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Abstract

Understanding temporal relationships in text
from electronic health records can be valuable
for many important downstream clinical appli-
cations. Since Clinical TempEval 2017, there
has been little work on end-to-end systems for
temporal relation extraction, with most work fo-
cused on the setting where gold standard events
and time expressions are given. In this work,
we make use of a novel multi-headed attention
mechanism on top of a pre-trained transformer
encoder to allow the learning process to attend
to multiple aspects of the contextualized em-
beddings. Our system achieves state of the art
results on the THYME corpus by a wide mar-
gin, in both the in-domain and cross-domain
settings.

1 Introduction

Temporal information extraction is the task of dis-
covering event mentions, time expressions, and
relations between them that indicate their relative
temporal ordering. The goal of these tasks is to
place events on a timeline with as specific granular-
ity as possible, to better understand topics that have
strong temporal components. In the clinical setting,
temporal information extraction can be applied to
the text in electronic health records to create a time-
line for a patient, enabling downstream applications
that are heavily time-dependent (e.g., modeling the
temporal ordering of problems and medication use
to extract causally plausible candidates for adverse
drug events). Recent datasets have been released
as part of community shared tasks that enable the
research community to make progress on this chal-
lenging suite of tasks (Styler IV et al., 2014; Sun

et al., 2013a; Wright-Bettner et al., 2019; Bethard
et al., 2015, 2016, 2017). The THYME (1 and 2)
and i2b2 datasets have led to progress in this area
but these problems are far from solved.

Both the Clinical TempEvals (Bethard et al.,
2015, 2016, 2017) and the 2012 i2b2 Chal-
lenge (Sun et al., 2013b) evaluated systems on an
end-to-end basis – that is, given only raw text, par-
ticipants needed to both extract relation arguments
and relations between them. However, most sys-
tems attacked this setting with a pipeline approach,
combining the best event and time extraction sys-
tems with a relation system. In recent general do-
main work, models for doing end-to-end relation
extraction have been obtaining some success re-
cently by building on pre-trained transformers in
the BERT family (Devlin et al., 2019), using ad-
ditional task-specific components that aggregate
encoder information into relation predictions (Liu
et al., 2020; Sui et al., 2020).

In this work, we extend Liu et al. (2020)’s model
for the task of clinical temporal information extrac-
tion. Instead of using multi-headed attention for
different relation categories, we use multiple heads
to capture different aspects of the token represen-
tations. The additional layer allows the model to
then integrate the signals to make the final relation
predictions.

Our results show that this architecture can ob-
tain state of the art performance for relation ex-
traction on the Clinical Tempeval 2016 and 2017
tasks, which evaluated in-domain (colon cancer)
and cross-domain (colon cancer → brain cancer)
settings, respectively. Our analysis shows that, for
this task, multi-headed attention is far superior to
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single-headed attention with the same number of
model parameters, suggesting that the multi-headed
approach is valuable for representing different as-
pects of the input. In addition, we compare the
trade-offs in modeling this as a multi-task learn-
ing setup, as opposed to using multiple fine-tuned
classifiers that work separately, where the time ex-
pressions and events are found separately and used
as the anchors for the relation classifier. Finally,
we report results of this model on the THYME2
data, for which no current baseline results exist in
the end-to-end task.

2 Background and Related Work

This work takes advantage of the THYME (Tem-
poral History of Your Medical Events) cor-
pus (Styler IV et al., 2014), and specifically the data
released as part of the Clinical Tempeval shared
tasks hosted at SemEval (Bethard et al., 2015, 2016,
2017). This English-language dataset uses colorec-
tal and brain cancer notes from patients at the Mayo
Clinic. Each patient is represented with 3-4 notes
written around the time of cancer diagnosis, typ-
ically with two clinical notes and one additional
radiology and/or pathology note. The first two Clin-
ical TempEval’s evaluated on colon cancer only.

The third Clinical TempEval was a domain adap-
tation task where participants were given the colon
cancer data and evaluated on the brain cancer test
set. There were two settings, one with unsupervised
domain adaptation (no access to brain training
data), and another with a small amount of labeled
brain cancer data. In practice, there was little unsu-
pervised adaptation attempted, with one top system
obtaining negative results with the technique of
freezing embedding weights before training (to pre-
vent some of the embeddings from updating and
drifting away from target-domain-specific terms
that might not be seen during training) (Tourille
et al., 2017), and another also obtaining negative
results by replacing rare terms in the training and
test data with an UNK token (Leeuwenberg and
Moens, 2017). In this work we use the THYME
colon cancer data for training, the development set
for tuning and model selection, and evaluate on
both the colon cancer test set and brain cancer test
set, in the unsupervised setting.

More recent work on THYME has focused on
the easier relation classification setting, where gold
standard time expressions and events are provided,
and the system task is to decide which pairs of

temporal entities should be linked with temporal
relations. The current best-performing system is
from Lin et al. (2021). That paper’s main contri-
bution was a continued pre-training technique for
clinical text, where the masked language modeling
task was modified to preferentially mask tokens
that were part of temporal entities. The tempo-
ral relation extraction was modeled as a sentence
classification task, where the gold standard argu-
ments were marked by special tokens in the input,
and a softmax layer off of the pre-trained trans-
former’s sentence representation token was used to
predict the relation between the two marked tokens
(including the None relation). Such an approach
cannot be fairly compared (or even deployed) with-
out building additional systems to do the event and
time expression detection, so we do not directly
compare to that result.

Other work in end-to-end relation extraction is
also relevant to this work. The most relevant related
work (Liu et al., 2020) used a BiLSTM encoder to
get token representations, which fed into a multi-
headed attention layer, where each attention head
was used to score a different relation type. That
work differs from ours in that it is applied only to
“general-domain” tasks including the NYT (Riedel
et al., 2010) and WebNLG datasets (Gardent et al.,
2017), and treats outputs values from different at-
tention heads as prediction scores for individual
relation categories. Our work, in contrast, uses at-
tention scores as features for a single downstream
relation classifier (the CONTAINS relation), allow-
ing the model to use different aspects of the repre-
sentation to make classification decisions.

The current work also has connections to tech-
niques for end-to-end relation extraction where the
task was treated as a table filling task (Gupta et al.,
2016), where each cell (i, j) in the table represents
the relation between token i and token j.

3 Methods

Our model uses a multi-task learning setup built
on top of a pre-trained transformer encoder,
and specifically the PubmedBERT-base-uncased-
abstract model (Gu et al., 2021). Time expressions
and events are modeled as two independent Begin-
Inside-Outside (BIO) tagging tasks, so that each
contextualized token embedding in the sequence is
used to make a classification decision for that to-
ken’s categorization as an event or time expression.
This BIO tagging is implemented with softmax
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layer at every token index over the B- or I- ver-
sion of each of the time expression or event types.
Relation classification is treated as a binary task
applied to n2 token pairs to find relations, using a
mechanism very similar to the self-attention mecha-
nism already used extensively in transformers. Our
attention-inspired classification model is an addi-
tional layer on top of the pre-trained transformer
that takes in the contextualized token representa-
tions from the last layer of the transformer encoder.

Attention first came to wide use in encoder-
decoder architectures (e.g. (Bahdanau et al., 2015;
Cho et al., 2015)), as a way for a decoder to
pick out relevant sub-components of the input
(e.g., individual token representations for indeter-
minately long input sentences) during generation
of outputs. Typically, it is implemented as a fully-
connected neural layer that learns a score for each
sub-component (Kim et al., 2017) and uses the com-
puted weighted average over the sub-components
at each decoding step. Self-attention is a simple
extension where the attention mechanism is used
to update weights over a discrete set of elements
at a higher layer l by applying attention over the
same elements at a lower layer l − 1. Vaswani
et al. (2017), in introducing the transformer archi-
tecture, showed that attention alone could be used
both in encoding and decoding to learn hidden rep-
resentations. Further, they introduced the idea of
multi-headed attention, that is, the idea that several
different attention distributions can be computed,
as a way to focus on and combine multiple different
aspects of the input representations.

The first stage in attention is projecting the input
with Query, Key, and Value matrices, and then the
attention is computed as:

Attention(Q,K, V ) = softmax
(QKT )√

dk
V

Multi-headed attention multiplies this out with
distinct Q, K, and V projections for H attention
heads (indexed by h), and then concatenates the
outputs, with the sizes of the projection matrices
scaled such that the total output dimensionality
matches the input. For self-attention, the inputs to
the Q, K, and V projections are all the same – the
output from the previous layer.

The most important aspect of attention for
our purposes is that the matrix product Sh =
Qh(Kh)T in the numerator results in a matrix of
size N × N for N tokens. In the work by Liu

et al. (2020), each relation type is aligned to one
attention head, so the value at each position in the
matrix represents the affinity score for the relation
aligned to head h:

sh(i, j) = Sh(i, j)

In this work, we use H attention matrices to
compute a single H × N × N tensor, where a
softmax along the attention head dimension leads
to a classification for each token pair into a single
relation, the temporal narrative container relation:

pc(i, j) = softmax([S0
i,j , S

1
i,j , · · ·SH

i,j ])

The overall loss function combines time expres-
sion extraction, event extraction, and relation classi-
fication, all of which use versions of cross-entropy
loss. The overall loss function simply sums the
three, with a weight on the relation loss that we
tune on the development set to maximize F1 score
for the relation classification task.

Ltotal = Ltimex + Levent + αrel ∗ Lrel

4 Evaluation

We evaluate on the THYME colon and brain cor-
pora, tuning hyperparameters on the colon dev set
and reporting results of the narrative container ex-
traction task on the colon and brain test sets.1 Hy-
perparameters we tuned over included fine tuning
learning rate, batch size, classifier layer (which
layer the classification head is connected to), re-
lation task weight, number of classifier attention
heads, and dimensionality of attention heads. For
all reported results we use the official SemEval
scoring tool, which performs transitive closure for
the relations (UzZaman and Allen, 2011). Table 1
shows the primary outcomes, the precision, re-
call, and F1 scores for the narrative container re-
lation. We compare against the best-performing
system from the relevant Clinical TempEval shared
task – for colon cancer it was a system from
UTHealth (Lee et al., 2016) and for brain cancer it
was a system from GUIR (MacAvaney et al., 2017).

While the system we describe is multitask in na-
ture, it does not have explicit interactions between
the sequence tagging models and the relation pre-
dictor. We first find predicted relations between to-
kens and work backwards to find the argument span

1SemEval 2016 and 2017 also used only the narrative
container extraction task due to its superior inter-annotator
agreement.

315



that exists at each token to make a relation predic-
tion. This independence allows us to investigate the
importance of the quality of the extraction of those
entities, by using alternative methods, including an
oracle, in the second step of finding the arguments
for predicted relations. The row labeled + Gold
args shows the performance with oracle-based ar-
guments taken from the gold standard, to show us
an upper bound on how well relation extraction
would work with perfect argument extraction. The
row labeled - MTL shows the performance if we use
separately tuned event and time expression extrac-
tion systems, since multi-task learning sometimes
can cause degraded performance of independent
components.

The E2E-MHA system obtains the best perfor-
mance on both corpora. For the colon cancer cor-
pus, precision is 14 points higher than the best
performing Clinical TempEval system, while recall
is within one point, giving a 5-point increase in F1.
For the brain cancer corpus, precision decreases
by 11 but the increase in recall results in a small
2-point increase in F1.

The next result we report is on the importance
of multi-headed attention. Our hypothesis is that
using multiple attention heads allows the model
to more easily learn to focus on multiple facets
of an instance. An alternative hypothesis is that
the gain comes from using a lot more parameters
than an architecture that uses one attention head
per relation (e.g., (Liu et al., 2020)). To test this,
we can compare against a similar model that has
fewer attention heads but more feature dimensions
per head, holding the total number of model pa-
rameters constant. For this experiment, we report
colon development set validation scores directly as
measured by scikit-learn (i.e., not using Clinical
TempEval scorer, so it does not include temporal
closure), as we tuned this parameter before running
final tests.

Table 2 shows the results of this experiment. We
found there was a sweet spot with 256 attention
heads of size 64 each, where a similarly parameter-
ized versions lose performance. As the number of
heads decreases to <= 4, performance drops to an
extent that finding good hyperparameter settings
was not possible in our limited search.

Finally, we report the results when the same sys-
tem is tuned, trained, and applied to the THYME2
corpus (Wright-Bettner et al., 2020). THYME2
introduced a new relation type called NOTEDON

Test Split System Prec Rec F1

Colon

UTHealth1 0.49 0.47 0.48
E2E-MHA 0.63 0.46 0.53
+ Gold args 0.74 0.49 0.59
- MTL 0.66 0.44 0.53

Brain

GUIR 0.52 0.25 0.34
E2E-MHA 0.41 0.32 0.36
+ Gold args 0.64 0.41 0.50
- MTL 0.42 0.25 0.32

THYME2 E2E-MHA 0.65 0.46 0.54

Table 1: Results of the end-to-end multi-headed atten-
tion system (E2E-MHA) on the end-to-end narrative con-
tainer relation extraction task. Best non-oracle results
shown in bold. THYME2 is colon cancer only, and is a
micro-average across relation types, while THYME1 re-
sults are on the narrative container (CONTAINS) relation
only, following SemEval, so the results are not directly
comparable.

Attn heads Head size F1
256 64 0.58
64 256 0.57
16 1024 0.57

Table 2: Narrative container extraction performance
with different numbers and sizes of attention heads. The
top line is the system used in the previous experiments.

which was used to indicate a test noting a finding,
which had previously been covered by CONTAINS.
This change improved annotator agreement and re-
moved logical inconsistencies that were created by
the previous schema. Another new relation type in
THYME2 is CONTAINS-SUBEVENT, which was
primarily used for cross-document annotations. For
THYME2 we report results micro-averaged across
all relations in Table 1, and break these results
down by relation category in Appendix A. As far
as we are aware, this is the first reported end-to-end
temporal relation extraction result on THYME2.

5 Discussion and Conclusion

While this task remains challenging, with the high-
est obtained F1 scores 0.53 (in-domain) and 0.36
(out-of-domain), the combination of biomedically
pre-trained transformers and a novel multi-headed
attention classifier obtains results that improve the
state of the art. Even in-domain, the task is fairly
far from being solved.

Additional future work should also explore ex-
plicit domain adaptation, as out-of-domain perfor-
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mance still suffers despite obtaining better perfor-
mance than previous methods. Simple unsuper-
vised methods like target domain continued pre-
training (Gururangan et al., 2020) are likely to pro-
vide benefits on the brain cancer corpus, and future
work should investigate this and other approaches.
We did see performance improvements in prelim-
inary work when switching from general domain
pre-trained models (roberta-base Liu et al. (2019))
to a biomedically trained model, so it is possible
that some of those potential gains are already incor-
porated by the more general language model.

The trained models developed for this work are
available in the HuggingFace Models repository.2

The code for implementing and evaluating these
models is available on GitHub.3 The code reposi-
tory also contains a FastAPI-based demonstration
server that sets up a REST server to convert text ar-
guments into temporal relations in a simple JSON
schema.
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A THYME2 Results by Relation
Category

Relation type Prec Rec F1
BEFORE 0.468 0.262 0.336
BEGINS-ON 0.606 0.275 0.378
CONTAINS 0.699 0.669 0.684
ConSub 0.369 0.044 0.079
ENDS-ON 0.641 0.210 0.316
NOTED-ON 0.721 0.652 0.685
OVERLAP 0.513 0.231 0.318
Micro-F 0.654 0.461 0.541

Table 3: Results of the end-to-end system trained and
tested on THYME2. The new NOTED-ON category has
excellent performance, while CONTAINS maintains
strong performance. This is not surprising as these
are the categories with the most data. CONTAINS-
SUBEVENT (ConSub) performs the worst, but this
is expected as it is a cross-document relation and this
system is optimized for a local token context.
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