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Abstract

Fact-checking of health-related claims has be-
come necessary in this digital age, where any in-
formation posted online is easily available to ev-
eryone. The most effective way to verify such
claims is by using evidences obtained from
reliable sources of medical knowledge, such
as PubMed. Recent advances in the field of
NLP have helped automate such fact-checking
tasks. In this work, we propose a domain-
specific BERT-based model using a transfer
learning approach for the task of predicting
the veracity of claim-evidence pairs for the
verification of health-related facts. We also
improvise on a method to combine multiple
evidences retrieved for a single claim, taking
into consideration conflicting evidences as well.
We also show how our model can be exploited
when labelled data is available and how back-
translation can be used to augment data when
there is data scarcity.

1 Introduction

In today’s age of easy access to the internet, in-
formation exchange among people has increased
rapidly, which has also resulted in the spread
of misinformation (Vosoughi et al., 2018) within
the society. Misinformation has been found to
spread faster than real news, and the rise of social
media popularity has aided the spread of misin-
formation (Vosoughi et al., 2018). Research on
health misinformation is still an ongoing area, as
it is different from political misinformation on
the basis of the complexity level of fact-checking
(Deka et al., 2022b). Manual fact-checking of
health information requires domain-specific ex-
perts, which increases both time taken and cost
incurred. Automated fact-checking of health infor-
mation found online has been aided by the release
of datasets such as SCIFACT (Wadden et al., 2020),
HEALTHVER (Sarrouti et al., 2021), COVID-
FACT (Saakyan et al., 2021). Fact-checking of

health information comprises of retrieving evi-
dences from reliable resources which either sup-
ports or refutes the key claim (Zeng et al., 2021;
Guo et al., 2022). Recent works have focused on
building end-to-end fact-checking models evaluat-
ing on the aforementioned datasets (Pradeep et al.,
2020; Zhang et al., 2021; Li et al., 2021; Wadden
et al., 2022). However, they do not take into ac-
count conflicting evidences retrieved for a single
claim. Any claim can have more than one evidence,
and these evidences can be conflicting in real-world
scenarios wherein one evidence would be support-
ing the claim and another evidence may be refuting
the claim.

Scientific articles from
PubMed

PubMedBERT-
classifier

Evidences

Bone marrow cells contribute to
adult macrophage compartments.

We also found that after bone marrow
transplantation, host macrophages

retained the capacity to expand when
the development of donor

macrophages was compromised.

SUPPORT

REFUTE

NEUTRAL
Claims

Figure 1: An example of claim and evidence from SCI-
FACT (Wadden et al., 2020) dev set

In this work, we have focused on the subtask
of classifying a claim-evidence pair as either sup-
porting, refuting, or neutral as shown in Figure 1.
We assume in this work that evidences for claims
are already retrieved. We proposed a domain spe-
cific BERT-based model using a transfer learning
approach where the model is trained over textual
entailment data which can then be applied directly
over fact-checking data. We have also used the
Dempster-Shafer theory (Dempster et al., 2008;
Shafer, 1976) of evidence combination for mitigat-
ing the conflicting evidences issue to provide an
end result. We then extend our work by showing

237



how data augmentation techniques can help in a
more robust training for smaller datasets with the
help of neural machine translation language mod-
els. We also analyse the performance of our model
when it is trained over other similar datasets. We
further share our trained model publicly for further
research1.

2 Related work

In this section, we will discuss the research work
that has been done for fact-checking scientific
claims using evidences retrieved from existing med-
ical article repositories. With the release of the SCI-
FACT dataset, various transformer-based methods
of predicting the veracity labels using evidences for
scientific claims have been proposed and evaluated
using the dataset. (Wadden et al., 2020) established
a pipeline model using a RoBERTa-large (Liu et al.,
2019) model to retrieve evidences from PubMed ab-
stracts. The retrieved evidence sentences are then
passed along with the claims to predict whether
the evidences SUPPORT or REFUTE the claims
using a RoBERTa-large model fine-tuned over the
training set of SCIFACT.

VerT5erini (Pradeep et al., 2020) uses a T5 (Raf-
fel et al., 2020) model-based pipeline for their
work. For the evidence sentence selection task
for the claims, as well as for label prediction from
PubMed abstracts, they used two different T5 mod-
els. For the sentence selection task, the T5 model
used is fine-tuned over the MS-MARCO (Bajaj
et al., 2016) dataset and then further trained on
SCIFACT. For the label prediction task, the T5
model is trained on the SCIFACT dataset.

PARAGRAPH-JOINT (Li et al., 2021) uses a
RoBERTa-large model similar to (Wadden et al.,
2020) for both the evidence sentence selection as
well as the label prediction task which is fine-tuned
over SCIFACT. However, the training approach is
different, as (Li et al., 2021) uses a multitask learn-
ing approach for model training. Both the tasks
of sentence selection and label prediction are done
using a joint cross-entropy loss as the training ob-
jective. For the label prediction task, the authors
have also used two different approaches which in-
cludes a simple sentence-level attention and KGAT
which is a Kernel Graph Attention Network (Wang
et al., 2019a).

Similarly, ARSJOINT (Zhang et al., 2021) also

1https://huggingface.co/pritamdeka/
PubMedBERT-MNLI-MedNLI

uses a joint approach where their proposed method
jointly learns the three tasks of abstract retrieval,
sentence selection, and label prediction. Sim-
ilar to (Wadden et al., 2020), they have also
used RoBERTa-large for their work together with
BioBERT-large (Lee et al., 2020).

All the above works focus on the three tasks of
abstract retrieval, evidence sentence selection and
label prediction as a pipeline approach. However,
there is a difference in the sentence selection task
as well as the label prediction. VerT5erini selects
sentences independently, whereas PARAGRAPH-
JOINT and ARSJOINT use the abstracts to select
the sentences. The label prediction also differs as
both PARAGRAPH-JOINT and ARSJOINT use a
joint approach unlike VerT5erini. The models used
in the tasks also differ as PARAGRAPH-JOINT
and ARSJOINT use BERT-based models whereas
VerT5erini uses a much larger T5 model having
superior performance. However, the current state-
of-the-art method, MULTIVERS (Wadden et al.,
2022) differs from these works in the approach and
the transformer model used. MULTIVERS uses a
Longformer (Beltagy et al., 2020) architecture to
encode both claims and abstracts together so that
there is a minimum loss of information. The au-
thors have used a weak supervision approach, in
which the Longformer model is trained on avail-
able scientific data before fine-tuning on SCIFACT.
However, the overall pipeline training method is
a multi-task approach similar to (Li et al., 2021).
It outperforms the other approaches in the label
prediction task of SCIFACT.

Contrary to the above works, our approach is
different in the way that for a given pair of claim
and evidence, our model can predict the labels in
a zero-shot approach, surpassing the state-of-the-
art results without the need for any supervision.
The above mentioned works have the end goal of
predicting the labels of the claim-evidence pairs.
However, to have a final prediction for the claims
whether it is a “True” claim or “False” claim, we
need to have a combined judgement of all the ev-
idence sentences for that claim which is not ad-
dressed by the above works. We have extended
our approach to include the final prediction for the
claims taking into consideration conflicting evi-
dences as well.
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3 Task Formulation

In this section, we will first discuss the problem
statement and then proceed with the formulation of
the tasks. The problem statement is “Given a claim
and a number of evidence sentences, determine
whether the claim is True or False or Neutral”.
We can formulate the problem as two tasks:

• Classification of claim-evidence pair Given
a claim c and an evidence sentence s for that
claim, classify the claim-evidence sentence
pairs as supporting, refuting or neutral.

[c, s]
classify−−−−→ (support, refute, neutral)

• Prediction of the claims Given a list of
supporting or refuting evidence sentences S
where S = [s1, s2 . . . sn] for a claim c, the
task is to predict whether the claim is True
or False or Neutral by combining all the evi-
dences.

[c, S]
predict−−−→ c(true, false, neutral)

4 Methodology

In this section we will describe in detail the pro-
posed methods we have adopted for the formulated
tasks.

4.1 Classification of claim-evidence pair
Previous studies have focused on using fact-
checking datasets such as FEVER (Thorne et al.,
2018) for training models for the task of fact-
checking. However, we have modelled the classi-
fication task as a natural language inference (NLI)
problem, since (Pradeep et al., 2020) found in their
study that models learn better from NLI data than
datasets such as FEVER. Textual entailment or NLI
is defined as the task of determining if, given a
“premise”, a “hypothesis” is true (entailment) or
false (contradiction) or not determined (neutral)
(Williams et al., 2017). Fact-checking has simi-
larities with the NLI task, in which premises can
be modelled as evidences and the hypothesis as
claims (Thorne et al., 2018). The idea is to train
domain specific BERT (Devlin et al., 2018) model
using NLI data to see if the model can learn knowl-
edge that can be transferred to fact-checking task
in biomedical domain. In order to achieve this,
we have trained PubMedBERT2 (Gu et al., 2021)

2https://huggingface.co/microsoft/
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

which is a domain specific BERT model on the
multi-NLI (MNLI) dataset (Williams et al., 2017)
by minimizing the cross-entropy loss. We also ex-
perimented with other models such as BioBERT
(Lee et al., 2020) and SciBERT (Beltagy et al.,
2019), however, we achieved the best performance
with the PubMedBERT model which is why we
chose this model.

In order to fine-tune PubMedBERT on the MNLI
data, the sentence pair of hypothesis-premise is
used as the initial input sequence. Once the model
is trained over the MNLI dataset, we can directly
transfer the model to the claim-evidence sentence
pairs for the fact-checking task. We then trained
it on the MedNLI (Romanov and Shivade, 2018)
dataset, which is a domain-specific NLI dataset,
as previous research (Phang et al., 2018; Wang
et al., 2018) has shown that further training over
a similar domain-specific dataset increases model
performance. The learned model can then make
predictions whether an evidence supports or refutes
a claim or if it is undetermined. The model can also
be adapted in a supervised way when fact-checking
datasets are available. We have done extensive
experiments to show how the model can also be
adapted for unseen data.

4.2 Prediction of the claims

The classifier can assign a claim-evidence sentence
pair as support or refute. In order to further predict
the claims as true or false, we need to combine
all the evidences for each of the claims. In more
complex scenarios, when some evidences support
a claim whereas others refute the same claim and
yet others may be undetermined, this task is not
trivial. To resolve such conflicting cases, we have
used an improvised Dempster-Shafer (D-S) the-
ory of evidence combination. Research has mainly
focused on using the D-S theory for multi-sensor
domain where evidences from multiple sources are
combined to achieve a final decision (Xiao, 2019;
Khan and Anwar, 2019; Smets, 2000; Jiang et al.,
2016). This is similar to our work and we have
used the D-S theory for combining multiple con-
flicting evidences for claims in order to achieve a
final decision for the claims. The D-S theory is
mathematically defined as follows (Dempster et al.,
2008):
Definition 1. The set of all the possible sets of
the hypotheses or class categories is known as the
frame of discernment (FOD). A frame of discern-
ment consisting of N elements where each element
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ai is mutually exclusive to each other can be de-
fined as:

θ = {a1, a2, a3 . . . , aN} (1)

Definition 2. If A is a subset of P (θ) where
P (θ) = 2θ, the basic probability assignment (BPA)
or mass function, m(A) is a function that maps
A → [0, 1] and satisfies the following conditions:

m(ϕ) = 0,
∑

A⊆θ

m(A) = 1 (2)

Definition 3. If m1(Ai) and m2(Aj) are the BPA
of two bodies of evidence (BOE), then according
to D-S combination rule, they can be combined as
follows:

m(A) =
1

1−K

∑

Ai∩Aj=A

m1(Ai)m2(Aj), A ̸= 0 (3)

where K is a normalization factor defined as fol-
lows:

K =
∑

Ai∩Aj=ϕ

m1(Ai)m2(Aj) (4)

Definition 4. The combination formula can be ex-
tended for n terms as well which is defined as:

m(A) =
1

1−K

∑

Ai1
...∩Ain=A

m1(Ai1) . . .mn(Ain),

A ̸= 0 (5)

and K is defined as follows:

K =
∑

Ai1
...∩Ain=ϕ

m1(Ai1) . . .mn(Ain) (6)

4.3 Illustrative example
In order to understand the working of the D-S the-
ory, let us take a few examples. According to
our work, let us take three classes for the FOD,
θ = {a, b, c} where a, b, c are “support”, “refute”
and “neutral” respectively.
Example 1. Let us take two conflicting evidences
with respective probabilities for a, b and c.

E1 : m1(a) = 0.062 m1(b) = 0.937 m1(c) = 0.001

E2 : m2(a) = 0.952 m2(b) = 0.048 m2(c) = 0

We can see that for both E1 and E2, equation 2 is
fulfilled. According to equation 4, we get

K = m1(a)m2(b)m2(c) +m1(b)m2(a)m2(c)

+m1(c)m2(a)m2(b)

Putting the respective values, we get K = 0.896.
Using equation 3, we get the following

m(a) =
m1(a)m2(a)

(1−K)
, m(b) =

m1(b)m2(b)

(1−K)
and

m(c) =
m1(c)m2(c)

(1−K)

After calculation, we get m(a) = 0.436,
m(b) = 0.563 and m(c) = 0. We can see that
m(b) has the highest probability value using the
D-S combination theorem.

In certain situations, the D-S theorem fails. Let
us look at one such example.
Example 2. Let us take four conflicting evidences
with respective probabilities for a, b and c.

E1 : m1(a) = 0.889 m1(b) = 0.106 m1(c) = 0.005

E2 : m2(a) = 0.0 m2(b) = 0.999 m2(c) = 0.0

E3 : m3(a) = 1.0 m3(b) = 0.0 m3(c) = 0.0

E4 : m4(a) = 0.481 m4(b) = 0.515 m4(c) = 0.004

We can see that for both E1 and E2, equation 2 is
fulfilled. However, here, we find that K = 1 which
means that the denominator is 1−K = 0. In such
situations, the D-S combination rule will fail as
division by zero is mathematically undefined.
Definition 5. In order to overcome such situations,
we adapted the base belief function from (Wang
et al., 2019b) which is defined as follows: Let δ
be a set of N possible values that are mutually
exclusive. The power set of δ is 2δ, in which the
number of elements is 2N . According to (Wang
et al., 2019b), the base belief function mbase is then
defined as:

mbase(Ai) =
1

2N − 1
(7)

where Ai is the subset of δ except for the empty set
ϕ. The modified BPA then becomes

m′(Ai) =
m1(Ai) +mbase(Ai)

2
(8)

where m1(Ai) is the original BPA. This modified
BPA allows us to mitigate situations when BPA
values are 0. However, this leads to the violation
of the condition

∑
A⊆θ m(A) = 1. In order to

preserve the condition, we normalize the value of
m′(Ai) and therefore the final BPA is:

m′
norm(Ai) =

m′(Ai)∑
m′(Ai)

(9)

Example 3. Using the modifications, from Exam-
ple 2, the modified BPAs are as follows

E1 : m1(a) = 0.723 m1(b) = 0.174 m1(c) = 0.104

E2 : m2(a) = 0.100 m2(b) = 0.801 m2(c) = 0.100

E3 : m3(a) = 0.801 m3(b) = 0.100 m3(c) = 0.100

E4 : m4(a) = 0.437 m4(b) = 0.461 m4(c) = 0.102

We can see that for both E1 and E2, equation 2
is fulfilled. From equation 6, we can calculate
K = 0.0318 and 1−K = 0.968. After that we can
use equation 5 and get the values of m(a) = 0.795,
m(b) = 0.201 and m(c) = 0.0033. Using the
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modified BPAs have helped overcome situations
where the D-S combination rules fail.

From the illustrative examples, we have shown
how the modified D-S method can be used for the
task of combining evidences for a claim taking into
account conflicting evidences as well.

5 Experimental Details

In this section, we will describe the experimental
details for our tasks.

5.1 Dataset used

For evaluation purposes, we have used the SCI-
FACT dataset. The SCIFACT dataset has a train
file, a dev file and a test file. However, the test
file is part of a shared task and as such the labels
are not available. This is why we are evaluating
directly on the dev file. However, some claims in
the dev set do not have the evidence sentences and
as such we cannot evaluate on those claims which
is why we have dropped those claims.

5.2 Classification of claim-evidence pair

For this task, we have experimented on different
scenarios by doing an evaluation study over differ-
ent classification settings. First we experimented
directly on the dev set where we use our PubMed-
BERT fine-tuned model directly on the dev set ex-
amples by passing the claim-evidence pair and pre-
dicting the labels. The results are shown in Table
1 showing improvements over other models where
P, R and F-1 are the precision, recall and f score
respectively.

Model P R F-1
PubMedBERTmnli 0.666 0.599 0.631
DeBERTa-v3-base-mnli 0.426 0.390 0.408
DeBERTa-v3-base-mnli-fever-anli 0.428 0.380 0.403

Table 1: Comparison of models directly on SCIFACT
dev set examples

For the second experiment, we fine-tuned the
MNLI fine-tuned model over MedNLI to see if
there is any performance difference. Experiments
using this model yielded a very good result which
shows that in order to achieve an increased perfor-
mance while fine-tuning over a smaller dataset, it
is better to first fine-tune over a larger dataset and
then use that model to further fine-tune over the
smaller dataset. To confirm the results, we also
compared the performance of a few more models
from Table 1 by further fine-tuning these models

over MedNLI. We can see from Table 2 that there
is a performance increase in all models. This is in
line with the findings by (Phang et al., 2018; Wang
et al., 2018; Clark et al., 2019; Sap et al., 2019).

Model P R F-1
PubMedBERT-mnli 0.666 0.599 0.631
PubMedBERT-mednli 0.543 0.465 0.501
PubMedBERT-mnli-mednli 0.847 0.753 0.797
DeBERTa-v3-base-mnli-fever-anli 0.428 0.380 0.403
DeBERTa-v3-base-mnli-fever-anli-mednli 0.748 0.666 0.705
DeBERTa-v3-base-mnli 0.426 0.390 0.408
DeBERTa-v3-base-mnli-mednli 0.781 0.705 0.741

Table 2: Comparison of MedNLI fine-tuned models on
SCIFACT dev set

We also experimented in a zero-shot setting for
the SCIFACT pipeline where we first retrieve rel-
evant PubMed abstracts for the claims in the dev
set using the corpus provided in the dataset (Deka
et al., 2022b). After that, the top n evidence sen-
tences are extracted from the abstracts (Deka et al.,
2022a) and then we use the claim-evidence pairs
to predict whether the evidence supports or refutes
the claim. We compared our model with state-
of-the-art zero-shot as well as few-shot baselines
evaluated on the SCIFACT dataset. However, it
should be noted that the baselines have different
trade-off points in calculating the results due to our
method being different from theirs. The results for
the experiment are shown below in Table 3 where
top n sentences are the evidence sentences from the
relevant abstracts For each setting, we retrieve the
top 2, 3, 5 and 10 evidence sentences and then the
label for claim-evidence pair is predicted.

The baselines use a supervised approach where
they use the train set of the SCIFACT dataset. In
our method, however, we are using a transfer learn-
ing approach where we directly use our method
over the dev set without using the train set. From
Table 3, we can see that we have outperformed the
baseline models in the zero-shot setting. We can
also see that our best-performing model setting out-
performs even the few-shot baselines as well as the
fully fine-tuned VERISCI (Wadden et al., 2020)
baseline.

5.3 Prediction of the claims
In order to use the D-S theory for our work in
resolving conflicting evidences, we first need to
calculate the probabilities of the classes. As we
have approached our task as an NLI problem, we
have three different classes: SUPPORT, REFUTE
and NEUTRAL. For each claim-evidence pair, our
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Model Top n
sentences

P (sentence
+ label)

R (sentence
+ label)

F-1 (sentence
+ label)

Our approach

(top 2 abstracts)

2 0.515 0.393 0.446
3 0.509 0.409 0.454
5 0.503 0.420 0.458
10 0.513 0.444 0.476

Our approach

(top 3 abstracts)

2 0.505 0.390 0.440
3 0.492 0.401 0.441
5 0.505 0.428 0.463
10 0.534 0.465 0.497

Our approach

(top 5 abstracts)

2 0.510 0.389 0.441
3 0.500 0.403 0.446
5 0.510 0.422 0.462
10 0.528 0.459 0.491

Our approach

(top 10 abstracts)

2 0.500 0.375 0.428
3 0.472 0.384 0.424
5 0.512 0.419 0.461
10 0.526 0.449 0.484

VERISCI
(zero-shot) 0.248 0.334 0.284

VERISCI 0.469 0.392 0.426
MULTIVERS
(zero-shot) 0.390 0.216 0.278

MULTIVERS
(few-shot) 0.517 0.403 0.453

ParagraphJoint
(Zero-Shot) 0.364 0.149 0.211

ParagraphJoint
(Few-Shot) 0.330 0.351 0340

Table 3: Zero-shot evaluation on SCIFACT dev set for
the whole pipeline process

classifier calculates the probabilities of the three
classes. We are using these probabilities as the
BPAs from Equation 2. Once we have the BPAs, we
then use equation 9 to calculate the final modified
BPAs to mitigate the denominator error. Once we
have calculated the modified BPAs, we use equa-
tions 5 and 6 to combine the BPAs according to the
D-S combination rules.

The SCIFACT dataset does not have labels that
can be used for the evaluation of the combination
method. In order to infer these labels for the eval-
uation, we give the final class label for a claim
as either “Fake”, “Truth” or “Neutral”. This la-
bel is based on the gold standard label of the evi-
dences. We have seen that in the SCIFACT dataset,
all evidences for a claim can either be “SUPPORT”
or “REFUTE”. Based on this, we label claims as
“True” which has evidences labelled as “SUPPORT”
and “False” for claims that have evidence labels as
“REFUTE”. Some of the evidences do not enough
information to either “SUPPORT” or “REFUTE”
claims. These are labelled as “Neutral”. This will
be our gold standard and the results from the D-S
combination theory will be evaluated against this
gold standard. As evaluation metrics, we have used
macro precision, recall and f-1 score. We experi-
mented in two different scenarios. Initially, we ex-
perimented directly on the dev set using our model
from Table 2. We got the results as follows: Preci-
sion = 0.898, Recall = 0.893, F-1 score = 0.894.

For the next experiment, we have used the whole
pipeline process where we first retrieve top n ab-
stracts and then from these abstracts we retrieve the
top n evidences. Once we have the evidence sen-
tences, we then use the classifier to classify them
accordingly. The results are shown in Table 4.

Top n abstracts Top n sentences P R F-1

2

2 0.867 0.595 0.705
3 0.887 0.663 0.738
5 0.884 0.649 0.747
10 0.894 0.680 0.772

3

2 0.865 0.585 0.697
3 0.885 0.617 0.726
5 0.891 0.654 0.753
10 0.897 0.702 0.786

5

2 0.866 0.590 0.702
3 0.874 0.627 0.729
5 0.885 0.659 0.755
10 0.892 0.707 0.788

10

2 0.864 0.579 0.693
3 0.869 0.601 0.709
5 0.886 0.665 0.758
10 0.891 0.702 0.784

Table 4: D-S method evaluation on SCIFACT dev set
for the pipeline process

6 Supervised approach using augmented
data

In situations where we have labelled data, our
model can be used to train over such data in a
supervised way which means that the knowledge
from our model can be transferred over such data.
However, a problem with the available datasets
such as SCIFACT, is the fact that it has very less
labelled data for training which may not lead to
improved performance of the model. To improve
it, there should be more data for training, and data
augmentation is one way of increasing the number
of training examples (Shorten et al., 2021; Feng
et al., 2021). There are various ways of augment-
ing data such as rule-based, interpolation-based and
model-based (Shi et al., 2022). In rule-based meth-
ods, words and phrases are manipulated in order
to generate augmented text. But a problem with
such methods is that changing words or phrases
may lead to change in the meaning of the sentences
(Niu and Bansal, 2018). In the context of biomed-
ical text, if the meaning of the sentence changes
then the sampled augmented data may lead to nega-
tive performance in model training. By performing
interpolation operations directly on the source text
(Chawla et al., 2002; He et al., 2008) or latent space
representations (Chen et al., 2020), interpolation-
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based approaches produce new instances. However,
such methods can be error-prone due to noisy gener-
ated data (Chawla et al., 2002). Model-based meth-
ods use language models such as BERT to generate
new training examples. One popular way of using
these models to generate new training examples is
back translation (Edunov et al., 2018). Recent re-
search works have explored these language models
for data augmentation via back translation (Melton
et al., 2022).

For our work, we explored the following re-
search questions:

RQ 1. Can we use back-translation method for data
augmentation on domain specific fact checking task
without loss of context?

RQ 2. How well does the model fare without us-
ing augmented examples vs the model which uses
augmented examples?

In order to answer the research questions, we
explored two different ways: using Google Trans-
late and transformer-based language models. Using
Google Translate for back translation has been stud-
ied in previous research (Pappas et al., 2022). We
have used Google Translate to convert the claim-
evidence pairs to different languages such as Ger-
man, French, Russian, Chinese and Spanish. Each
language has a different language structure and
since biomedical text is different than general text,
a comparison of all the different languages would
show which languages can be better suited for such
tasks in the medical domain. We have used the deep
translator python API 3 for the Google Translate
method.

Transformer-based language models have been
proven to be very good in neural machine trans-
lation tasks (Przystupa and Abdul-Mageed, 2019;
Uhrig et al., 2021). For the study, we have used the
OpusMT (Tiedemann and Thottingal, 2020) mod-
els which are pretrained transformer models for
the neural machine translation task based on the
Marian MT framework (Junczys-Dowmunt et al.,
2018). We have used the models from the Hugging-
Face repository for the OpusMT 4 models.

For the experiment using the Google translator
API, we translate all the claims as a batch to dif-
ferent languages and then back to English and the
same approach is taken for the evidences as well.
We then merge the synthetic data with the original

3https://deep-translator.readthedocs.io/en/
latest/

4https://huggingface.co/Helsinki-NLP

data by removing any duplicates. However, for
NMT models, all claims and evidence are back-
translated one at a time using the HuggingFace
pipeline5. Once we get the back-translated exam-
ples, we then merge them with the original data.
For evaluation, we use our model from Table 3 with
the best results and train it over the augmented data.
The results are shown below in Table 5.

Methods/Models P R F1

OpusMT-German-English 0.5992 0.5587 0.5783
OpusMT-Spanish-English 0.5638 0.5219 0.5420
OpusMT-Chinese-English 0.5899 0.5467 0.5675
OpusMT-Russian-English 0.5753 0.5347 0.5543
OpusMT-French-English 0.5859 0.5454 0.5649
Googletranslate(German) 0.5780 0.5348 0.5555
Googletranslate(Spanish) 0.5620 0.5215 0.5410
Googletranslate(Chinese) 0.5630 0.5224 0.5419
Googletranslate(French) 0.5762 0.5370 0.5559
Googletranslate(Russian) 0.5576 0.5184 0.5373
Without augmentation(fine tuned) 0.5443 0.5051 0.5239
Without finetuning on train set 0.5340 0.4651 0.4970

Table 5: Data augmentation results

As seen from the table above the model with-
out fine-tuning on train set performs poor which
is expected. Training the model with the train set
but without augmentation results in slight improve-
ment on the results. However, we can see there is
a significant improvement in the results once we
augment the train file using the back translation ap-
proaches. Out of the two different approaches that
we have experimented with, the transformer-based
NMT models perform better than Google translate
API. However, these models are also time consum-
ing while performing the back-translation task un-
like the Google translate approach. The results
show that data augmentation using back translation
gives us better results for such domain-specific fact
checking tasks which answer both RQ1 and RQ2.

7 Transferring over other datasets

In order to know how well our model generalizes
over other similar data, we experimented with two
similar fact-checking datasets on biomedical data,
HEALTHVER (Sarrouti et al., 2021) and COVID-
FACT (Saakyan et al., 2021). Both datasets fo-
cus on Covid-19 data, however, the way claims
and evidences are collected in both these datasets
differ. HEALTHVER claims are collected from
CORD-19 (Wang et al., 2020) corpus article snip-

5https://huggingface.co/docs/transformers/
main_classes/pipelines
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pets which were retrieved to answer questions for
TREC-COVID (Voorhees et al., 2021). The claims
in HEALTHVER are complex and evidences are
provided for each claim. The dataset has three la-
bels, SUPPORT, REFUTE and NEUTRAL based
on the evidences which are collected from the ar-
ticle snippets itself. COVIDFACT, on the other
hand, has claims collected from Covid-19 subred-
dit and evidences are collected from linked scien-
tific papers and documents collected from Google
search. The claims in COVIDFACT are also com-
plex and has two labels for the evidences collected,
SUPPORT and REFUTE. Both HEALTHVER and
COVIDFACT have one annotated evidence per
claim, whereas in SCIFACT, there may be more
than one evidence for one claim. Also, in SCI-
FACT, relevant abstracts are needed to be retrieved
first from the corpus provided and then evidence
sentences are needed to be retrieved from those
abstracts.

Although our model has not been trained over
Covid-19 specific text, we wanted to experiment
how well it generalizes over such data by perform-
ing two different experiments. In the first experi-
ment, we applied our model to the test set of both
HEALTHVER and COVIDFACT without using the
training set in a zero-shot approach. For SCIFACT,
we have used the dev set.

PubMedBERT-mnli-mednli
P R F1

SCIFACT 0.847 0.753 0.797
HEALTHVER 0.429 0.431 0.354
COVIDFACT 0.425 0.401 0.338

Table 6: Zero-shot comparison of our model with differ-
ent datasets

We can see from Table 6 that in a zero-shot
setting, our model performs better with the SCI-
FACT dataset. This can be attributed to the fact
that SCIFACT data contain PubMed abstracts and
PubMedBERT (Gu et al., 2021) has been trained
over PubMed text which is why it performs bet-
ter. HEALTHVER and COVIDFACT, on the other
hand do not contain PubMed data and as such
the model does not generalise well over the other
datasets.

For the second experiment, we have transferred
a trained model over one dataset to the other two
to see how well models trained on one dataset gen-
eralize to other datasets. We use the train sets of
the datasets to train the model and then use the test
sets of the other datasets to evaluate the model per-

formance. Since the HEALTHVER dataset has the
NEUTRAL label, we have dropped instances from
its test set having that label in order to maintain
consistency over all the datasets when the model
was trained over SCIFACT and COVIDFACT train
sets since these datasets only have SUPPORT and
REFUTE labels. The results of the experiment are
shown in Table 7.

PubMedBERT-mnli-mednli
(trained on HEALTHVER) HEALTHVER SCIFACT COVIDFACT

P 0.6287 0.5197 0.4283
R 0.5780 0.5242 0.3918
F1 0.5040 0.5215 0.3349

PubMedBERT-mnli-mednli
(trained on SCIFACT)

(NEUTRAL
instances
are dropped)

P 0.6827 0.8730 0.6347
R 0.6272 0.8497 0.6143
F1 0.6251 0.8591 0.5082

Pubmedbert-mnli-mednli
(trained on COVIDFACT)

(NEUTRAL
instances
are dropped)

P 0.6352 0.7133 0.6851
R 0.6417 0.7313 0.6933
F1 0.6245 0.7009 0.6884
PubMedBERT-mnli-mednli
(trained on HEALTHVER
without NEUTRAL instances)
P 0.8080 0.8636 0.6739
R 0.7347 0.7603 0.6194
F1 0.7462 0.7811 0.4836

Table 7: Transfer learning comparison of our approach
on different datasets

From Table 7, it can be seen that when the
model is trained on SCIFACT and HEALTHVER,
transferring to the COVIDFACT test set does
not give very good results. This is due to the
fact that COVIDFACT contains both scientific as
well as non-scientific claim-evidence pairs and
therefore a model trained on either SCIFACT or
HEALTHVER does not generalize well as they are
based on scientific data. We can also see that the
model trained on HEALTHVER generalizes bet-
ter on the SCIFACT data and vice-versa as both
these datasets are based on scientific claims and
evidences, they learn better and generalize well
on each other. However, we can also see that the
model trained on COVIDFACT generalizes well
on the other datasets since it contains both scien-
tific and non-scientific data. These results confirm
the findings by (Saakyan et al., 2021) that models
trained on scientific data do not generalize well on
data that contain non-scientific data as well. This
is important as real-world health misinformation
data may contain both scientific and non-scientific
claims. In such situations, we need to have both sci-
entific as well as non-scientific data so that models

244



can learn to generalize on such data.

8 Conclusion and future work

We have explored the prediction of veracity for
health-related fact-checking tasks that can be
learned from NLI data. By doing experiments, we
showed that training domain-specific BERT-based
models on domain-specific NLI data improves the
model performance for fact-checking task. We also
explored a method that can be used to combine
different evidences for a claim, even for situations
that have conflicting evidences for the same claim.
We have also shown by experiments that augment-
ing data using back-translation helps in situations
where there is a lack of training data. Although
fact-checking of scientific claims is still a new task,
there is a potential for improvement of the current
methods being used for the task. With the advent
of more capable large language models, new re-
search direction such as prompt based methods can
also be explored. As future work, we are interested
in exploring such prompt-based approaches along
with multimodal data in this space.
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