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Abstract

We propose a novel distantly supervised
document-level biomedical relation extraction
model that uses partial knowledge graphs that
include the graph neighborhood of the entities
appearing in each input document. Most con-
ventional distantly supervised relation extrac-
tion methods use only the entity relations auto-
matically annotated by using knowledge base
entries. They do not fully utilize the rich infor-
mation in the knowledge base, such as entities
other than the target entities and the network
of heterogeneous entities defined in the knowl-
edge base. To address this issue, our model
integrates the representations of the entities
acquired from the neighborhood knowledge
graphs with the representations of the input
document. We conducted experiments on the
ChemDisGene dataset using Comparative Tox-
icogenomics Database (CTD) for document-
level relation extraction with respect to interac-
tions between drugs, diseases, and genes. Ex-
perimental results confirmed the performance
improvement by integrating entities and their
neighborhood biochemical information from
the knowledge base. 1

1 Introduction

The number of documents reporting new interac-
tions and functional/pathway relationships between
biochemical entities continues to increase rapidly,
and manual registration and maintenance of knowl-
edge bases are becoming increasingly difficult to
keep up with the pace (Davis et al., 2021; Wishart
et al., 2017). Automatic extraction of biochemical
relationships from documents could help in main-
taining. Machine learning approaches have been
the mainstream of relation extraction (RE) for more
than a decade due to their high performance. How-
ever, machine learning requires a large amount of
labeled data that require time-consuming and costly

1The source code is available at https://github.com/
tticoin/nkg-re.

manual efforts to construct (Yao et al., 2019; Zhang
et al., 2017; Miranda et al., 2021).

To alleviate the efforts, Mintz et al. (2009) pro-
posed distantly supervised RE (DSRE), which con-
structs a distantly supervised corpus in which an
unlabeled corpus is automatically labeled using
existing knowledge bases. Unlike any manually
labeled corpus, a distantly supervised corpus is
directly connected to the knowledge base entries
because it is labeled based on the target properties
between entities described in the knowledge bases.
However, existing DSRE uses only the distantly
supervised corpus and does not take advantage of
other rich information in the knowledge bases, such
as the features of the entities, entities that do not
appear in the corpus, and a wide range of relation-
ships between entities.

To address the limitations and utilize the rich
information in the knowledge base for RE, we
propose a model for biomedical DSRE from doc-
uments that constructs neighborhood knowledge
graphs and integrates them into RE using the dis-
tantly supervised corpus. A neighborhood knowl-
edge graph consists of the neighbors of the knowl-
edge base entities appearing in an input docu-
ment. When constructing neighborhood knowledge
graphs, we eliminate links between target entity
pairs during distantly supervised learning to avoid
label leakage. By using neighbors, we can avoid
processing a huge amount of information in the
knowledge base in processing each entity pair.

The contributions of this paper are summarized
as follows:

• We propose to construct a neighborhood
knowledge graph representing the information
around all of the entities in an input document.

• We build a novel distantly supervised biomed-
ical RE model that integrates the representa-
tions of entities acquired from the neighbor-
hood knowledge graphs with representations
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Figure 1: Overview of the proposed model

of the input document.

• Our model achieved the performance improve-
ment by adding the representations of the en-
tities from the Comparative Toxicogenomics
Database (CTD) (Davis et al., 2021) over the
ChemDisGene dataset (Zhang et al., 2022), a
document-level DSRE dataset.

2 Related work

2.1 Distantly Supervised Relation Extraction

DSRE was proposed by Mintz et al. (2009) to train
RE models without requiring manually labeled data.
Distantly supervised data is built using knowledge
bases and a large-scale unlabeled corpus. A rela-
tion is labeled between two entities when the two
entities registered in the knowledge base co-occur
in the unlabeled corpus.

Zhang et al. (2022) proposed ChemDisGene, a
document-level distantly supervised relationship
extraction dataset, and evaluated a relationship ex-
traction model. ChemDisGene assigns interactions
between drugs, diseases, and genes registered in
CTD, an integrated database of drug, disease, gene,
mutation, and metabolism interactions, to the titles
and abstracts of 80,925 documents in the MED-
LINE biomedical literature database (Coordinators,
2018). The RE model consists of a pre-trained
model BERT (Bidirectional Encoder Representa-
tions from Transformers) (Devlin et al., 2019), a
max pooling layer, and a fully connected layer.
In addition, Wang et al. (2022) shows high per-
formance on the ChemDisGene dataset using a
positive-unlabeled (PU) learning under a prior shift
of training data. They also proposed to use a
squared ranking loss using a “NA” (none) class
score as an adaptive threshold.

2.2 Knowledge Graph Representation
Learning

Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2017) are a type of Graph Neural Net-
works (GNNs) that represent the structure of a
graph using neural networks and update the repre-
sentation of each node by convolving the represen-
tation of the target node with those of its neighbor
nodes.

In addition, several methods have been pro-
posed to represent knowledge graphs using sub-
graphs extracted from the neighborhood of the
target nodes. For example, Learning from Sub-
graphs, Embeddings and Attributes for Link Predic-
tion (SEAL) proposed in (Zhang and Chen, 2018)
shows high performance in the link prediction task
using GNNs. They proved that heuristically extract-
ing subgraphs can be approximated by extracting a
set of nodes within a certain number of hops. How-
ever, there is no method that uses subgraphs in the
neighborhood of targets in DSRE.

3 Proposed model

The overview of the proposed model is displayed
in Figure 1. In our study, we propose to integrate
the information in the neighborhood of the entities
from the knowledge graphs that are present in the
input document.

3.1 Construction of Neighborhood Knowledge
Graphs

To avoid accessing the entire knowledge base in
classifying each pair in a document and to utilize
the information related to the target document, we
construct the neighborhood knowledge graph based
on triples that are close to all the entities in an in-
put document in the knowledge base. To obtain
the close triples, we extract a set of triples that are
connected to the entities within a certain number
of hops. We remove the triples between the pairs
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Figure 2: Proposed RE model

that provide the labels of the distantly supervised
training data to avoid label leakage. To acceler-
ate the training, we precalculate the neighborhood
knowledge graph for each document once before
training the model, while in prediction, we need to
generate the neighborhood knowledge graph.

3.2 Integrated use of language information
and neighborhood knowledge graphs

We perform RE by integrating entity information
of the neighborhood knowledge graphs into the
distantly supervised training data. The proposed
RE model is illustrated in Figure 2.

For the base RE model, we employ the BERT-
based RE model in Zhang et al. (2022). Specif-
ically, we first extract the representations corre-
sponding to the mentions of each entity of the target
pair from the final layer of BERT. We next obtain
the representation of each entity through max pool-
ing. The representations of the entities are then
concatenated and classified into relational labels
through a fully connected layer (FC).

When integrating neighborhood knowledge
graphs, the constructed neighborhood knowledge
graph is processed by GCN, and the node repre-
sentations corresponding to the entities are fed to
BERT along with the input document. Specifically,
the node representations corresponding to the enti-
ties in each input document are added to the docu-
ment while matching the position identifiers of the
entities in the document and the node representa-
tions of the graph (Zhong and Chen, 2021). We
obtain the representations of each graph node of the
target pair by pooling the corresponding represen-
tations from the final layer of BERT corresponding
to the node, and we concatenate the pooled repre-

sentations with the pooled representations of the
entity mentions for classification.

GCN and BERT are trained simultaneously us-
ing Adam (Kingma and Ba, 2015) as the optimiza-
tion method and the cross entropy loss.

4 Experimental Settings

We trained models using ChemDisGene (Zhang
et al., 2022), distantly supervised data (CTD-
derived) as the training and development data, and
manually-labeled data (Curated) as the test data.
The CTD-derived data contain 76,942 and 1,521
medical references as training and development
data, respectively. The Curated data contain 523
medical references as test data. We used the micro-
averaged F1 measure as the evaluation metric. The
task is to classify entity pairs of chemical, disease,
and gene into 14 relation types: two drug-disease
relation types, ten drug-gene relation types, two
gene-disease relation types, or no relation.

The entities of the neighborhood knowledge
graphs are the drugs, diseases, and genes of CTD.
The neighborhood knowledge graphs contain enti-
ties within two hops from any target entities corre-
sponding to entities in each input document. All
nodes with more than 100 edges are randomly re-
stricted to 100 edges to reduce computation time.
The statistics of the ChemDisGene and CTD are
summarized in Appendix B.

The baseline model is the same as Zhang et al.
(2022), excluding the neighborhood knowledge
graphs from the proposed model. Following Zhang
et al. (2022), we used PubMedBERT (Gu et al.,
2021) for BERT. The input and output vectors are
set to 768 dimensions, the maximum length of the
text is 512, and the number of GCN layers is two.
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F1[%]
PubMedBERT 42.5 ± 0.2
PubMedBERT+BRAN 43.6 ± 0.4
PubMedBERT+Neighborhood KG 44.0 ± 0.3
PubMedBERT+BRAN+Neighborhood KG 43.7 ± 0.5
PubMedBERT (Zhang et al., 2022) 42.1
PubMedBERT+BRAN (Zhang et al., 2022) 43.8
PubMedBERT+SSR-PU+ATLOP (Wang et al., 2022) 48.6 ± 0.2

Table 1: The comparison with the existing studies (Zhang et al., 2022; Wang et al., 2022) using the curated test data

Relation Title and Abstract
Gene-Dis: therapeutic miR-543 inhibits cervical cancer growth and metastasis by
Gene: mir-543 targeting TRPM7. Dysregulation of miR-543 has been
Disease: cervical cancer implicated to play crucial roles in various human cancers. · · ·
Chem-Gene: transport-increases Fibroblast growth factor 21 secretion enhances glucose
Chemical:glucose uptake in mono (2-ethylhexyl) phthalate-treated adipocytes.
Gene: Fibroblast growth factor 21 Previous cellular accumulation of mono (2-ethylhexyl)

phthalate (MEHP) disturbed energy metabolism in adipocytes,
where glucose uptake was significantly increased.· · ·

Table 2: Examples of correctly predicted relations not registered in the CTD

5 Results

The performance of extracting relationships be-
tween drugs, diseases, and genes from the doc-
uments on the Curated test data is shown in Ta-
ble 3. The detailed performance for each rela-
tion type is summarized in Appendix A. The pro-
posed model (+Neighborhood KG) improved the
micro-averaged F-score by 1.5 percentage points
compared to the baseline (PubMedBERT). This re-
sult suggests that the information of neighborhood
knowledge graphs can improve prediction perfor-
mance and that the relationship extraction can take
the knowledge graph information into account.

Compared to the scores of Zhang et al. (2022),
our baseline PubMedBERT result showed slightly
higher performance than PubMedBERT, while our
PubMedBERT+BRAN model showed comparable
performance, as shown in Table 3. This shows we
could correctly reimplement these models.

We also incorporated our neighborhood KG into
the PubMedBERT+BRAN model, but it did not
show performance improvement. Furthermore,
compared to the scores of Wang et al. (2022), our
proposed model showed a performance lower than
PubMedBERT+SSR-PU+ATLOP. However, their
model does not use the neighborhood knowledge
graph, and our proposed method can be incorpo-
rated into their model. We will leave the adaptation
of our approach to these models for future work.

In order to examine the influence of the neigh-

borhood knowledge graph information on RE, we
examined the cases that are not registered in CTD
but annotated in the Curated test data. The base-
line extracted 24.7 relations, whereas the proposed
model extracted 40.2 relations on an average of 5
models. This result suggests that the neighborhood
graph information is helpful in extracting new rela-
tions when the entities are in the knowledge base.
The examples that are correctly extracted by the
proposed model are shown in Table 2.

6 Conclusion

we proposed to integrate the information in the
neighborhood of the entities from the knowledge
graphs that are present in the input document. We
trained and evaluated the proposed model on the
ChemDisGene dataset and found that the introduc-
tion of the neighborhood knowledge graphs im-
proved the micro-averaged F-score by 1.5 percent-
age points. We also confirmed that the proposed
model is able to extract relationships that are not
registered in the knowledge base, which could not
be extracted by the model using only language in-
formation.

For future work, we will apply our model to
state-of-the-art models. We will also investigate
the way to utilize the extracted results in enhancing
knowledge graphs to link the text and knowledge
graph information more deeply and leverage the
knowledge graph information more effectively.
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Limitations

We have applied our neighborhood knowl-
edge graphs to the PubMedBERT and PubMed-
BERT+BRAN models and show the effectiveness
of the graphs on the PubMedBERT model. We have
not deeply investigated how our approach cooper-
ates with other enhancements, and the performance
is lower than the state-of-the-art model (Wang et al.,
2022).
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baseline Our model
PubMedBERT PubMedBERT+Neighborhood KG

Relation P [%] R [%] F1 [%] P [%] R [%] F1 [%]
Chem-Dis: marker/mechanism 79.65 30.61 44.18 ± 2.29 80.87 32.96 46.77 ± 1.05
Chem-Dis: therapeutic 79.35 23.11 35.60 ± 3.09 79.85 26.28 39.24 ± 5.68
Chem-Gene: activity-decreases 70.93 23.73 35.15 ± 4.19 71.73 24.66 36.35 ± 2.95
Chem-Gene: activity-increases 73.07 30.39 42.74 ± 3.48 72.92 27.58 39.77 ± 4.94
Chem-Gene: binding-affects 73.49 31.79 44.21 ± 4.04 61.04 48.76 54.00 ± 1.70
Chem-Gene: expression-affects 19.05 3.25 5.56 ± 8.33 36.09 2.20 3.63 ± 5.56
Chem-Gene: expression-decreases 77.81 38.30 51.16 ± 1.90 73.00 38.00 49.95 ± 1.52
Chem-Gene: expression-increases 63.21 47.17 53.95 ± 1.32 59.54 48.87 53.59 ± 1.36
Chem-Gene: localization-affects 51.40 43.09 46.75 ± 4.22 61.15 32.68 41.01 ± 8.75
Chem-Gene: metabolic processing-decreases 54.12 57.90 55.89 ± 2.83 53.67 51.58 51.06 ± 3.00
Chem-Gene: metabolic processing-increases 41.52 34.13 37.30 ± 3.39 44.75 36.32 39.74 ± 2.63
Chem-Gene : transport-increases 46.89 36.59 40.61 ± 8.13 55.93 36.59 42.19 ± 4.10
Gene-Dis: marker/mechanism 83.75 20.27 32.27 ± 8.25 81.88 23.39 36.15 ± 4.16
Gene-Dis: therapeutic 53.33 1.63 3.10 ± 3.48 61.67 1.95 3.74 ± 3.47

Micro-average 69.51 30.62 42.47 ± 0.16 67.73 32.57 44.01 ± 0.34

Table 3: Evaluation of manually labeled test data in Curated. The F-score shows the mean and standard deviation of
the five evaluations.

data paper chem dis gene relation
train 76,942 7,187 2,413 5,391 167,005
dev 1,521 759 283 852 3,290
test 523 670 318 887 3,833

Table 4: Statistics of ChemDisGene, a document-level
DSRE dataset, where only tests are manually tagged.
Each column shows the number of instances in each
data.

domain unique head unique tail triple
Chem-Gene 14,346 53,832 2,274,465
Chem-Dis 10,249 3,285 104,186
Gene-Dis 8,807 5,857 33,449

Table 5: Statistics of CTD used in this experiment. “do-
main” denotes the types of the entity pair of a triple,
“unique head” and “unique tail” denote the numbers of
unique nodes in the knowledge graph constructed from
CTD, and “triple” denotes the number of instances.

B Dataset statistics

Tables 4 and 5 show the statistics of the data set.
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