, obstetrics,
pneumatic, etc. The annotation in this dataset in-
clude plenty of biomedical entities where some of
them do not have adequate annotation. Hence, we
have kept only the five most-annotated types, i.e,
anatomy, pathology, symptom, substance and value.
Appendix D describes the annotated dataset used in
NER task for fine-tuning and evaluation purposes.

Meanwhile, QUAERO (Névéol et al., 2014)
datasets is used for more experiment and fine-
tuning. QUAERO datasets is composed of ten an-
notated entity categories corresponding to UMLS
(Unified Medical Language System) semantic
groups. The annotation was performed using au-
tomatic pre-annotations and validated by trained
human annotators. We have selected five entities
that are most related to biomedical concepts, from
the QUAERO-MEDLINE datasets which consist of
article titles from the MEDLINE11 database. The
five entities are selected according to their defini-
tion and their relatedness with biomedical domain.
The entities and the dataset are discussed in ap-
pendix Appendix D.

4.2 Biomedical text classification

For the biomedical text classification, we have used
a private dataset which is composed of 410,000
examples and 789 classes. Hence, it is an extreme
classification problem. Classes that have more than
1000 examples have been selected. A sequence
classification model from hugging face was used
to fine-tune a downstream classification model.

5 Experiments and Results

AliBERTbase was trained on 48 GPUs Nvidia A100
(12 nodes each with 4 GPUs) for 20 hours with
512 input tokens and a batch size of 960 (20 batch
size for each GPU). We have used a vocabulary of
40K sub-word units which are built using Unigram
tokenization algorithm.

Our models have been evaluated using the above-
mentioned fine-tuning models and on the masked
token prediction. The results found using our mod-
els have been compared to the CamemBERT (Mar-
tin et al., 2020) French PLM which is the state-of-
the-art in French language. Unfortunately, we were
not able to compare our models with biomedical

11http://www.ncbi.nlm.nih.gov/pubmed/
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PLMs due to the lack of French PLM in biomedical
domain.

The downstream tasks on which our models have
been evaluated are Biomedical NER, classification
and Masking Language Modeling (MLM). The
downstream datasets are not included in the train-
ing dataset of our models. However, there might
be an overlap with the QUAERO-MEDLINE arti-
cle titles. The results obtained on these tasks are
detailed below.

Biomedical Named Entity Recognition (NER)
A token classification model was fine-tuned from
the pre-trained models mainly in 5 biomedical en-
tity types, these are symptoms, anatomy, sub-
stance, value and pathology. Our models have
outperformed CamemBERT in most of the enti-
ties and in their macro average of precision (P),
recall(R) and F1 score (F1).

The results found in Table 3 are trained upon
a batch size of 80, learning rate (lr) of 2e-5 and
weight decay of 0.01 and the dataset used for each
of the entities is discussed on Appendix D. Table 3
illustrates that AliBERT and AliBERT-ELECTRA
outperformed CamemBERT considering the preci-
sion of the models to detect the entities. Camem-
BERT achieved higher F1 score than our models’
for the "Pathology" entity. This is due to the fact
that the pathology entities in the dataset are very
long text that includes many words that exist in
the general French language words (CamemBERT
vocabularies). For example, "tumeur qui est
d’allure maligne et qui envahissait la
face postérieure et la corne vésicale
droite" is annotated as a single pathology en-
tity. However, our models exhibited a notewor-
thy improvement in F1 score for the other entities
when compared to CamemBERT. Furthermore, our
model outperformed CamemBERT for disorder (in-
cluding pathology) on the QUAERO dataset.

Table 4 shows the results of NER task on the
QUAERO dataset and it compares the results with
CamemBERT. Our model outperformed the two
models on identifying different kinds of entities
(Disorder, Anatomy, Device, Disorder and Proce-
dure) in QUAERO dataset with around 15% macro
average f1 score improvement. We selected the
entities that are closely related to biomedical con-
cepts. In, Table 4 CamemBERT was not able to
identify any medical device whereas AliBERT and
AliBERT-ELECTRA detected the devices with f1
score of 42%. Hence, we can say that the B-PTMs

can identify to the specific terms used in the do-
main.

Masking language modeling and classification
We have also compared the ability of the models
to predict masked tokens and biomedical text clas-
sification. In the same way our proposed models
have outperformed CamemBERT. For this exper-
iment of unmasking evaluation a subset of 3000
text of clean texts (1000 articles of ScienceDirect,
1000 articles from Cochrane, 1000 thesis abstracts
from SuDuc) was used. For the biomedical text
classification, we selected classes with more than
1000 examples, resulting in 50 classes, from our
private data. Table 5 illustrates the performance of
different models for the prediction of the masked
word and classification, in top 1, 3 and 5 Accuracy
(Acc, 3-Acc and 5-Acc respectively).

AliBERT has outperformed CamemBERT on pre-
dicting a masked word prediction (see Figure B for
examples). It can be seen in Table 5 AliBERT has
an increase of 23% in accuracy when compared
with CamemBERT. In the same way for text classi-
fication our models achieved better top 1 accuracy.
Hence, it clearly shows that in-domain pre-trained
language models are really important while dealing
with a domain-specific texts and hence domain-
specific downstream tasks.

6 Discussion

Our pre-trained language models trained on in-
domain (biomedical) textual documents tend to out-
perform models that are trained on general domain
textual documents which is also seen on the litera-
ture review of pre-trained language models for En-
glish language such as BioBERT (Lee et al., 2020),
PubMedBERT (Gu et al., 2022), etc. Training
PLMs using the masked language model (MLM)
objective shows somewhat better results, but the
difference is not significant compared to the re-
placed token prediction (MLM) objective. More-
over, choosing the right optimizer like LAMB has
an effect on the training speed of the pre-trained
models but not on the performance of the models.
During the training of our models different types of
tokenizers, such as, Unigram, WordPiece, Senten-
cePiece, BPE, etc. are trained and compared with
each other. Unigram tokenizer along with our nor-
malization (see section 3) step tend to outperform
other tokenizers. Unigram was also trained into two
ways, cased and uncased respectively. Lower cas-
ing the input text achieved better results than letting
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Models’ performances on CAS dataset
CamemBERT AliBERT AliBERT-ELECTRA

Entities P R F1 P R F1 P R F1
Substance 0.96 0.87 0.91 0.96 0.91 0.93 0.95 0.91 0.93
Symptom 0.89 0.91 0.90 0.96 0.98 0.97 0.94 0.98 0.96
Anatomy 0.94 0.91 0.88 0.97 0.97 0.98 0.96 0.97 0.96

Value 0.88 0.46 0.60 0.98 0.99 0.98 0.93 0.93 0.93
Pathology 0.79 0.70 0.74 0.81 0.39 0.52 0.85 0.57 0.68
Macro Avg 0.89 0.79 0.81 0.94 0.85 0.88 0.92 0.87 0.89

Table 3: French Biomedical named entity recognition (NER) results. Performance in bold is the best achieved for
the entity in question and the metrics in question

Models’ performances on QUAERO MEDLINE dataset
CamemBERT AliBERT AliBERT-ELECTRA

Entity P R F1 P R F1 P R F1
Anatomy 0.649 0.641 0.645 0.795 0.811 0.803 0.799 0.801 0.800
Chemical 0.844 0.847 0.846 0.878 0.893 0.885 0.898 0.818 0.856

Device 0.000 0.000 0.000 0.506 0.356 0.418 0.549 0.338 0.419
Disorder 0.772 0.818 0.794 0.857 0.843 0.850 0.883 0.809 0.845

Procedure 0.880 0.894 0.887 0.969 0.967 0.968 0.944 0.976 0.960
Macro Avg 0.655 0.656 0.655 0.807 0.783 0.793 0.818 0.755 0.782

Table 4: Biomedical named entity recognition (NER) results on the QUAERO MEDLINE dataset.Performance in
bold is the best achieved for the entity in question and the measure in question

MLM Classification
Model Acc 3-Acc 5-Acc Acc 3-Acc 5-Acc
CamemBERT 0.49 0.57 0.62 0.66 0.72 0.99
AliBERT 0.72 0.83 0.87 0.68 0.73 0.99
AliBERT-ELECTRA 0.71 0.83 0.87 0.68 0.73 0.99

Table 5: Results predicting the masked tokens (MLM) and biomedical classification

upper cases as it is. Biomedical text tend to have
lots of words that are written in capital letters. But
we have noted that they are not enough to be used
for training our models as upper cases. Biomedical
named entity recognition (B-NER) and biomedical
text classification (private data, hence results not
reported) were used to fine-tune our models to a
specific task. Our models tend to generalize faster
than the French counterpart general PLMs. For
AliBERT or AliBERT-ELECTRA fewer examples
of B-NER text inputs were required to start learn-
ing and generalize quickly and accurately. On the
other hand, Camembert took more time to general-
ize and with less precision for biomedical entities.
This is understandable as it was not trained using
domain texts. In the same manner, this behaviour
was reflected during biomedical text classification

task. This can also be seen as a comparison to
the vocabularies used by CamemBERT and our
models. Our tokenizer’s (Unigram) vocabulary and
CamemBERT tokenizer’s (SentencePiece) have a
huge difference in content and size. The Unigram
tokenizers used to train our models have a vocabu-
lary size of 40008 while CamemBERT has a size
of 32005. CamemBERT’s vocabulary does not
include most biomedical words. In fact, the two
tokenizers have about 10,000 tokens in common
in their vocabularies. Although the performance
of our models is already very good, more and var-
ied corpora could improve the models’ capabilities.
For example, medical notes, often found in elec-
tronic health records ("EHRs"), can help represent
the knowledge and experience of practitioners.

In addition, to improve the models, continu-
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ous training on a general purpose pre-trained lan-
guage, such as CamemBERT, could be imple-
mented. Since our tokenizers were a bit different
and our goal is to study a purely biomedical PLM,
we have not investigated it yet.

7 Conclusion

This paper proposes a French biomedical pre-
trained language model that was trained on sev-
eral corpora of French biomedical textual materi-
als. Two variants of the model are proposed using
two different pre-training strategies. AliBERT is a
pre-trained model based on BERT (Devlin et al.,
2019) which used the pre-training strategy of mask-
ing language models (MLM). AliBERT-ELECTRA
is based on ELECTRA (Clark et al., 2020) and
used a replaced token prediction (RTP) learning
strategy. Furthermore, a tokenization adaptation
strategy was introduced as a building block for
pre-training the two proposed models. A LAMB
optimizer has also been tested to speed-up the learn-
ing of AliBERT. The proposed pre-training models
have been tested on different downstream tasks
and achieved state-of-the-art results on different
tasks. Biomedical entity recognition (NER) and
biomedical text classification downstream tasks are
fine-tuned using different biomedical textual docu-
ments. Hence, AliBERT is expected to be used by
different organization and practitioners that work
with biomedical text for better understanding and
to help make informed decisions regarding biomed-
ical situations.

Limitations

Although our models performed well in all down-
stream tasks, the models also have some limitations.
One of the limitations is the lack of varied biomed-
ical corpus. Hence, we plan to work on integrat-
ing clinical documents e.g. EHR data, specifically
physician notes, to make the model more robust to
various kind of biomedical documents. The models
can also be enlarged by using continual learning
strategy from well-known French pre-trained lan-
guage models. CamemBERT (Martin et al., 2020)
can be used as a base model and the training can
be continued using our biomedical corpus, like
BioBERT (Lee et al., 2020) and others did. More-
over, our models used 512 sequence of tokens and
more longer sequence lengths can be used as seen
in the long language models like BigBird (Zaheer
et al., 2020).

We are currently working on a new version of
AliBERT with more data and a greater diversity of
corpora that include text from EHR and medical
notes in our corpora. Finally, we also plan to train
AliBERT to generate biomedical texts for different
purposes.

A reasonable amount of computational resources
was used to conduct this study, since approximately
20,160 hours of GPU computation were used to cre-
ate the three pre-trained models presented above.
The total environmental cost according to Green
Algorithm (Lannelongue et al., 2021)12 is equiva-
lent to 1.45 MWh or 71.11 kg CO2e. This com-
putational cost and environmental impact should
be taken into consideration when training such a
model.

Ethics Statement

AliBERT, a BERT-based biomedical language
model for the French language, has the potential
to improve healthcare and research in French lan-
guage. However, it is essential to address ethical
considerations such as biases, privacy, misinforma-
tion, access and control, as well as accountability
and transparency. We have implemented measures
to mitigate biases, protect privacy, prevent mali-
cious use and optimize efficiency as much as possi-
ble.

To responsibly develop and deploy AliBERT, col-
laboration between developers, researchers, poli-
cymakers, and healthcare professionals are crucial.
By working together, stakeholders can ensure that
AliBERT benefits a wide range of users and upholds
ethical standards, ultimately maximizing its poten-
tial to improve healthcare and research in French
biomedical domain.
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Appendix

A Tokenizers comparison and
normalization

Figure 1 depicts the steps taken during tokenization
with an example and compares Unigram tokeniz-
ers trained from scratch and the tokenizer from
CamemBERT(Martin et al., 2020).

Different tokenizers are trained from scratch and
are compared with one another according to their
performance. Figure 2 shows the performance of
Unigram, BPE and WordPiece tokenization algo-
rithms. Unigram tokenization have higher propor-
tion of words and learns faster than other tokeniz-
ers. It has also achieved the best results in training
AliBERT and fine-tuning tasks. In Figure 2, to-
kenizers with a legend "_L_" describes that the
text is lower cased and "_NoNo_" shows that the
normalization step is ignored during training the
tokenizer.
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Figure 1: Normalization and tokenization example. During normalization step the input text is normalized by adding
a space after the punctuation (shown by the orange vertical lines) and removing a space before it (shown by the
red vertical lines) and then used to train the tokenizer (Unigram). The Unigram tokenizers are trained from scratch
while developing AliBERT, Unigram uses text input as it is (does not change the cases), Unigram_L lower cased the
input text and Unigram_N_N is the not-normalized version of Unigram and CamemBERT is the tokenizer used by
CamemBERT (Martin et al., 2020), a French PLM.

Figure 2: Proportion of individual words with less than x words

B Optimization:

The models trained using LAMB optimizer trained
much faster than their counter part (using ADAM).
However the performance of the models trained
with LAMB was not as good as the models trained
with ADAM. Figure 3 shows the comparison of
time taken to train using LAMB and ADAM at-
omizers on our models. The loss of the model
quickly reduces when LAMB optimizer is used
during training.

Table 6 compares two same models with differ-
ent optimizers. AliBERT uses ADAM optimizer
and AliBERT-LAMB uses LAMB optimizer for
pre-training. The two models are compared on
NER task on the CAS dataset. AliBERT outper-
formed AliBERT-LAMP in terms of precision (p),
recall (r) and f1 score (F1) for all the entity types
except "Pathology".

C MLM examples

Figure 4 presents few biomedical text examples for
the prediction of masked words. Predicted words
colored in green are the correct predictions. Blue
colors shows the prediction is correct in the top 2
predictions, purple color depicts that the correct
prediction is the top 3 and the red colors show the
correct word has not been predicted. As can be
seen, Figure 4 AliBERT and AliBERT-ELECTRA
outperformed the two French PLMs. This confirms
that the need for training domain-specific language
models, specifically B-PLMs.

D NER finetunning dataset

The two publicly available name entity recognition
(NER) datasets used for fintunning and evaluating
our models are CAS and QUAERO NER datasets
which are described in Table 7 and Table 8 respec-
tively. We have selected the biomedical entities
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Figure 3: Training time comparison between models using the ADAM and LAMB optimizer. The latter allows for
faster training but does not lead to better performance.

Models’ performances on CAS dataset
AliBERT AliBERT-LAMB

Entities P R F1 P R F1
Substance 0.96 0.91 0.90 0.95 0.87 0.88
Symptom 0.96 0.98 0.97 0.95 0.97 0.96
Anatomy 0.97 0.97 0.98 0.97 0.95 0.96

Value 0.98 0.99 0.98 0.92 0.81 0.86
Pathology 0.81 0.39 0.52 0.87 0.52 0.65

Table 6: French Biomedical named entity recognition (NER) ADAM and LAMP optimizer comparison. Performance
in bold is the best achieved for the entity in question and the metrics in question

from the whole datasets.
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Figure 4: MLM prediction examples and comparison between different Language Model for French Text. For each
sentence where a word has been masked, the list of the first five most probable words according to the model are
given. The colors show the position of the correct prediction, i.e. green is 1st, blue is 2nd, purple is 3rd and red
indicates the correct word is not within the list.

Annotation Occurrences Description
Substance 2,009 Refers to the pharmacological substances used by the patient

(drugs, commercial names and generics)
Symptom 5,240 Entities that are used to make a diagnosis that reveals the pathology

of the patient.
Anatomy 4,780 Refers to all anatomical parts (arms, cells, cytoplasm, etc.)
Value 1,743 Refers to values and units, grades, etc. corresponding to examina-

tion results, or descriptions of Symptoms
Pathology 764 Concerns diseases and all that is pathological (adenocarcinoma,

carcinoma, fistula, etc.)

Table 7: Number of annotations in CAS (NER) dataset used for evaluation

Annotation Occurrences Description
Anatomy 1,464 A UMLS concept that refers to a particular part of the body
Chemical 1,028 Refers to chemicals and drugs inside and outside of the body, i.e.

protein, enzyme, clinical drug, etc.
Device 126 Includes all devices that are used in the biomedical domain i.e,

medical, drug delivery and medical devices
Disorder 2,825 Refers to any abnormality or disease of the body. E.g, disease,

symptom, etc.
Procedure 1,631 Refers to procedures and activities practices in the biomedical

domain.

Table 8: Number of annotations in QUAERO-MEDLINE NER dataset used for evaluation
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