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Abstract

Accurate human-annotated data for real-world
use cases can be scarce and expensive to obtain.
In the clinical domain, obtaining such data is even
more difficult due to privacy concerns which not
only restrict open access to quality data but also re-
quire that the annotation be done by domain experts.
In this paper, we propose a novel framework - Inter-
DAPT - that leverages Intermediate Domain Fine-
tuning to allow language models to adapt to nar-
row domains with small, noisy datasets. By mak-
ing use of peripherally-related, unlabeled datasets,
this framework circumvents domain-specific data
scarcity issues. Our results show that this weakly
supervised framework provides performance im-
provements in downstream clinical named entity
recognition tasks.

1 Introduction

Domain adaptation is a vast topic that is central
to the field of biomedical NLP largely due to the
limited number of high-quality, task and domain-
specific biomedical and clinical corpora available.
In such situations, it would be advantageous if we
could leverage any available poorly-annotated, un-
labeled datasets to boost model performance as
opposed to entirely relying on one small, noisy
dataset. In this work, we propose an ensemble train-
ing strategy combining multiple machine learning
training methods to mitigate the issues impacting
downstream named entity recognition (NER) per-
formance caused by incorrect and missing labels in
highly domain-specific datasets.

Biomedical applications of NLP often require
high-quality annotation of task-specific datasets
which can be very expensive. In addition, such
data may be protected by privacy concerns which
would make human annotation harder to perform.
Another issue that is commonly observed with hu-

man annotations is that there may be variability
in labels from different annotators. For example,
NER labels in the Beginning-Inside-Outside (BIO)
format only allow annotators to assign one entity
label to each span. However, depending on the
sentence structure and the definitions of each entity
category, the same span might be considered to be
a candidate for two or more entity labels. In such
situations, different annotators might assign labels
differently regardless of the standardized guide-
lines provided to all annotators. Such issues may
be difficult to identify and expensive to rectify.

Due to these issues, leveraging weak supervi-
sion techniques which use unlabeled data to but-
tress the impact of noisy labels would be of inter-
est. Our proposed training framework uses noisy,
machine-labeled data to help create a transferable
middle layer model which, when combined with
DAPT (Domain Adaptive Pre-Training) (Gururan-
gan et al., 2020) would allow a pre-trained model
to better adapt to noisy clinical data.

Our generalized training framework which we
refer to as the Intermediate Finetuning for Weakly
Supervised Sub-domain Adaptation (InterDAPT)
Framework is described in Figure 1. In the first
phase, we perform continual Domain Adaptive
Pre-training (DAPT) (Gururangan et al., 2020) on
BioClinicalBERT (Alsentzer et al., 2019) using
generalized patient data. In parallel, we label
orthopedics-related operative notes using Radiol-
ogy NER models provided by John Snow (Koca-
man and Talby, 2021). This machine-annotated
dataset is used to train the intermediate model
which is then used to finetune downstream NER
tasks. We apply this approach on two different
datasets from orthopedics-related clinical notes -
Spine and Hip. Our preliminary results indicate
that our proposed framework achieves similar or
better performance for the same dataset with noisy
labels as can be achieved with clean labels.
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2 Related Work

2.1 Domain Adaptation
Domain adaptation is a discipline that is central
to Biomedical and Clinical Applications of NLP
and hence has been widely studied. One of the
dominant methods of domain adaptation is domain
adaptive pre-training which involves continued pre-
training of transformer-based language models us-
ing domain-specific data. Domain Adaptive Pre-
training (DAPT) (Gururangan et al., 2020) has been
shown to be an effective method in Clinical NLP
through the introduction of ClinicalBERT, BioClin-
icalBERT (Alsentzer et al., 2019), BioBERT (Lee
et al., 2019) and BCH-BERT (Tavabi et al., 2022).

2.2 Intermediate Finetuning
Intermediate Task finetuning has been shown to be
an effective method to improve task transferability
by (Phang et al., 2019), (Chang and Lu, 2021) and
(Pruksachatkun et al., 2020). In these works, the
authors observe that the best improvements in per-
formance are seen in NLP tasks that are the most
closely related. In order to leverage these perfor-
mance boosts, we perform intermediate domain
finetuning whereby we perform intermediate fine-
tuning using datasets from the same NLP task in
different domains.

2.3 Weak Supervision
Weakly Supervised Learning is a machine learn-
ing discipline that studies the impact of training
models using noisy labels where labels are either
incorrect or absent altogether (Violeta et al., 2022).
In industry applications, training frameworks are
often employed as a way of dealing with weak
labels. COSINE (Yu et al., 2020) is a weak super-
vision framework that uses a feedback mechanism
to correct weak labels on the fly during the training
process.

3 Disambiguating Domain and Task

As there is little domain variability in most of
the task-specific corpora that are commonly used
for benchmarking in NLP research, many works
tend to conflate tasks with domains. In this paper,
we seek to disambiguate these terms as the goal
of InterDAPT is to improve the performance of
entity recognition models in the absence of high-
quality data in some areas by leveraging relatively
large datasets in other areas with the assumption
that there is some overlap of implicit information

among these datasets by virtue of their domains be-
ing related. Hereafter, we refer to NLP tasks such
as named entity recognition as tasks. We break
down categorizations of domains further into meta-
domains, tangential domains, and sub-domains.
We define the following terms:

1. Meta-domain: A domain that is one abstrac-
tion level away from our set of target sub-
domains.

2. Tangential Domain: A domain that has some
overlap with either the meta-domain or the
target sub-domains

3. Target Sub-domain: A domain that can be
categorized under the meta-domain but has
specific characteristics that distinguish it from
other sub-domains as well as the tangential
domain.

As the main motivation for this work is to im-
prove model performance in highly specific clinical
domains with inconsistent or incorrect labeling, we
evaluate InterDAPT’s performance on the named
entity recognition (NER) task. We keep the task
stable for the purposes of our experiments in or-
der to assess the impact of the different types of
domain-specific datasets while ruling out possible
performance variations brought on by variations in
the type of task.

Figure 1: Relationship between types of domain-
specific data used to train InterDAPT
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Figure 2: Generalized Intermediate Finetuning for Weakly Supervised Sub-domain Adaptation (InterDAPT)
Framework

4 Method

4.1 Intermediate Finetuning for Weakly
Supervised Sub-domain Adaptation
(InterDAPT)

The Intermediate Finetuning for Weakly Supervised
Sub-domain Adaptation (InterDAPT) Framework
is a training paradigm that allows pre-trained lan-
guage models to adapt to small, weakly labeled
domain-specific datasets without requiring further
human annotation to correct or add labels. Inter-
DAPT is comprised of three training components
- DAPT for Clinical Domain Adaptation on Meta-
domain dataset, Intermediate Domain Finetuning
using Weak Supervision to allow the model to learn
task-specific information on Tangential-domain,
and finally downstream finetuning to a variety of
Target Sub-domains.

4.1.1 Domain Adaptive Pretraining (DAPT)
The first stage of InterDAPT is to perform Domain
Adaptive Pretraining in order to allow a general-
ized pre-trained model to adapt to the domain of
interest. In this work, we make use of BCH-BERT
introduced in (Tavabi et al., 2022) which performs
DAPT from BioClinical BERT (Alsentzer et al.,
2019) using pediatric patient data which allows the
system to make use of linguistic information that is
unique to pediatric clinical cases. As downstream
sub-domain datasets may have very few examples
that can reliably represent entity relationships of in-
terest, the more domain-specific the base linguistic
model is, the more entity-related information can
be learned from the sub-domain finetuning stage.

4.1.2 Weakly Supervised Intermediate
Domain Finetuning

This stage leverages any available unlabeled data
in a tangentially related domain by annotating
them using an off-the-shelf, publicly available NER
model. The entity labels generated must be sim-
ilarly tangentially related domain to the entities
to be predicted for the target sub-domains. In
our experiments, we generate Radiology labels
using SparkNLP (Kocaman and Talby, 2021) as
Radiology-related entities are similar to the tar-
get sub-domain entities under study. This labeling
process produces a noisy dataset with labels of un-
certain quality which we refer to hereafter as the
OrthoRad dataset. We finetune BCH-BERT using
the OrthoRad dataset which creates the intermedi-
ate domain finetuning model which we refer to as
the InterNER-BERT model.

4.1.3 Target Sub-domain finetuning
In the final training stage of InterDAPT, we con-
tinue training the domain-adapted pre-trained BCH-
BERT model with weights from InterNER-BERT
and use this to fine-tune the noisily labeled target
sub-domains.

5 Experimental Setup

In order to evaluate the efficacy of InterDAPT we
run our preliminary experiments on datasets of clin-
ical notes described below. As there is significant
variability in the baseline performance of target
tasks due to variation in the nature of the task and
factors such as the number and types of entities,
we compare the performance of InterDAPT against
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direct finetuning from BioClinicalBERT to the tar-
get sub-domain where the test set is cleaned and
human-annotated. We report results on datasets for
which data cleaned and vetted by domain experts
is available at this time.

5.1 Data

To evaluate the applicability of InterDAPT on nar-
row clinical domains, we use clinical notes from
the Orthopedics and Sports Medicine department
at Boston Children’s Hospital for our experiments.

The meta-domain dataset (used to pretrain BCH-
BERT) is comprised of clinical notes from patients
with at least one visit to any of the Orthopedics
and Sports Medicine clinics in Boston Children’s
Hospital from 2000-2020 (Tavabi et al., 2022).
Our intermediate model is trained using opera-
tive notes that are labeled using John Snow Lab’s
SparkNLP Platform (Kocaman and Talby, 2021).
The resulting machine-labeled dataset contains 81
Radiology-related Entities and is comprised of
roughly 500,000 notes.

The sub-domain datasets are created using sco-
liosis operative notes (referred to hereafter as the
Spine dataset) and pre-operative notes of hip joint-
related surgeries (referred to hereafter as the Hip
dataset). The Spine dataset is the most robust
dataset in our study with roughly 16,000 notes and
13 entities and so we primarily center our results
on this dataset. The entities were designed to iden-
tify surgical details as well as information about
patient status and diagnosis. More details on these
entities are included in Table 1. Notably, there is a
wide variation amongst entity counts in the dataset.
The most common entity appears in 11,800 tokens
while the least common one appears in 129 tokens.
While some entities such as Level are highly spe-
cific to spine-related surgeries, others overlap more
broadly with other types of surgical notes (eg. Esti-
mated Blood Loss, Fluid Amount). Entities such
as Procedure and Diagnosis are also likely to ap-
pear in many other types of clinical notes outside
of surgical notes.

The Hip dataset included in our experiments (in
a limited capacity) contains some entities that are
difficult to differentiate between due to a variety
of reasons - the entity definition is broad or am-
biguous (eg. Symptom Status), many notes do
not contain qualifying contextual information that
would indicate that the span should be identified as
one among two similar entities (eg. Left Anatomy

Value vs. Right Anatomy Value), or two or more
entity definitions are overlapping (eg. Symptom,
Symptom Status).

5.2 Intermediate Task Size

We evaluate the impact of the size of the inter-
mediate model by producing three variations of
InterNER-BERT - InterNER-BERT-1M, InterNER-
BERT-3M, and InterNER-BERT-5M - which are
trained by limiting the intermediate task size,
i.e. the size of the OrthoRad training dataset to
1,000,000, 3,000,000 and 5,000,000 examples re-
spectively. As noted in Table 2 as well as in Section
6, We observe that a larger intermediate task size
yields better results.

5.3 Baselines

We set our baseline model as BCH-BERT which
is finetuned directly onto our target sub-domain
datasets with a cleaned, human-vetted test dataset.

6 Results

Results on the Spine dataset show that the Inter-
DAPT Framework is effective at improving domain
adaptation especially as we approach an interme-
diate task size of 5,000,000. Interestingly, noisy
labels seem to provide slightly better baseline re-
sults than baseline results with a clean dataset. No-
tably, we observe a strong initial improvement in
results for noisy labels with InterDAPT and fur-
ther improvements are correlated with increasing
intermediate task size.

Our preliminary experiments with the Hip
Dataset (Noisy) notes provide an F1 score improve-
ment of 10 points from 70.91 on the baseline BCH-
BERT model to 80.23 on a model configuration of
BCH-BERT + InterNER-BERT-1M. This increase
in performance could indicate that intermediate
domain finetuning is much better at distinguish-
ing between ambiguous entities. During our error
analysis, we found that the baseline model without
InterDAPT had relatively more issues with distin-
guishing between entities that were very similar
presentations. However, further experiments with
cleaned datasets are required to confirm this hy-
pothesis.

7 Future Work

While our experiments show that InterDAPT is
an effective framework that helps ameliorate is-
sues stemming from noisy labeling, more exper-
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Entity Description Frequency
Procedure Name of the surgical procedure 11800
Diagnosis Description or name of diagnosis 9765

IONM Tech Intraoperative Neuro-monitoring technique 3986
IONM Outcome Outcomes of intraoperative neuro-monitoring procedure 1675

Level Vertbrral level being evaluated 4048
Bone graft Bone graft type used for the surgery 3821

Intraop Imaging Intraoperative imaging technique used to confirm implant position 1401
Estimated Blood Loss Surgeon’s estimated blood lost during surgery 583

Navigation Navigation technique used during the surgery to guide implantation 993
Fluid Type of IV fluid used during the surgery 620

Fluid Amount Amount of the IV fluid used during the surgery 331
Complications Any surgical complications 559
Pelvic Fixation Type of pelvic fixation used during the surgery 129

Table 1: Entities in the Spine Dataset. Frequencies refer to the number of tokens labeled as the corresponding entity.

Model Target Sub-domain F1
BCH-BERT (base) Spine-Clean 94.36

BCH-BERT + InterNER-BERT-1M Spine-Clean 94.88
BCH-BERT + InterNER-BERT-3M Spine-Clean 94.96
BCH-BERT + InterNER-BERT-5M Spine-Clean 95.02

BCH-BERT (base) Spine-Noisy 94.74
BCH-BERT + InterNER-BERT-1M Spine-Noisy 95.48
BCH-BERT + InterNER-BERT-3M Spine-Noisy 95.42
BCH-BERT + InterNER-BERT-5M Spine-Noisy 96.37

Table 2: Preliminary Results for InterDAPT Framework on Spinal Operative notes: The baseline models are
denoted by BCH-BERT (base). We experiment using the InterDAPT Framework with BCH-BERT as the base DAPT
model combined with InterNER-BERT models as the Intermediate Domain Fine-tuning models. The variations in
InterNER-BERT models are produced by training using varying intermediate task sizes - 1,000,000, 3,000,000,
and 5,000,000. These models are fine-tuned further on the Spine Target Sub-domain which is sub-categorized as
Spine-Clean and Spine-Noisy which refer to versions of the same dataset which are cleaned and noisy respectively.
The data cleaning is performed by human domain experts.

iments are needed to show that this framework
is applicable to a multitude of different domains.
In continuing work, we aim to expand to more
sub-domains as we continue to obtain high-quality
human-annotated data to compare the relative per-
formance of InterDAPT against.

Limitations

While InterDAPT can be used as a strategy to re-
duce the negative impact of weak labeling in real-
world use cases, it is difficult to understand the
magnitude of performance improvements that can
be achieved using InterDAPT as these improve-
ments are highly dependent on how noisy the tar-
get sub-domain datasets are and how robust the
target entity labels are. Despite potentially reduc-
ing data annotation costs, InterDAPT still has data

requirements that are domain-specific to some ex-
tent. While such data can be obtained from publicly
available datasets, those tend to be less noisy than
real-world data. As this work does not explore the
impact of the amount and nature of noise in data, it
is unclear at this time how this framework would
perform when cleaner datasets are used in prior
stages of training.
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