
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, pages 26–36
July 13, 2023 ©2023 Association for Computational Linguistics

Gaussian Distributed Prototypical Network for Few-shot Genomic Variant
Detection

Jiarun Cao1, Niels Peek3, 4, Andrew G Renehan5, 6, Sophia Ananiadou1, 2,*

1National Centre for Text Mining, University of Manchester, UK
2The Alan Turing Institute, London, UK

3Centre for Health Informatics, University of Manchester, UK
4NIHR Biomedical Research Centre, University of Manchester, UK

5Division of Cancer Sciences, University of Manchester, UK
6Manchester Cancer Research Centre, University of Manchester, UK

{jiarun.cao, niels.peek, andrew.renehan, sophia.ananiadou}@manchester.ac.uk
(*) Corresponding author: Sophia Ananiadou

Abstract

Automatically identifying genetic mutations in
the cancer literature using text mining technol-
ogy has been an important way to study the vast
amount of cancer medical literature. However,
novel knowledge regarding the genetic variants
proliferates rapidly, though current supervised
learning models struggle with discovering these
unknown entity types. Few-shot learning al-
lows a model to perform effectively with great
generalization on new entity types, which has
not been explored in recognizing cancer mu-
tation detection. This paper addresses cancer
mutation detection tasks with few-shot learn-
ing paradigms. We propose GDPN framework,
which models the label dependency from the
training examples in the support set and approx-
imates the transition scores via Gaussian distri-
bution. The experiments on three benchmark
cancer mutation datasets show the effectiveness
of our proposed model.

Due to the ever-expanding biomedical literature,
automated approaches in the biomedical text min-
ing domain play an important role in mining gene
interactions (Özgür et al., 2008; Trieu et al., 2020;
Sahu et al., 2019), identifying biomarkers and ex-
ploring the genetic mutations, which can signifi-
cantly reduce time and effort compared to tradi-
tional labour-intensive approaches. In particular,
as a critical step in analysing the literature for can-
cer genomics data, text mining in cancer genomics
studies (Birgmeier et al., 2020; Cejuela et al., 2017;
Mahmood et al., 2016; Wei et al., 2013, 2018) has
automatically identified novel somatic alterations
such as single-nucleotide polymorphisms (SNPs),
deletion and insertions, copy number aberrations,
structural variants, and gene fusions.

For cancer genomics mutation extraction, the
most representative works use either manually-
crafted templates (Caporaso et al., 2007; Si and

Training set Test set 

 One such mutation MEK1 (P124L) was identified
in a resistant metastatic focus that emerged in a

melanoma patient treated  with AZD6244.

Label: Substitution
Three microdeletions were also identified,two of which 

 ( c.611delG and c.640_667del28) were located within the
coding region whereas one ( c.609+28_610-16del) was

located entirely within intron.

Label: Deletion 

Selec�ve accumula�ons of radiotracer in the L858R and [E746-A750] del EGFR mutants
were observed when compared to the tumors with wild-type EGFR or vector-transfected
cells.
 
DNA sequencing revealed that all the affected males carried an inser�on muta�on
[(c.370-371insA)] unreported previously predicted to result in frameshi�s and generate a
premature stop codon (p.S124fsX127).

 Prediction by the proposed model: B-DEL √
 Prediction by BiLST+CRF model: O ❌

 Prediction by the proposed model: B-DEL 
 Prediction by Prototype Network: I-DEL ❌

√

Figure 1: An example shows the semantic inconsis-
tency issue between training set and test set. The entity
’P124L’ from the training set differs substantially from
’c.611delG’ in the test set, highlighting the challenge
of predicting unseen categories by supervised learning-
based models. This difference illustrates the difficulty
traditional few-shot learning methods encounter when
trying to recognize novel cancer genomic variants.

Roberts, 2018) or feature engineering (Cejuela
et al., 2017; Wei et al., 2018) with machine
learning-based approaches (Doughty et al., 2011;
Wei et al., 2015; Si and Roberts, 2018). The main
drawback of the traditional methods is that they
are not competent with unseen categories. Nev-
ertheless, as cancer research advances, thousands
of new cancer genomes and exomes are identified
and classified into new categories. There has been
a lack of progress in automated genomic variant
detection attempts. There may be a way around
this problem by annotating more data for the model
to capture new categories, but this would be highly
costly in terms of time and labour costs in the can-
cer domain.

Intuitively, humans can understand a concept
with a few samples, which drives the researcher
to apply the few shot learning paradigm to down-
stream text mining tasks, such as named entity
recognition (Cao et al., 2021; Settles, 2004), re-
lation extraction (RE) (Yao et al., 2019; Zhou et al.,
2014), and event extraction (EE) (Trieu et al., 2020;
Björne and Salakoski, 2018). In FSL, a trained
model rapidly learns a new concept from a few ex-
amples while retaining great generalisation from
observed examples (Vinyals et al., 2016). Thus, if
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we want to add a new category of genetic variants,
we only need a few samples to activate the system
without retraining the model. This way, we can dra-
matically lower the cost of annotation and training
while retaining high-quality outcomes.

In a few shot learning iteration, the model is
given a support set and a query instance. The sup-
port set consists of examples from a small group of
categories. A model is required to predict the label
of the query instance following the set of categories
that appeared in the support set.

A conventional approach for identifying enti-
ties using Few-Shot Learning (FSL) involves de-
composing this task into a sequence labeling prob-
lem, taking into account the label dependency be-
tween each token. To consider both the item sim-
ilarity and label dependency, previous attempts
have utilized Conditional Random Fields (CRFs) in
few-shot learning sequence labeling schemes (Hou
et al., 2020; Das et al., 2021; Wang et al., 2022;
Fritzler et al., 2019; Yang and Katiyar, 2020; Wang
et al., 2021; Li et al., 2020). However, learning
the scoring and transition scores of CRF presents
distinct challenges in the few-shot situation.

Regarding the scoring score, prior works (Hou
et al., 2020; Das et al., 2021; Wang et al., 2022;
Fritzler et al., 2019) relied on the Prototypical Net-
work (Snell et al., 2017) to average the embeddings
of each label’s support instances as label represen-
tations. These frequently distribute densely in the
embedding space, often leading to mistaken predic-
tions. Learning the transition score using only a
few labeled data also poses challenges (Yang and
Katiyar, 2020; Wang et al., 2021; Li et al., 2020),
as the prior label reliance in the source domain can-
not be directly transferred and leveraged due to the
difference in the label set.

Figure 1 exemplifies these issues. The semantic
differences between entities in the training and test
sets result in difficulties for supervised learning-
based models in predicting unseen categories. For
instance, in the context of recognizing cancer ge-
nomic variants, these models often fail to identify
entities in novel categories, as these categories usu-
ally contain distinct entity mentions from known
entities.

In this paper, we propose a novel sequence la-
belling method to alleviate this problem in the
settings of few shot learning. Specifically, we
proposed a Gaussian Distributed Prototypical Net-
work(GDPN) which has two merits: (1) we pro-

pose an interactive prototype network to capture
the interaction from a few samples between differ-
ent categories in the support set, and utilise those
prototypical representations to provide more train-
ing signals towards the scoring function for the
CRF-based model. (2) The conventional CRF mod-
els require a large amount of data sample to gain
a precise estimation, which could suffer from the
huge gap between a few samples in a specific la-
bel, we utilise Gaussian distribution to estimate the
transition scores to avoid the randomness caused
by scarce samples.

We experiment with the proposed models on the
different benchmark cancer genomic dataset (Lee
et al., 2016; Wei et al., 2013; Doughty et al., 2011).
The experiments show that our methods can im-
prove the performance of the genomic variant de-
tection with the FSL settings. To summarise, our
contributions to this work include:

• We formulate cancer genomic variant detec-
tion as a few-shot learning problem to extend
this task to novel mutation types and provide
a baseline for this new research direction. To
our best knowledge, this is a new branch of
research that has not been explored on this
subject.

• We propose a novel method, namely GDPN,
which models the specific label dependency
and overcomes the data fluctuation in the few-
shot learning setting.

• Experimental results show that our proposed
model outperforms other competitive FSL
baselines and the state-of-the-art CRF-based
baselines on the benchmark datasets in cancer
genomic domain. Further analyses demon-
strate the model’s effectiveness.

1 Formulation

Our goal in this work is to formulate cancer ge-
nomic variant detection as a FSL problem, which
has not been done in prior work. To achieve this,
we first present the FSL framework and specify
symbols and terminology in this section 1. Then
we illustrate the proposed method in the following
section 2.

1.1 Few Shot Learning

In Few shot learning (FSL), we preliminarily assign
two sets: support set S, which contains classified
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samples, and query set Q, which contains unclas-
sified samples. Models can predict the label of an
instance x from a query set Q, by learning from a
support set S and a label set C. Prior FSL investi-
gations used an N -way K-shot configuration with
N clusters representing N categories and K data
samples.

Since we cast this task as a sequence labelling
problem and adopt BIO tagging schema (B repre-
sents beginning of an entity, I represents intermedi-
ate of an entity, O represents outside an entity), we
extend the N -way K-shot to 2∗N+1 way K shot,
where 2*N clusters denote the B and I categories,
and 1 cluster denotes O label.

Therefore, given a word sequence X =
{x1, x2, . . . , xn} and its corresponding label se-
quence Y = {y1, y2, . . . , yn}, the support S can
be represented as:

S = {(X0, Y0), (X1, Y1), . . . , | (X(2∗N+1)∗K , Y(2∗N+1)∗K)}
(1)

Where (2 ∗ N + 1) ∗ K is the total number of
samples in the support set S .

1.2 Linear Chain CRF
Conditional Random Fields (CRFs) (Wallach,
2004) are undirected statistical graphical models,
which are well suited to tackle sequence labelling
problem. Following on the above section, given a
word sequence X = {x1, x2, . . . , xn} and its cor-
responding label sequence Y = {y1, y2, . . . , yn},
linear-chain CRFs define the conditional probabil-
ity of a label sequence given an input sequence to
be:

P (Y |X) =

exp
(∑n

k=1 U(xk, yk) +
∑n−1

k=1 T (yk, yk+1)
)

Z(X)
(2)

where Z(X) is a normalization factor of all state
sequences. Note that U(.) is the scoring function
that calculates the probabilistic score of label y for
each token in the sequence X . T (.) is the transition
function that calculates the transit score between
the adjacent labels yk and yk+1.

2 Method

2.1 Instance Encoder
We first map discrete words to a continuous high-
dimensional vector space to simplify neural net-

work training using BioBERT (Lee et al., 2020),
which is a pre-trained biomedical language rep-
resentation model and had shown great effective-
ness on many downstream biomedical text min-
ing tasks. Formally, Given the token sequence
x = {x1, x2, . . . , xn}, we have:

H = h1, h2, . . . , hn = BioBERT (x1, x2, . . . , xn)
(3)

2.2 Interactive Prototype Encoder
This module generates a representative vector for
each label t in the support set S from the overall
representations of its instances. Instead of employ-
ing the original Prototypical Network suggested
in (Snell et al., 2017), which determines all repre-
sentation vectors equally, we claimed that the sup-
porting vectors are conditionally important with
respect to each query q ∈ Q, therefore, model the
interactions from each label. Formally, to com-
pute the prototype for a class t ∈ T , it collects
all of the instance’s representations and calculates
them as the supporting vectors’ weighted sum. The
weights are determined by the attention mechanism
in accordance with the query representation:

ajt =
∑

σ(f(Hj
t )⊙ f(q)) (4)

αj
t =

exp(ajt )∑
Hk∈S exp(akt )

(5)

Prt =
∑

Ht∈S
αj
tf(Hj) (6)

where Prt denotes the Prototypical represen-
tation of label t ∈ T , ⊙ denotes element-wise
product. f represents the encoding function and is
BioBERT in our paper.

2.3 Gaussian Distributed Prototypical CRF
In section 1.2, we already learn that CRF layer
consists of a scoring function U(.) and a transi-
tion function T (.). We compute these two compo-
nents separately. The scoring function represents
a value U for the label y given our token xi vec-
tor at the i-th timestep. Prior works leverage the
output of LSTM as the U , where it is the so-called
LSTM+CRF framework (Huang et al., 2015) that
has been applied to most of the conventional NER
tasks.

Instead of using the output of LSTM to gain the
output U from scoring function, we first calculate
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Figure 2: Model architecture. ATT denotes weighted sum attention operation.

the correlation between each token xi representa-
tion and the prototype representation Prt for label
yt.

si = fS(yt, xi,S) = Prt ⊙ hi (7)

Accordingly, the scoring function U() for the
entire sequence is gained via the sum of each token
score as follows si :

U(y, x,S) =
n∑

t=1

fS(yt, ht,S) (8)

In terms of the transition score, the conventional
CRF model optimizes the transition function T (.)
from massive data samples, which overcomes the
data fluctuation problem to a large extent. How-
ever, the few data samples can achieve dramatic
data randomness. The transit function lacks the
optimization process, thus resulting in huge data
bias representing the probability of transition of
two adjacent labels. To alleviate this problem and
smoothen the randomness caused by a few sam-
ples, we adopt Gaussian distribution as our transi-
tion function and utilize mean value µ and variance
value σ to approximate the transition score as fol-
lows:

µij = Wµ(Pri;Prj) + bµ (9)

σij = exp (Wσ(Pri;Prj) + bσ (10)

Where ; denotes concatenation operations. Like
linear chain CRF, our transition function for the
entire sequence is achieved as follows:

T (y) =
n−1∑

i=1

T (yi, yi+1)) (11)

Therefore, the probability of label sequence Y
given the token sequence is as same as the conven-
tional CRF model:

P (Y |X) =

exp

(∑n
k=1 U(xk, yk)

+
∑n−1

k=1 T (yk, yk+1)

)

Z(X)
(12)

Where and Z(x) is normalization factor in order
to get a probability distribution over sequences. In
the inference stage, we use Viterbi algorithm (For-
ney, 1973) as with traditional CRF to find the opti-
mal path from the input.

3 Experiment

3.1 Dataset
In this work, we implement the proposed method
on three benchmark datasets. The relevant statisti-
cal figures have been listed in Table 1. TmVar is a
sequence variant corpus derived from Pubmed ab-
stracts, which contains a large number of sequence
variants at both the protein and gene level using a
standard nomenclature for sequence variants cre-
ated by the human genome variation society (Wei
et al., 2013). TmVar includes 500 PubMed ab-
stracts and titles with 871 variants.

BRONCO (Lee et al., 2016) is now the most
extensive full-text cancer variant corpus anno-
tated with information about genes, diseases,
medicines, and cell lines associated with the vari-
ants. BRONCO has 108 full-text papers with
403 gene variations, as indicated in Table 1.
EMU (Doughty et al., 2011) searched mutations,
gene mentions, and disease connections by retriev-
ing a set of PubMed abstracts that were possibly
beneficial for finding mutations. EMU contains
two subsets which are Breast cancer and prostate
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cancer, respectively. As we can see from Table 1,
EMU consists of 109 PubMed abstracts with 172
variants.

3.2 Data Pre-processing
FSL does not allow us to directly use the dataset’s
splits since the label types in the training set and
the testing set are not congruent. As a result, we
adopted the scheme conducted in (Lai et al., 2020)
and have further divided these datasets to meet
three requirements for FSL:

• Label types in the train set are distinct
from those in the testing and development
sets. In another word, there is no over-
lap regarding the label types between train-
ing/development/testing sets.

• The label type contain less than 5 samples are
abandoned.

• The training set should contain as many sam-
ples as possible.

We re-split the dataset based on the standards
above. As the label types of EMU and BRONCO
are quite limited to support the FSL setup, we com-
bine both dataset as a whole to underpin the FSL
training and testing process. The final splits are
shown in Table 2.

3.3 Implementation Details
We adopt a mini-batch mechanism to train our
model, with a batch size of 2 and a learning rate
of 1e-5. A warm-up strategy and dropout with
0.1 probability are introduced to prevent the model
from over-fitting. All parameters are optimized us-
ing Adam (Kingma and Ba, 2014). Furthermore,
we also adopt an episodic training scheme that has
been commonly adopted in fsl, and we used the
sample evaluation methods in (Cong et al., 2020);
an entity is counted as correct only if its label and
its textual span are both correct.

3.4 Baseline Models
Since the scope of our task is NER with fsl settings,
we compare the proposed model with two types of
baselines: the state-of-the-art FSL models that have
been applied in many areas and the typical NER
models commonly used for NER tasks. For FSL
baseline models, we applied 5 well-adopted ones
which include (1) Matching Network (Vinyals et al.,
2016) adopted cosine similarity as a prototypical

score with the averaging operation. (2) Proto Net-
work (Snell et al., 2017) used Euclidean Distance as
the similarity metric with the averaging prototype.
(3) Proto+Dot (Lai et al., 2020) used a dot prod-
uct to compute the similarity. (4) Proto+Att (Lai
et al., 2020) used a weighted sum prototype with
Euclidean Distance. (5) Relation (Sung et al., 2018)
builds a trainable distance function and a neural net-
work to measure the similarity.

In terms of the CRF-based baselines, they can be
divided into two groups: The first group consists
of vanilla CRF sequence labeling models: (1)BiL-
STM+CRF (Luo et al., 2018) utilizes the BiLSTM
layer to map the semantics features to a higher
dimension and CRF layer is to model the label’s
consistency. (2) BERT+CRF (Dai et al., 2019) is
similar to BiLSTM+CRF instead of using BERT
for feature extraction. The second group consists of
the state-of-the-art CRF sequence labeling models
for FSL NER tasks 1: (1) CONTAINER (Das et al.,
2021) optimized a generalized objective of differ-
entiating between token categories based on their
Gaussian-distributed embeddings. This effectively
alleviates overfitting issues originating from train-
ing domains. (2) FEW-NERD (Ding et al., 2021)
released a massive-scale FSL NER dataset and pro-
posed the corresponding baseline models that com-
bined BERT tagger with Prototype network. (3)
Decomposed Meta-Learning (Ma et al., 2022) took
the few-shot span detection as a sequence labeling
problem and trained the span detector by intro-
ducing the model-agnostic meta-learning (MAML)
algorithm to find a good model parameter initial-
ization that could fast adapt to new entity classes.

4 Results

Table 4 and Table 5 in Appendix sector show the
precision, recall, and F1 score of the baseline mod-
els and the proposed model on the three benchmark
datasets under N-way K-shot few-shot learning set-
tings. Unlike the conventional few shot learning
tasks using 5 or 10 ways and shots for the settings,
we utilize 1-to-3 ways and 1-to-5 shots due to the
limited scale of the datasets. Additionally, we also
evaluate the model by test epoch, which relates
to the number of samples included in the test set,
to verify the effect of the data fluctuation on the
model’s performance.

1We only adopt the baseline models that are applicable
for our datasets and have the same settings with the proposed
model.
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TmVar EMU BRONCO

Corpus Type title and abstract title and abstract full-text
Number of Documents 500 109 108
Cancer Variants 871 172 275
Mutation Types Sub, Del, Ins, Dup, InDel, SNP, FS Sub, Del, Ins, SNP, FS Sub, Del, Ins, InDel, SNP, FS

Table 1: Statistics of the evaluated datasets

Figure 3: Experimental results with various of distributions, W, S, E denote Ways, Shots, and Epochs, respectively.

training set test set

TmVar SUB, DEL, SNP INS, FS, DUP
BRONCO & EMU SUB, SNP DEL, FS

Table 2: Label Splits for three datasets.

4.1 From the perspective of FSL Settings

We first evaluate the results from the perspective
of different test settings. To be more concrete, we
test the effect of N-way, K-shot, and test epoch,
respectively. We can see from both Table 4 and
Table 5 in Appendix the performance of the models
on 1-way K-shot is always better than 2-way and 3-
way K-shot. Statistically, the vanilla NER models
drop 0.7% and 4.5% on average from 1 way to
2-way and 3-way given a certain number of shot,
the general FSL models drop 3.12% and 4.86%,
while CRF-based models drop 3.54% 6.13% and
under the same circumstance. The reason is the
fact that the increase in the number of classes leads
to a larger scope of the probability distribution,
resulting in the lower results.

The above demonstrates the influence of the N-
way. Next, we analyze the effect of K-shot. As
shown in Table 5, the baseline and proposed mod-
els mainly achieve better performance while K in-
creases with a fixed N-way. In the FSL models in
general, comparing the performance from K = 1 to
K = 5 given the 1-way setting, the prototype-based
models boost 4.94% F1 score on average, the other

FSL models, i.e., Relation network and Matching
network increase 3.58% F1 score on average, and
even Vanilla NER model improves 5.24% on aver-
age. In the CRF-based models, we can also notice a
3.79% F1 increase. This unified tendency indicates
that the added shots are able to benefit the models
to gain more semantic features given a certain label,
which is consistent with the experimental results
we can observe from the other works (Lai et al.,
2020; Das et al., 2021; Ma et al., 2022).

We also evaluate how the number of test epochs
affects the results. We initially speculated that the
test epoch determines the number of samples in-
volved in the test loop, reflecting the influence of
data randomness on models’ performance. Thus,
the lower test epoch should achieve higher perfor-
mance improvements on a specific model, as the
data randomness issue is more severe when the
number of the data sample is smaller. However,
the results suggest that different settings of the test
epoch do not straightforwardly relate to the data
randomness. As noticed in Table 4 and Table 5 in
Appendix, the model’s performance can be either
higher or lower with different test epochs. When
we keep the N-way and K-shot fixed, the test epoch
cannot unveil the data fluctuation issue.

4.2 From the Perspective of Models

Then, we analyze the experimental results from
the perspective of the model types. We can notice
that in both Table 4 and Table 5 that general FSL
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models outperform the vanilla NER models to a
large extent. The reason is that the vanilla NER
models struggle with the insufficient semantic fea-
tures for each label, thus resulting in an unqualified
transition matrix to model the label’s consistency.
BERT+CRF model exacerbates this trend due to the
specific tokenization approach, WordPiece (Song
et al., 2020), which is a more fine-grained way to
split the words into subwords.

On the other hand, in the general FSL mod-
els, prototype-based (Proto, Proto+Att, Proto+Dot)
models outperform the Matching network and
the Relation network in all FSL configurations.
Proto+Att and Proto-Dot are marginally better than
Proto among prototype network models, with an
average performance improvement of 2.18% and
1.96% F1 scores on the three benchmark datasets.
The reason can be inferred that the interactive infor-
mation amongst each label is integrated by Att and
Dot operations, which naturally gains more bene-
fits from the data samples. The proposed model
outperforms the prototype-based models with an
average 10.33% F1 score gap on BRONCO/EMU
dataset and an average 10.99% F1 score gap on
TmVar dataset.

Compared to the CRF-based models, our model
is also built upon the CRF architecture, which lever-
ages the label’s dependency to cast this task as a
sequence labeling problem. As we can notice in
Table 4, our model outperforms the baseline mod-
els under different settings, and achieves 1.39%
F1 score advance in TmVar dataset compared to
each state-of-the-art results. For BRONCO/EMU
dataset, we can notice that our model achieves the
competitive results. When there is under the set-
tings of 1Way-5Shot-5Epoch, 1Way-1Shot-5Epoch
and 2Way-1Shot-10Epoch, our models outperform
all the baseline models. The model gains these
improvements due to the fact that successfully re-
ducing the illegal label transition from CRF-based
models. Our proposed model approximates the
transition scores via prototypical representations,
and optimize it by Guassian distribution to alleviate
the huge data fluctuation issue caused by limited
number of training samples.

4.3 Effectiveness Analysis

4.3.1 Ablation Study

We evaluate the model components in three aspects
shown in Table 3. Instead of using Gaussian distri-
bution, we generate the transit score directly, the

model performance drops 0.38% and 0.61% F1
score, respectively, on TmVar and BRONCO/EMU
datasets. It indicates that our Gaussian distribu-
tion estimation can alleviate the data uncertainty to
some extent and thus estimate a more accurate tran-
sit score to reflect the data samples. Furthermore,
we also replace the interactive prototype layer with
the vanilla prototype network, and we can notice
the model performance decreases with a 3.98% and
3.81% F1 gap. We can infer that the interactive pro-
totype layer can integrate with different categories
by giving different weights to the prototypical rep-
resentations. Finally, we changed our BioBERT
instance encoder to raw word2vec embedding (Mc-
Cormick, 2016). The results dropped 1.35% and
0.38% F1 scores on the datasets, which shows the
effectiveness of the BioBERT in encoding the se-
mantic information.

5 Discussion

As shown in Figure 4, we utilize two cases to
demonstrate the effectiveness of the proposed
model. Specifically, we compare the proposed
model with the FSL and conventional NER models,
respectively, to showcase our model’s advance.

The upper figure is a comparison between the
proposed model and a conventional CRF-based
NER model. We can notice that our model correctly
assigns the “E746-A750” a label “B-DEL”, while
BiLSTM-CRF model wrongly predicts it as “O.”
As the label “B-DEL” rarely appears in the training
set, BiLSTM-CRF model struggles with capturing
its relevant semantics and assigning “B-DEL” to
the correct token spans. Our model can predict the
“B-DEL” for the token “E746-A750” credited to
the prototype representation of the label “B-DEL”
that has been learned in the support set.

The following case compares the proposed
model and a prototype-based FSL model. Our
model successfully predicts “c.370-371insA” as
“B-DEL” while Prototype Network predicts its as
“I-DEL”. This is due to the fact that Prototype Net-
work only learns the transition scores via prototype
representations of specific categories. Although
the prototype representation provides the feature of
label “DEL” to some extent, the model still miscog-
nizes it as “I-DEL” because of the data randomness.
Our model overcomes this issue according to sup-
press the data fluctuation via Gussinan distribution,
therefore predicting this case correctly.
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Training set Test set 

 One such mutation MEK1 (P124L) was identified
in a resistant metastatic focus that emerged in a

melanoma patient treated  with AZD6244.

Label: Substitution
Three microdeletions were also identified,two of which 

 ( c.611delG and c.640_667del28) were located within the
coding region whereas one ( c.609+28_610-16del) was

located entirely within intron.

Label: Deletion 

Selec�ve accumula�ons of radiotracer in the L858R and [E746-A750] del EGFR mutants
were observed when compared to the tumors with wild-type EGFR or vector-transfected
cells.
 
DNA sequencing revealed that all the affected males carried an inser�on muta�on
[(c.370-371insA)] unreported previously predicted to result in frameshi�s and generate a
premature stop codon (p.S124fsX127).

 Prediction by the proposed model: B-DEL √
 Prediction by BiLST+CRF model: O ❌

 Prediction by the proposed model: B-DEL 
 Prediction by Prototype Network: I-DEL ❌

√

Figure 4: Two cases of the prediction between the proposed model and baseline models.

TmVar BRONCO & EMU
Precision Recall F1-score Precision Recall F1-score

Raw model 32.20% 66.00% 43.28% 50.00% 20.00% 28.57%

(-) Gaussian Distribution 31.82% 65.84% 42.90% 46.67% 20.00% 27.96%

(-) Interactive Prototypical Representation 28.14% 63.10% 38.92% 36.67% 18.00% 24.15%

(-) BioBERT 26.84% 62.58% 37.57% 34.98% 18.00% 23.77%

Table 3: Experimental results of different baseline models on EMU PCa and BCa datasets.

5.1 Empirical Experiment of Distributions

Gaussian distribution is leveraged to estimate the
transition scores to smoothen the fluctuation caused
by scarce samples. In this section, we also con-
duct an empirical experiments to test the model’s
performance with different distributions 2. The
distributions can be divided into two groups, the
first group is discrete variable distributions includ-
ing Categorical distribution, Binomial distribution,
and Bernoulli distribution. These group of distri-
butions gain much lower results shown in Figure 3,
because the range of the distribution function is
discrete, and the output of possible values is finite.
The second group is continuous variable distribu-
tions, including Gaussian distribution, Log-Normal
distribution and Student’s t distribution. As we can
see from Figure 3, although these distributions turn-
ing out to be slightly higher or lower in a limited
range, Gaussian distribution still achieves the best
results in majority of the settings. We speculate
the reason is that Gaussian distribution can better
eliminate the influence of outliers in few sample
scene, so as to accurately grasp the central tendency
and discrete trend of data, therefore we empirically
apply Gaussian distribution to our method.

5.2 Error Analysis

We also conducted the error analysis of predictions
to demonstrate the models’ bottleneck. 81.7% of

2https://pytorch.org/docs/stable/distributions.html

them attribute to long-span errors, which means our
model is relatively weak in predicting the textual
spans that constitute more than one token. By ‘long-
span errors’, we refer to instances when our model
only predicted a portion of the total relevant token
span, or when our model failed to properly identify
and predict an entity that spans multiple tokens.
This does not necessarily indicate a deficiency with
the tokenization process. In fact, many surface
forms of mutation events do consist of more than
one token. However, the model struggles to cap-
ture these instances consistently, leading to these
"long-span errors". This challenge appears to be
a common issue in few-shot learning for this type
of NER task, which often require more compre-
hensive training to effectively capture and predict
entities that consist of multiple tokens.

On the other hand, 9.8% of errors are because
our model does not recognize the target entities,
thus just assigning them a “O” label. Finally, 8.5%
of errors can be summarized that our model suc-
cessfully recognizes the textual span but wrongly
assign the labels to them since some categories pro-
vide limited semantic features in the support set to
be used in the training stage.

6 Conclusion

In this paper, we address the problem of recog-
nizing the unseen entity categories in the genomic
cancer literature. We exploit the few shot learning
paradigm in this task and propose a transited pro-
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totype NER framework to generate the transition
scores for CRF models. Meanwhile, since the train-
ing samples are limited in the support set, which
results in data fluctuation, we adopt Gaussian dis-
tribution as our transition function to smoothen
the randomness caused by a few samples. Finally,
experimental results on the three cancer genomic
datasets prove the effectiveness of our proposed
method.
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