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Abstract

Understanding biological mechanisms requires
determining mutual protein-protein interactions
(PPI). Obtaining drug-drug interactions (DDI)
from scientific articles provides important in-
formation about drugs. Extracting such med-
ical entity interactions from biomedical arti-
cles is challenging due to complex sentence
structures. To address this issue, our proposed
model utilizes tree-transformers to generate
the sentence representation first, and then a
sentence-to-word update step to fine-tune the
word embeddings which are again used by the
tree-transformers to generate enriched sentence
representations. Using the tree-transformers
helps the model preserve syntactical informa-
tion and provide semantic information. The
fine-tuning provided by the continuous update
step adds improved semantics to the representa-
tion of each sentence. Our model outperforms
other prominent models with a significant per-
formance boost on the five standard PPI corpora
and a performance boost on the one benchmark
DDI corpus that are used in our experiments.

1 Introduction

With the rapid expansion of scientific literature,
most biological knowledge is now stored as text
and can be accessed through scientific publications.
The MEDLINE database has experienced a steady
annual growth of over 4% for the last two decades,
currently boasting a collection of over 29 million
records from diverse sources. This is an increase
of 3 million records compared to 2020 and over 8
million records compared to 2014, as cited in Yadav
et al. (2020). The vast amount of textual data in
biomedical research articles presents an invaluable
opportunity for automated biomedical information
retrieval to leverage this wealth of information.

As biomedical data continues to expand expo-
nentially and the inherent complexity of textual
representations, automated methods for informa-
tion retrieval plays a pivotal role in aiding biolo-

gists in locating pertinent information, managing
databases, and providing decision support to med-
ical practitioners. Numerous studies have been
conducted to extract valuable information from
these texts, encompassing various domains such
as protein-protein interactions, chemical-disease
relationships, clinical correlations, drug-drug inter-
actions, and more.

The internal biological processes within a cell,
such as cellular organization, signal transduction,
and immune response, are predominantly gov-
erned by interactions between different proteins
(Sledzieski et al., 2021). To comprehend the
molecular mechanisms underlying these biological
processes, knowledge of protein-protein interac-
tions (PPI) is indispensable (Ahmed et al., 2019a).
These interactions have significant relevance in the
biomedical domain, including drug target exam-
ination (Gordon et al., 2020) and signal proteins
(Altmann et al., 2020). Consequently, the identifica-
tion of protein-protein interactions (PPIs) leads to
a deeper understanding of the functions, regulation,
and communication between various proteins (Yao
et al., 2019). The primary objective of PPI recogni-
tion is to extract the relationships between protein
entities mentioned in a document (Krallinger et al.,
2008).

A drug-drug interaction (DDI) refers to a modifi-
cation in the effects of one drug due to the presence
of another drug (Rodrigues, 2019). While clinical
trials for pre-market identification of interactions
are challenging, obtaining DDI information from
scientific articles is a faster, cost-effective, and reli-
able approach to reducing adverse effects. Further-
more, in order to practice evidence-based medicine
and mitigate drug-related accidents, comprehensive
extraction of DDI knowledge from pharmaceutical
literature is crucial (Sackett, 1997). Automatic DDI
extraction can prove highly beneficial for the phar-
maceutical industry, offering an efficient means of
reducing the time spent by healthcare professionals
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reviewing the medical literature.
Biomedical literature contains a wealth of in-

formation about protein-protein interactions (PPIs)
and drug-drug interactions (DDIs), but this infor-
mation is often unstructured. Manual extraction of
these interactions from biomedical literature is a la-
borious, resource-intensive, and costly task, given
the sheer volume of published studies (Peng et al.,
2016; Tang et al., 2022). Consequently, the auto-
matic extraction of PPIs and DDIs from biomedical
literature has emerged as a vital research area, gar-
nering attention from numerous researchers. While
the information may be scattered throughout the
document, the current study focuses on detecting
these interactions within individual sentences, simi-
lar to previous studies (Asada et al., 2023; Fei et al.,
2021; Ahmed et al., 2019a; Tikk et al., 2010).

An instance of a sentence that demonstrates
protein-protein interactions can be found in the
study by Howard et al. (2000), where it states:

“At 89.3 nmol/L, maximal migration of
CCR1 and CCR8 transfected cells was
prompted by LEC and at 5.6 nmol/L, cell
adhesion also occurred.”

This sentence highlights two protein-protein inter-
actions involving LEC and CCR1, as well as LEC
and CCR8. However, it is important to note that
there is no correlation mentioned between proteins
CCR1 and CCR8 in this context.

An instance of a DDI-containing sentence is
(Nauta et al., 1974):

“To determine whether probenecid has
a direct effect on the distribution of
cloxacillin, the elimination and distri-
bution of cloxacillin was studied in six
patients, five lacking kidney function
and one with a partially impaired renal
function, in the presence or absence of
probenecid.”

This sentence mentions two drugs: probenecid, and
cloxacillin. However, the interaction between them
is negative, as no concrete interaction is stated.

During the extraction of relationships between
target proteins or drugs, we have addressed three
key concerns. Firstly, how to tackle the challenge
of retrieving relations when the mentioned proteins
or drugs are widely separated in the text. Secondly,
how to preserve better semantics by handling the
phrasal structure of the text, allowing for the ef-
fective extraction of PPIs or DDIs and capturing

relevant information. Lastly, what is the impact of
updating word and non-leaf node representations in
the tree-structured networks based on the sentence
at hand, as opposed to using fixed representations
from pre-trained models, and how this influences
the generated sentence representation for the task
of PPI and DDI extractions.

To address the above-mentioned three considera-
tions we have proposed a model combining a con-
stituency tree-transformer (for preserving phrase-
level information in the text), and a dependency
tree-transformer (to consider relations between
long distant drugs or proteins in the text) where
each of them generates sentence representations
which are then combined. Finally, a sentence-
to-word update step is introduced following the
concept from Wang et al. (2020) to update the
word and non-leaf nodes of the tree-transformers
to generate refined sentence representation. This
approach serves the purpose of fine-tuning BERT-
based word embeddings for these tasks. But the
advantage of this approach is that we do not need
to fine-tune millions of parameters in the BERT-
based models. Our study includes a thorough anal-
ysis of the performance of the proposed models
on benchmark PPI and DDI datasets. The results
demonstrate the superiority of our proposed model
compared to previous prominent models in the field.
The comprehensive analysis highlights the effec-
tiveness and efficacy of our approach in accurately
extracting protein-protein and drug-drug interac-
tions from biomedical literature.1

2 Related Work

In the initial stages of biomedical entity rela-
tion extraction research, co-occurrence and pattern
recognition techniques were commonly employed
(Baumgartner et al., 2008; Yu et al., 2018). How-
ever, with advancements in technology, machine
learning techniques have gained prominence due
to their superior performance. Early approaches
involved feature engineering and kernel methods
to construct a feature set, followed by classification
using support vector machines or other classifiers
(Airola et al., 2008; Murugesan et al., 2017). In
recent years, deep learning techniques, leveraging
the widespread use of deep learning in natural lan-
guage processing (NLP), have been successfully
applied to PPI and DDI extraction in several re-

1The code is available on https://github.com/sudipta90/
BioNLP_PPI_Heterogeneous.git
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search works (Liu et al., 2016; Zhao et al., 2016;
Hua and Quan, 2016; Choi, 2016). Zhang et al.
(2018) proposed a three-channel convolution neu-
ral network for extracting PPIs from the text.

Recent work in PPI and DDI extraction often uti-
lizes recurrent neural network (RNN) models that
treat textual representations as sequences (Hsieh
et al., 2017; Sahu and Anand, 2018; Yadav et al.,
2019). However, these models may miss semantic
compositions when biomedical entities lie at distant
positions in the text, as they only consider word
order and ignore linguistic structure (Ahmed et al.,
2019b; Li et al., 2015). In contrast, recursive neu-
ral networks, also known as tree-structured neural
network models (Ahmed et al., 2019c; Singha Roy
and Mercer, 2022), process sentences represented
in a parsed tree form, capturing both syntax and
semantics in a more effective manner. There have
also been investigations into graph-based methods,
where models operate on a fully connected graph
composed of either word or phrase nodes (Fei et al.,
2021). These approaches aim to leverage the struc-
tural information present in the data for improved
performance in PPI and DDI extraction. Asada et al.
(2021) utilized molecular structure and description
of the drugs for retrieving DDIs. Gu et al. (2021)
fine-tuned PubMedBERT to extract relations be-
tween drugs. Following this, Asada et al. (2023)
utilized a knowledge graph with PubMedBERT for
the DDI extraction task.

3 Proposed Model

In this section, we provide details of our model for
the protein-protein and drug-drug interaction ex-
traction tasks. Our model contains three key mod-
ules: two tree-transformers, as described in Ahmed
et al. (2019c), for preserving the semantic and syn-
tactical information, and a sentence-to-word update
step for updating the word and intermediate node
representations in the tree-transformers to generate
refined representations of the sentences. In this
current work, we have added an update of the word
embeddings after the sentence-to-word update step
which enriches the input to the combination of the
two tree-transformers and the heterogeneous graph
attention network, which were first proposed for
the PPI extraction task in Singha Roy and Mercer
(2023). In this section, we first discuss how each
module functions individually, and then elaborate
on how these modules are integrated into our pro-
posed model with the expanded workflow.

3.1 Tree-Transformers
The two tree-based representations commonly used
for representing a sentence are constituency trees
and dependency trees. Constituency trees capture
the structure of phrases in a sentence, while depen-
dency trees represent the dependencies between
individual words. In our work, we utilize two tree-
transformer models, namely the dependency tree-
transformer and the constituency tree-transformer,
as proposed by Ahmed et al. (2019c), to leverage
these sources of syntactic structure information.
The goal of these tree-transformer models is to
traverse each sub-tree within a dependency or con-
stituency tree structure attentively and at its root
derive a sentence representation. This allows us to
capture both the semantic and syntactic information
of the sentence for improved performance in ex-
tracting protein-protein and drug-drug interactions
from the text. Unlike the tree transformer proposed
byWang et al. (2019) which learns phrases they
call constituents, the tree transformer proposed by
Ahmed et al. (2019c) works over the parsed trees
and can work with both the constituency and de-
pendency trees.

In a dependency tree, each node represents a
word in the sentence. When traversing a sub-tree in
a dependency tree, the dependency tree-transformer
takes into consideration the representations of both
the parent and child nodes, allowing for the prop-
agation of information between connected words
in the tree. On the other hand, in a constituency
tree, only the leaf nodes hold words, while the non-
terminal nodes do not have word representations.
The vector representations for the non-terminal
nodes are computed only after the sub-tree has been
fully traversed, taking into account the information
from the leaf nodes. This approach allows for the
capture of both local and global contextual infor-
mation during the tree traversal process, facilitating
the extraction of meaningful representations from
the syntactic structures of the sentence. Ahmed
et al. (2019c) have used a self-attention mechanism
to process the dependency and constituency tree
representations of the sentence, employing query
(Q), key (K), and value (V) matrices, which are
computed as follows based on the formulation pro-
posed by Vaswani et al. (Vaswani et al., 2017):

K = ωkMk s.t. ωk ∈ Rd×d (1)

V = ωvMv s.t. ωv ∈ Rd×d (2)

Q = ωqMq s.t. ωq ∈ Rd×d (3)
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In the tree-based transformer models, the matrix M
is computed differently for dependency trees and
constituency trees. In the case of dependency trees,
the matrix M is created by concatenating the word
vectors of all of the child nodes for each parent
node in the dependency tree. On the other hand, for
constituency trees, M is formed by concatenating
the word vectors within a constituent. The self-
attention matrix α is then computed as:

α = softmax(
Q KT

√
dk

)V (4)

where dk represents the dimension of K. To im-
plement multi-branch attention with n branches,
the following steps are taken: first, n copies of the
key, query, and value matrices are generated using
weight matrices (ωi). Then, each branch applies the
scaled dot product attention separately (following
Eq. 4), using its own set of query, key, and value
vectors. Finally, this results in n sets of attended
word vectors, one for each branch (see Eq. 5).

Bi = αi∈[1,n](Qi ω
Q
i ,Ki ω

K
i ,Vi ω

V
i ) (5)

Then, a residual connection is employed on these
tensors, and a batch normalization layer is applied
to each layer. Following that, the branch represen-
tation is generated using a scaling factor µ in the
following manner:

B̃i = LayerNorm(Biω
b
i + Bi)× µi (6)

Following that, a position-wise CNN (PCNN) is
applied to each B̃i. The PCNN layer comprises
two convolution operations on each position, sep-
arated by a rectified linear unit (ReLU) activation
function. The operation of this PCNN layer can be
represented as per Eq. 7:

PCNN(x) = Conv(ReLU(Conv(x) + b1)) + b2 (7)

The ultimate attentive representation of these se-
mantic sub-spaces, which are generated from the
PCNN layer, is acquired by conducting a linear
weighted summation (as expressed in Eq. 8), with
γ ∈ Rn serving as a hyper-parameter of the model.

BranchAttn =
n∑

i=1

γiPCNN(B̃i) (8)

In the final stage, a residual connection is estab-
lished with BranchAttn, and a hyperbolic tangent

non-linearity (tanh) function is applied. The rep-
resentation of the parent node is then obtained by
conducting element-wise summation (EWS) (Eq. 9).

ParentNode = EWS(tanh((χattn + χ)ω + b)) (9)

In Eq. 9, the symbols χ and χattn represent the input
and output features of the attention computation
module, respectively.

3.2 Sentence-to-Word Update Module
For the sentence-to-word update step, we have used
an approach similar to the heterogeneous graph at-
tention network (H-GAT) (Wang et al., 2020). H-
GAT was introduced for extractive summarization
tasks with the intention to generate an enriched
cross-sentence relationship. In our research, we
have employed this approach to enhance the qual-
ity of sentence representations. This module is uti-
lized at each iteration, once the forward passes of
the constituency and dependency tree-transformers
are completed. Through sentence-to-word and a
following forward pass of the tree-transformers
again, this module enriches the sentence vectors,
thereby improving the overall sentence representa-
tion quality.

The graph G in this module is structured as
G = V,E, where V represents the nodes in
the graph and E represents the edges between
those nodes. For a given sentence S containing
n words (wi), the set of nodes V is defined as
V = w1, w2, ..., wn, S. Since the task involves
identifying PPIs and DDIs in single sentences, the
edges are established in such a way that the sen-
tence node S is connected to every word node wi.
Once the graph G is constructed, a Graph Atten-
tion Network (GAT) (Veličković et al., 2018) is
used to modify the feature values of the nodes. Let
hi ∈ Rdh be the hidden states of the word and
sentence nodes, where i ∈ 1 : (n+ 1) and dh is
the hidden state dimension. The GAT layer can be
formulated as follows:

κi,j = LeakyReLU(ωa[ωqhi;ωkhj ]) (10)

αi,j =
exp(κi,j)∑
l∈Ni

exp(κi,l)
(11)

Zi = σ(
∑

j∈Ni

αi,jωvhj) (12)

The weight matrices ωa, ωq, ωk, and ωv in the GAT
layer are updated through backpropagation. The set
of neighbouring nodes for a given node i is denoted
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by N i, while the attention score between hidden
states hi and hj is denoted by αi,j . The GAT layer
can be extended to incorporate multi-head attention
with M heads, which is represented as follows:

Z i = ||Mm=1σ(
∑

j∈Ni

αm
i,jω

mhi) (13)

To mitigate the issue of vanishing gradients over
time, a residual connection is established. The final
hidden state representation (hi), incorporating the
information (ui) from the residual connection, is
formulated as hi = ui + hi.

The word nodes are updated using the previously
delineated GAT and a position-wise feed-forward
network (FFN) layer, which consists of two lin-
ear transformations as introduced by Wang et al.
(2020). At the t-th iteration, the updates are per-
formed based on the information from the sentence
node, as shown in Eqs. 14 and 15:

Zt+1
s→w = GAT(Ht

w,Ht
s,Ht

s) (14)

Ht+1
w = FFN(Zt+1

s→w +Ht
s) (15)

In Eq. 14, H0
w represents the set of word nodes,

which are the Bio-RoBERTa-based embeddings for
the words in the sentence (Gururangan et al., 2020).
On the other hand, Ht

s represents the average of
the sentence representations obtained from the de-
pendency and constituency tree-transformers. In
the GAT layer, Ht

w is used as the query, while Ht
s

is considered as both the value and key matrices,
imitating the approach of Vaswani et al. (2017).

3.3 Model Architecture
Figure 1 provides an architectural overview of the
model. The model starts with Bio-RoBERTa word
embeddings as input. These embeddings are then
processed by the Dependency Tree Transformer
(DTT) and Constituency Tree Transformer (CTT)
in parallel to generate sentence representations
(SDTT and SCTT, accordingly). This step is fol-
lowed by a mean-pooling operation and an inter-
mediate sentence representation Savg is generated.
The sentence-to-word update step uses the Savg

representation to update the word representations.
These updated word representations are then passed
to the tree-transformers again. This step involves
another forward pass to generate the updated sen-
tence representations S′

DTT and S′
CTT. Max-pooling

is applied over these updated sentence representa-
tions and this result is fed to the following classifi-
cation layer for the relation extraction.

Figure 1: Integrated architecture with tree-transformers
with the sentence-to-word update step for relation extrac-
tion task. The numerical values in blue color, associated
with the branches in the tree Transformers, represent the
attention scores for those specific branches.

4 Experimental Setup and Analysis of
Results

In this section, the performance of the proposed
model is evaluated using the F1-score. The PPI
(Protein-Protein Interaction) and DDI (Drug-Drug
Interaction) extraction tasks have been formulated
as classification tasks. The section also includes
a demographical overview of the five primary PPI
corpora and the standard DDI corpus used in the
evaluation, as well as a discussion of the pre-
processing techniques employed on these corpora.
The efficacy of the proposed model is compared
to leading sequential, tree-structured, and graph-
based architectures that have been previously pro-
pounded for these biomedical entity inter-relation
extraction tasks.

4.1 Corpora Descriptions

The performance of the proposed model for PPI
extraction task is evaluated on five benchmark
corpora: BioInfer (Pyysalo et al., 2007), AIMed
(Bunescu et al., 2005), HPRD50 (Fundel et al.,
2007), IEPA (Ding et al., 2001), and LLL (Nédel-
lec, 2005). In order to bring forth a persistent clas-
sification task across all five corpora, protein names
are substituted with three symbols: PROTEIN1 and

284



PROTEIN2 are used to represent pairs of proteins
that are considered potentially interacting in a given
sentence, while all other protein names present in
the sentence are altered with PROTEIN0. The ap-
proach of replacing protein names with generic
symbols allows the model to focus on the interac-
tion between a pair of proteins in each sentence,
one at a time. For sentences containing more than
two proteins, two proteins at a time are tagged with
PROTEIN1 and PROTEIN2, and their interaction
(positive or negative) is identified. This process
is repeated sequentially for all protein pairs in the
sentence. Thus, for each sentence in the corpus con-
taining η proteins, the modified corpus will feature
ηC2 variations. For example, consider the sentence:
“At 89.3 nmol/L, maximal migration of CCR1 and
CCR8 transfected cells was prompted by LEC and
at 5.6 nmol/L, cell adhesion also occurred.” To
identify the possible relationship between LEC and
CCR1, their respective protein names are replaced
with PROTEIN1 and PROTEIN2, while CCR8 is
replaced with PROTEIN0. When the objective is to
identify the possible interaction between LEC and
CCR8, their names are replaced with PROTEIN1
and PROTEIN2, and PROTEIN0 is used in place
of CCR1. Similarly, when identifying the possible
interaction between CCR1 and CCR8, they are re-
placed with PROTEIN1 and PROTEIN2, and LEC
is replaced with PROTEIN0. Interactions between
protein pairs can be either positive or negative. For
the above example, when the considered proteins
are CCR1 and LEC or CCR8 and LEC, the nature
of their interactions is positive in each case. How-
ever, when the considered protein pair is CCR1
and CCR8, the PPI is negative since no interac-
tion is present between them. Thus, the example
sentence presents three possible interactions, re-
sulting in three variants (3C2) of the sentence in
the modified corpus: two with positive interactions
and one with a negative interaction. Using generic
names to represent protein names enhances the data
by allowing for multiple samples of these generic
names, as opposed to only a few samples for each
individual protein name. An overview of the demo-
graphic traits for the five revised datasets, using the
aforementioned method, is presented in Table 1.

For the DDI extraction task, we have conducted
our experiments on the DDIExtraction-2013 corpus
(Segura-Bedmar et al., 2013). For the data prepro-
cessing step, the aforementioned steps have been
similarly followed. Here, the potentially interacting

Table 1: Demographical description of the modified
corpora for PPI task

Corpus
Original Positive Negative

Sentences Samples Samples

AIMED 1,995 1,000 4,834

BioInfer 1,100 2,534 7,132

IEPA 486 335 482

HPRD50 145 163 270

LLL 77 164 166

Table 2: Demographical description of the SemEval-
2013 DDIExtraction task dataset

Train Test

Sentences 6976 1299

Drug Pairs 27792 5716

Positive Pairs 4021 979

Mechanism 1319 302

Effect 1687 360

Advice 826 221

Interaction 189 96

Negative Pairs 23771 4737

drug pairs are replaced with DRUG1 and DRUG2
and the remaining drug names in the sentence are
replaced with DRUG0. Thus, each sample consid-
ers the interaction between one pair of drugs at a
time, similar to the PPI data preprocessing step.
The overall demographic of the corpus is presented
in Table 2.

The Stanford dependency and constituency
parsers (Manning et al., 2014) have been employed
to parse sentences in all of these corpora.

4.2 Experimental Setup

Regarding the model specifics, an initial learning
rate of 0.1 has been employed for all the exper-
iments. If the validation accuracy declines com-
pared to the previous iteration, the learning rate
has been decreased by 80% in each subsequent
iteration. Additionally, a batch size of 10 is set.

The tree-transformer models incorporate six
branches of an attention layer and six PCNN lay-
ers. Two CNN layers utilize kernels of dimensions
341 and 300, respectively, with a dropout of 0.1
in the second layer only. The sentence-to-word
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Table 3: Performance evaluation of the models for PPI extraction on the five datasets: F1-score (in %) as the metric.
All values, except for Tai et al. (2015) and the Proposed Model, are those reported in the original works. The best
performance metric for each dataset is indicated in bold.

Methods Architecture AIMed BioInfer IEPA HPRD50 LLL Avg.
Chang et al. (2016) RNN 60.6 69.4 71.4 71.5 80.6 70.7
Hsieh et al. (2017) RNN 76.9 87.2 76.31 80.51 78.3 79.84
Zhang et al. (2018) RNN 56.4 61.3 75.1 63.4 76.5 66.54
Yadav et al. (2020) RNN 77.33 76.33 - - - 76.83

Tai et al. (2015) Tree-structured 80.6 88.1 76.4 82.0 84.8 82.38
Ahmed et al. (2019a) Tree-structured 81.6 89.1 78.5 81.3 84.2 82.94

Singha Roy and Mercer (2022) Tree-structured 88.15 96.01 83.24 88.94 92.18 89.70
Fei et al. (2021) Graph-based 88.27 96.21 83.90 89.57 92.86 90.16

Singha Roy and Mercer (2023)
Tree-structured

91.23 96.97 87.28 93.11 93.52 92.02
+ Heterogeneous Graph

Proposed Model Tree-structured 94.66 97.81 93.47 94.01 94.14 94.82
+ Heterogeneous Graph

update module employs six attention heads. The
trainable hyperparameters of the model are updated
using the Adagrad optimizer (Lydia and Francis,
2019). The final representation for each sentence
representation unit (dependency and constituency
tree-transformers) and the model itself is a 512-
dimensional vector. Bio-RoBERTa word embed-
dings are used as the initial input of the model. The
model uses two forward passes for sentence vector
generation. Only the first forward pass uses these
Bio-RoBERTa word embeddings. The second pass
utilizes the updated word representations obtained
from the sentence-to-word update module, as de-
scribed in Section 3.3.

To conduct the performance evaluation of the
Proposed Model for the PPI extraction task, we
have employed StratifiedK-Fold from the scikit-
learn package to perform 10-fold cross-validation.
In each fold, the training has been carried out on
the training set, and the evaluation has been per-
formed on a separate test set. The tree LSTM
proposed by Tai et al.2 (2015) has been trained
and tested by us following the aforementioned ap-
proach. All the other models’ results are reported
directly from their corresponding publications. For
the DDI extraction task, the training and test sets
have been shuffled 5 times using StratifiedK-Fold
from the scikit-learn package to perform 5-fold
cross-validation. The average performance met-
rics for both tasks are presented in Tables 3 and 4,
respectively, and discussed in Section 4.3.

The experiments have been conducted on a
Linux Ubuntu 22.04 LTE machine equipped with

2This model was not developed in particular for the PPI
task. We were interested in its performance on this task.

16GB of memory and an Nvidia 1070Ti graphics
card with 8GB of graphics memory. PyTorch 1.7.1
has been utilized for implementing the model.

4.3 Performance Analysis

Table 3 showcases the performance of our proposed
model on the five benchmark corpora for PPI ex-
traction, along with the published results of various
sequential, tree-structured, and graph-based mod-
els for comparison. The F1-score has been utilized
as the performance evaluation metric.

Our proposed model has demonstrated outstand-
ing performance on all benchmark corpora, partic-
ularly on the AIMED, IEPA and BioInfer datasets.
For the AIMED corpus, our model has achieved
an impressive F1-score of 94.66%, surpassing the
current state-of-the-art (SOTA) model (Fei et al.,
2021) by 6.39 percentage points (p.p.). For the
BioInfer dataset, which has longer sentences and
more protein names mentioned in a single sentence,
our model has shown remarkable results achiev-
ing an F1-score of 97.81%, surpassing the SOTA
and Singha Roy and Mercer (2022) results by 1.6
p.p. and 1.8 p.p., respectively. Even for the IEPA,
HPRD50, and LLL corpora, which have smaller
sample sizes, our model has outperformed the cur-
rent SOTA. Compared to the best performing tree-
structured model (Singha Roy and Mercer, 2022),
our model has achieved significant improvements
of 10.23 p.p., 5.07 p.p., and 1.96 p.p. for the IEPA,
HPRD50, and LLL corpora, respectively. In com-
parison to Fei et al. (2021), our model has achieved
performance boosts of 9.57 p.p., 4.44 p.p., and
1.96 p.p. for the same three corpora, respectively.
On average, across all five corpora, our model has
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Table 4: Performance evaluation of the models on SemEval-2013 DDIExtraction: Precision, Recall, and F1-score
(in %) as the metrics. All values, except for the Proposed Model, are those reported in the original works. The best
performance metrics are indicated in bold.

Methods Architecture P R F1
Yadav et al. (2019) RNN 76.5 69.0 72.6
Gu et al. (2021) PubMedBERT - - 82.4
Phan et al. (2021) RNN - - 83.7
Asada et al. (2021) Knowledge-based 85.4 82.8 84.1
Asada et al. (2023) PubMedBERT + Knowledge 85.3 85.5 85.4
Fei et al. (2021) Graph-based 94.9 92.0 93.4

Proposed Model Tree-structured 95.5 94.9 95.2
+ Heterogeneous Graph

Table 5: Performance of the model on individual DDI
types of the SemEval-2013 DDIExtraction dataset

Metric Mech. Effect Advice Interac.

P 95.83 96.77 95.10 94.33

R 94.27 95.64 94.89 94.61

F1 95.04 96.20 94.99 94.47

obtained an impressive F1-score of 94.82%, sur-
passing the results reported in Fei et al. (2021) by
4.66 p.p.

Table 4 shows the precision (P), recall (R) and
F1-score achieved by the proposed model for
the DDI extraction task over the SemEval-2013
DDIExtraction corpus along with previous promi-
nent models and Table 5 portrays the performance
of the model over each individual class of the cor-
pus. From Table 4 it is clearly visible that the pro-
posed model has outperformed the current SOTA
(Fei et al., 2021) with a significant margin of 1.8
p.p. by achieving 95.2% F1-score. For each in-
dividual type, the model has achieved more than
94% F1-score which also proves the generalization
capability of the proposed model.

The first attempt to extract PPIs from text incor-
porating a tree structured neural network model
was by Ahmed et al. (2019a). They have ap-
plied structured attention over tree-LSTMs and
achieved an average of 82.94% F1-score over the
5 benchmark PPI corpora. Later, in our follow-
ing work (Singha Roy and Mercer, 2022), we have
applied tree-transformers and gained a 6.86 p.p.
performance boost on average. This model almost
reached Fei et al.’s (2021) work which was the
state-of-the-art at that time. In the next step, we
have experimented with adding an heterogeneous

graph attention network model (Singha Roy and
Mercer, 2023) with the tree transformers and ob-
served a further performance gain of 2.32 p.p. In
the work reported here, we have utilized the same
heterogeneous graph attention network to update
the word embeddings to generate a refined sen-
tence vector which has given us another 2.8 p.p.
performance gain over the PPI corpora, giving a
total improvement of 5.12 p.p. from our initial tree-
transformer model (Singha Roy and Mercer, 2022).
In this present work we have also experimented
with the DDI corpus to show the generalizability
of the method and gained a 1.8 p.p. F1-score im-
provement over the previous state-of-the-art (Fei
et al., 2021).

4.4 Ablation Study
To indicate the importance of each module in the
Proposed Model, an ablation study has been per-
formed and the results are presented in Table 6.

If the sentence-to-word update module is dis-
carded the model is similar to the work of
Singha Roy and Mercer (2022) and we can see
a significant drop in the F1-score when this module
is discarded. For the five PPI extraction corpora,
this F1-score drop is 5.12 p.p. on average. For the
SemEval-2013 DDIExtraction dataset (mentioned
as DDI in Table 6), this F1-score drop is 5.1 p.p.
which reflects the effectiveness of the sentence-to-
word update module. This process plays a critical
role in capturing relevant contextual information
from both the sentence and word levels, leading to
the enhanced model performance.

We believe that the improved performance is
due to the sentence-to-word update module lever-
aging the sentence representations generated by
the tree-transformers fed with task-specific and
context-enriched word vectors. These sentence
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Table 6: The ablation study of the Proposed Model on the PPI and DDI corpora. All values are F1-scores.

Discarded
AIMed BioInfer IEPA HPRD50 LLL DDI

Component
Constituency

89.32 95.66 85.82 90.46 92.01 91.63
Tree-Transformer
Dependency

89.11 95.43 84.60 89.72 91.78 90.96
Tree-Transformer
Sentence-to-Word

88.11 95.89 83.17 88.85 92.10 89.98
Update Module

representations, along with the newly generated
word representations through the sentence-to-word
update step, enrich the semantics of the task. Con-
sequently, the second forward pass produces a more
informative sentence representation for the subse-
quent classifier, contributing to the enhanced per-
formance of our model.

The significance of the sentence-to-word update
module is also supported by the other two abla-
tion experiments presented in the table. When only
one of the tree-transformers is utilized with the
sentence-to-word update module, it performs better
than that individual tree-transformer for these tasks.
As reported in Singha Roy and Mercer (2022), the
dependency tree-transformer achieves 89.06% F1-
score over the PPI extraction corpora on average,
where with the sentence-to-word update module
it is 90.65%. In the case of the constituency tree-
transformer, the performance boost is 1.33 p.p. A
similar observation has been found for the experi-
ments with the DDI corpus, as well.

5 Conclusions and Future Work

From these results and discussions in the previous
sections, we can conclude that our model performs
significantly better than the other prominent mod-
els even without using any additional features. The
tree-transformers enable the proposed model to cap-
ture better semantics along with syntactical infor-
mation. Additionally, the sentence-to-word update
module provides more task-specific context-aware
information, generating enriched word embeddings
that further enhance the sentence representations
for the PPI and DDI extraction tasks.

Although the model has achieved a significantly
improved performance over the previous models,
still there is scope for further improvement. In-
cluding a knowledge-graph, like in Asada et al.
(2023), may improve the model performance with
proper knowledge about the DDI extraction task.

Moreover, the current models find PPIs and DDIs
that are given in a single sentence. Using an addi-
tional layer of hierarchy that represents document-
to-sentence relations over the sentence-to-word up-
date module, this work can be extended to extract
relations between biomedical entities lying in dif-
ferent sentences.

Limitation

The model has achieved a significant performance
boost. However, the trade-off is the computational
time. Due to using two forward passes, the model
requires more time to generate the results compared
to the other models.
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