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Abstract

This paper proposes a new document classifi-
cation method that incorporates the represen-
tations of a literature graph created from bib-
liographic and entity information. Recently,
document classification performance has been
significantly improved with large pre-trained
language models; however, there still remain
documents that are difficult to classify. Exter-
nal information, such as bibliographic infor-
mation, citation links, descriptions of entities,
and medical taxonomies, has been considered
one of the keys to dealing with such documents
in document classification. Although several
document classification methods using exter-
nal information have been proposed, they only
consider limited relationships, e.g., word co-
occurrence and citation relationships. How-
ever, there are multiple types of external in-
formation. To overcome the limitation of the
conventional use of external information, we
propose a document classification model that
simultaneously considers bibliographic and en-
tity information to deeply model the relation-
ships among documents using the represen-
tations of the literature graph. The experi-
mental results show that our proposed method
outperforms existing methods on two docu-
ment classification datasets in the biomedical
domain with the help of the literature graph.
Our source code is publicly available at https:
//github.com/tticoin/BDCL-LitGraph.

1 Introduction

Document classification has improved significantly
with large language models, such as Bidirec-
tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019). However, these meth-
ods use only text information and ignore a lot of
information behind the text, such as bibliographic
information (e.g., authors and publishing journals),
citation information, and information about entities
that appear in the target text, which can be consid-
ered as one of the keys to better classification.

With the help of neural models, several docu-
ment classification methods have been proposed
that use both text information and external infor-
mation. Yao et al. (2019) classified documents
using representations of a text graph. In the text
graph, nodes correspond to papers and words, and
edges are connected between word nodes and their
paper nodes and between word nodes with high
co-occurrence frequency. The text graph allows
paper nodes to be connected through the common
word nodes and makes document classification take
into account the relationships among papers. Bert-
GCN (Lin et al., 2021) further adds text informa-
tion to the node representations of the text graph
using BERT. Yasunaga et al. (2022) proposed a pre-
trained language model LinkBERT that considers
the relationship between documents. The inputs of
the model are texts from documents in a citation
relationship in pre-training. LinkBERT achieved
higher performance than existing BERT models.
Although these studies indicate the effectiveness
of external information other than text information,
they only consider limited information, such as the
co-occurrence of words and citation relationships,
and do not simultaneously consider multiple types
of external information.

This paper proposes a document classification
model that incorporates multiple types of external
information into the target text information. Specif-
ically, we first build the literature graph using bibli-
ographic information, including authors and pub-
lishing journals, and entity information, including
descriptions of entities and their taxonomic infor-
mation. Then, we create representation vectors of
the nodes that consider various relationships among
different types of nodes in the literature graph so
that the vectors can contain multiple types of ex-
ternal information. Finally, we build a document
classification model that receives both the repre-
sentation vectors and the target text information as
input.
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The contributions of this paper are as follows:

• Using representation vectors from the litera-
ture graph containing bibliographic and entity
information, a novel document classification
model is proposed that incorporates the infor-
mation into the target text information.

• The proposed model with literature graph rep-
resentation performs better than existing mod-
els on two document classification datasets in
the biomedical domain: Ohsumed (Joachims,
1998) and Hallmarks of Cancer (HoC) (Baker
et al., 2015).

2 Related work

2.1 Document classification

There are two types of document classification
methods: methods that use only the target text in-
formation and methods that consider external infor-
mation in addition to the target text information.

Yao et al. (2019) proposed a document classifi-
cation model TextGCN using a text graph in which
papers and words are nodes and edges weighted by
TF-IDF values were connected between each pa-
per node and its word nodes, whose words appear
in the paper. In this text graph, edges were also
connected between word nodes when considered
highly relevant according to the PMI values. A
Graph Convolutional Network (GCN) (Kipf and
Welling, 2017), which aggregates information from
the surrounding nodes to a node through the edges
connected to the node, was used to update the node
representation of the text graph with taking into
account the graph structure, and the representation
was used for document classification. Furthermore,
BertGCN (Lin et al., 2021) achieved higher perfor-
mance than TextGCN by initializing the represen-
tation vectors of the paper nodes in the text graph
with BERT to incorporate text information about
the papers into the graph.

Yasunaga et al. (2022) proposed LinkBERT, a
pre-trained model considering the relationship be-
tween documents by using two linked documents
as input to BERT simultaneously. LinkBERT was
pre-trained with two tasks: masked language mod-
eling, which was proposed in the original BERT
model, and document relation prediction, which
took two documents as input and classified whether
they were in a citation relationship or not, aiming
at modeling the information on the dependencies

between documents and the information across doc-
uments. As a result, LinkBERT outperformed ex-
isting methods on the GLUE (Wang et al., 2018)
and BLURB (Gu et al., 2021) tasks, which are
the benchmarks in the general and biomedical do-
mains, and achieved higher performance than ex-
isting BERT models in document classification.

2.2 Graph representation Learning

Graph representation learning has been actively
studied to obtain representation vectors of nodes
and links from a graph by taking into account the
graph structure (Hamilton, 2020). In graph repre-
sentation learning, it is common to represent the
graph structure as a set of triples (h, r, t) using the
head h, the tail t and the relation r of a directed
edge, and methods such as TransE (Bordes et al.,
2013) and DistMult (Yang et al., 2015) have been
proposed to learn to represent the nodes and links
in these triples. For instance, TransE uses the dis-
tance between h + r and t as the score function.
TransE is a simple and effective method, but it has
several problems. For example, TransE cannot rep-
resent the relations that have multiple tail nodes
for a head node. There are several models such
as TransH (Wang et al., 2014) and TransR (Lin
et al., 2015) that address these limitations. These
models project the node representations into the
relation-specific space using projections for each
relation.

RotatE (Sun et al., 2019) is capable of mod-
eling various relation patterns, including symme-
try/antisymmetry, inversion, and composition. In
RotatE, each relation is defined as a rotation from
the head node to the tail node in the complex space.

3 Proposed method

This section proposes a novel document classifi-
cation model that incorporates a representation of
a literature graph with bibliographic and entity in-
formation. Figure 1 shows an overview of the pro-
posed method. We first explain the definition and
representation learning of the literature graph in
Sections 3.1 and 3.2, respectively. We then in-
troduce a document classification model that uses
both vector representations of the literature graph
containing bibliographic and entity information,
and the target text information is described in Sec-
tion 3.3.
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Figure 1: An overview of the proposed method. (1) The literature graph is constructed based on bibliographic
and entity information. (2) The paper and entity nodes are initialized with BERT using their text information. (3)
Representation learning is performed on the literature graph using TransE to obtain the vector representation of the
literature graph. The node representations of the left graph are the initial representations. The node representations
of the right graph are the learned representations. (4) The vector representations corresponding to the target paper in
the literature graph are used as input of BERT. The representations corresponding to the target paper in the literature
graph and the representations of the final layer of BERT that correspond to the paper are used for classification
using a fully connected (FC) layer.

3.1 Definition of the literature graph

We define a literature graph based on bibliographic
information and entity information. The literature
graph has the papers, authors, publication years,
publication venues, and entities as nodes. Each pa-
per node is connected to other types of nodes based
on bibliographic information about the paper. Each
paper node is also connected to other paper nodes
when they have a citation relationship. Further-
more, the entity nodes are connected if two entity
nodes are in a hypernym-hyponym relationship or a
supplementary concept relationship (Figure 1(1)).

The title and abstract are added to each paper
node as text information, and the entity description
providing the scope and content of the entity, which
is given as “ScopeNote” in the entity database, is
added to each entity node if it exists.

3.2 Representation learning on literature
graph

First, the paper and entity nodes are initialized with
BERT using their text information (Figure 1(2)).
The representation of the [CLS] token in the BERT
output is used as the initial representation of the
corresponding node, since it is considered the repre-

sentation of the whole sentence. If the text informa-
tion is unavailable, the node is randomly initialized
so that it follows a normal distribution of the mean
and standard deviation of the node representations
initialized by BERT. Other types of nodes are also
randomly initialized.

Then, representation learning is performed on
the literature graph using TransE (Bordes et al.,
2013)1 to obtain the vector representation of the
literature graph (Figure 1(3)). The vector repre-
sentation is expected to take into account various
relationships between documents based on biblio-
graphic and entity information, as well as the target
text information.

3.3 Document classification with literature
graph representation

To use the information from the literature graph in
document classification, in addition to the target
text information, the vector representations corre-

1TransE is employed because it is a simple model that
deals with representations in the Euclidean space and the liter-
ature graph treated in this study is large and computationally
expensive methods such as GCN (Kipf and Welling, 2017)
cannot be easily applied. The application of other methods is
left for future work.
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Figure 2: Document classification model with literature graph representation. This model receives the
representations of the literature graph. When the target of the classification is paper1, Plg(paper1) and Elg(entity name)

are the representation of the target paper and entities from the literature graph. Then, the representations of [CLS]
and paper1 from the BERT final layer, as well as the representation from the literature graph Plg(paper1) are
concatenated and used for classification. Red circles are representations corresponding to words; green circles are
representations corresponding to target paper; and blue circles are representations corresponding to target entities.

sponding to the target paper in the literature graph
obtained in Section 3.2 are used (Figure 1(4)). For
this purpose, the vector representations of the target
paper node and entity nodes corresponding to the
entities appearing in the paper denoted Plg and Elg

are used.
The proposed model is shown in Figure 2. The

entities in the target text are first extracted by case-
insensitive string matching with the entities regis-
tered in the database. The paper node represen-
tation and the entity node representations, which
correspond to the entities in the target text, are then
appended to the target text information. The in-
put of BERT when M entities are extracted from a
paper i is as shown in the following Equation (1).

S = {[CLS],w1, · · · , wn,

[Pi], [E1], · · · , [EM ]} (1)

where wi is a subword in the target text, Pi is the
tokens representing the paper i’s node of the litera-
ture graph, and Ei is a token representing the entity
i’s node of the literature graph. At this time, the to-
kens representing the nodes in the literature graph
are mapped to the corresponding tokens in the text
using the position IDs (Zhong and Chen, 2021); the
same position ID is assigned to the [CLS] token
and the token representing the paper node. Simi-
larly, the same position ID is assigned to the first
subword of the entity in the target text and the token
representing the entity node. To allow appending

as many paper and entity nodes as possible, the
target text is truncated if it exceeds the BERT max
length of 512 tokens. Also, if the beginning of an
entity does not match the beginning of a subword,
the representation of that entity is not used. The
representations of [CLS] and wi are assigned from
the pre-trained BERT embedding table, the repre-
sentations of Pi and Ei are assigned representation
of the literature graph as follows:

W0 = {w[CLS],ww1 , · · · ,wwn ,

Plg(Pi),Elg(E1), · · ·Elg(EM )},
(2)

where w[CLS] and wwi are representations of [CLS]
and wi, respectively. Plg(Pi) and Elg(Ei) are repre-
sentation of Pi and Ei of the literature graph. W0

is used as the input to BERT, and the representa-
tions of the final layer of BERT are obtained as in
Equation 3.

Wl+1 = Self-attentionl(Wl) (3)

The representations of the final layer of BERT
are represented as Equation 4. The representations
among them corresponding to the [CLS] token and
the paper node, as well as the paper representation
of the literature graph, are concatenated to create
hpaper(i) and used for classification using a fully
connected (FC) layer. The output zpaper(i) from the
FC layer is converted to probabilities by applying
the softmax function for single-label data and the
sigmoid function for multi-label data.
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Relation Type All Train Development Test
Cites 246,136,539 241,213,809 2,461,365 2,461,365
Author 118,193,406 115,829,538 1,181,934 1,181,934
Year 33,405,863 32,737,747 334,058 334,058
Journal 33,405,863 32,737,747 334,058 334,058
MeSH 31,917,346 31,279,000 319,173 319,173
Hypernym 40,659 39,847 406 406
Supp 427,758 419,204 4,277 4,277
Total 463,527,434 454,256,892 4,635,271 4,635,271

Table 1: Triple statistics for the literature graph.

Node Type
Paper 33,406,096
Author 4,932,150
Year 57
Journal 34,564
MeSH 348,081
Total 38,720,948

Table 2: Statistics on nodes in literature graphs.

WL = {h[CLS],hw1 , · · · ,hwn ,

PL
lg(Pi)

,EL
lg(E1)

, · · · , EL
lg(EM )}

(4)

hpaper(i) = [h[CLS];P
L
lg(Pi)

;Plg(Pi)]

zpaper(i) = FC(hpaper(i))
(5)

4 Experimental Settings

The quality of the representation vectors obtained
by representation learning of the literature graph
is evaluated by link prediction, which predicts the
target nodes that are related to the node. We also
evaluated document classification using the rep-
resentation of the literature graph to confirm the
effectiveness of the literature graph in document
classification. We used BioLinkBERT-base (Ya-
sunaga et al., 2022) in both experiments.

4.1 Representation learning of the literature
graph

The 2022 version of the medical literature database
MEDLINE (National library of Medicine, 2020)
was used to create the literature graph described
in Section 3.1. The literature graph is huge be-
cause over 30 million articles are registered in
MEDLINE, so author nodes that had few connec-
tions to other nodes with a degree of less than five

were deleted. The 2021 version of MeSH (Na-
tional Library of Medicine, 2020) was used as the
entity database. Each paper was assigned with the
MeSH as entities. We used only MeSH entities
representing the most significant points labeled as
“Major Topic” in MEDLINE for the MeSH rela-
tion in our literature graph. The literature graph
has edges representing citation relations (Cites),
between documents and their authors (Author),
their years of publications (Year), their publica-
tion journals (Journal), and their entities (MeSH),
hypernym-hyponym relations between entities (Hy-
pernym), and supplementary concept relations be-
tween entities and supplementary MeSH entities
(Supp). The statistics of nodes and edges of the
literature graph are shown in Tables 1 and 2, re-
spectively.

MAP@30 and Hit@N were employed as the
evaluation metrics for link prediction on the litera-
ture graph. Data were split into a ratio of 98:1:1 for
training, development, and test data sets, keeping
the same ratio of relationship types. The develop-
ment and test triples were chosen so that the nodes
in the triples appear in the training data set. For the
evaluation of link prediction, the target nodes in-
cluded in the training data sets were removed from
the prediction candidates. Only nodes with a target
node type determined from the head and a relation
type were used for prediction; for example, in pre-
dicting the Author relation from a paper node, the
Author nodes were used for the prediction candi-
dates. Section 4.3 shows the libraries and training
setups used for the experiments.

For comparison, we build an entity graph that is
a subgraph of the literature graph and has only en-
tity nodes. The entity graph comprises hypernym-
hyponym relationships and supplementary concept
relationships among entities, so the entity node
representations from the entity graph reflect the re-
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Relation Type MAP@30 Hit@1 Hit@3 Hit@10
Cites 0.0046 0.0005 0.0079 0.0397
Author 0.0283 0.0156 0.0335 0.1219
Year 0.3261 0.1789 0.3807 0.9712
Journal 0.1658 0.0973 0.1950 0.5237
MeSH 0.0870 0.0483 0.1017 0.3304
Hypernym 0.0851 0.0 0.1358 0.4444
Supp 0.0 0.0 0.0 0.0
macro average 0.0996 0.0487 0.1221 0.3473

Table 3: Results of link prediction on the literature graph

Literature graph Entity graph
Hypernym
MAP@30 0.0851 0.0341
Hit@1 0.0 0.0
Hit@3 0.1358 0.0346
Hit@10 0.4444 0.3235
Supp
MAP@30 0.0 0.0428
Hit@1 0.0 0.0226
Hit@3 0.0 0.0525
Hit@10 0.0 0.1781

Table 4: Comparison of link prediction on the literature
graph and entity graph

lationships between entities. Entity graph represen-
tation is learned in the same setting as the literature
graph, and the obtained entity node representations
Eeg are used for document classification.

4.2 Document classification using the
representation of the literature graph

For the evaluation, we used Ohsumed (Joachims,
1998) and Hallmarks of Cancer (HoC) (Baker
et al., 2015). Ohsumed is a document classification
dataset composed of abstracts in the biomedical do-
main, in which documents are assigned one or more
of 23 different cardiovascular disease categories.
Since Ohsumed is built using MeSH, the relation-
ships between the papers and MeSH in Ohsumed
were excluded from the literature graph, and this
literature graph was used for both datasets. As in
existing studies (Yao et al., 2019), documents with
multiple categories were excluded. This resulted in
3,357 and 4,043 documents in the training and test
data sets, respectively. The training data set was
divided into 7:3 to create a development data set.
Each document in the HoC was assigned multiple
categories chosen from 10 different cancer features.

HoC was split according to existing studies (Gu
et al., 2021), and we used 1,295, 186, and 371 doc-
uments for training, development, and test data sets,
respectively. Both datasets are suitable for evalu-
ating our proposed method as they are assigned
categories that are semantically close and difficult
to classify with textual information. For both data,
the entities in the papers were extracted by string
matching with the entities in the database, resulting
in 20.49 entities per paper for Ohsumed and 26.94
entities per paper for HoC on average.

In the evaluation, three models with different
seeds of random numbers were trained for the
Ohsumed, and five models for the HoC, and the
average of their evaluation scores are reported as
the final predicted result; accuracy was used for
the evaluation of Ohsumed and the F1-measure for
the evaluation of HoC. As a baseline model, we
modified the document classification model in Sec-
tion 3.3 to use only textual information as input.
We compared the settings with or without paper
and entity representations from the literature graph.
We also compare the entity information from the
literature and the entity graphs. When both entity
information is used, each representation is added to
the target text, and the same position ID is assigned
to each representation and the first subword of the
entity in the target text.

We chose the best setting for the final test on
each corpus.

4.3 Experimental environments

Python 3.7.11 was used for implementation, DGL-
KE 0.1.2 (Zheng et al., 2020) for TransE, Trans-
formers 4.19.4 (Wolf et al., 2020) for using the pre-
training model, and Pytorch 1.10.0 (Paszke et al.,
2019) for model creation. The link prediction eval-
uation was approximated using the neighborhood
search library NGT (Iwasaki and Miyazaki, 2018).
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Method Ohsumed HoC
BertGCN (Lin et al., 2021) 72.8 –
PubMedBERT (Gu et al., 2021) – 82.32
BioLinkBERT (Yasunaga et al., 2022) 77.30 84.35
Ours 78.08 84.50

Table 5: Comparison of document classification results on the test set [%].

TransE was trained 50 epochs for both the literature
graph and entity graph. As the representations of
paper and entity nodes in the literature graph are
initialized with BERT, the representation is 768-
dimensional, so the representation of nodes to be
randomly initialized was also initialized with 768
dimensions. Negative sampling, which randomly
replaces h or t of the triple (h, r, t) on the graph,
is used in TransE training. Only nodes with a tar-
get node type determined from the head node type
and the relation type were used for negative sam-
pling. A TransE training was conducted on an
AMD Ryzen Threadripper 3990X 64-Core Proces-
sor as CPU and a GeForce RTX 3090 as GPU.

In the document classification model, the repre-
sentation of the [CLS] token in BERT is classified
with a linear layer. A dropout (Srivastava et al.,
2014) was added before the linear layer to prevent
overfitting on the training data. The document clas-
sification was performed on Intel(R) Xeon(R) CPU
E5-2698 v4 and Intel(R) Xeon(R) W-3225 CPU
as CPUs and Tesla V100-DGXS-32GB and A100.
AdamW (Loshchilov and Hutter, 2019) was used
as the optimizer for the document classification
model.

5 Results

5.1 Representation learning
The results of link prediction on the literature graph
are summarized in Table 3. Since the literature
graph used in this study had a large number of
nodes, both MAP@30 and Hit@N were generally
low. The low performance of the relation between
papers (Cites) and the relation between MeSHs
(Hypernym, Supp) in particular may be due to the
fact that TransE cannot represent them because
there can be multiple tail nodes for a head node.
Although the performance is low for link prediction,
since the node representation is prepared for docu-
ment classification, not link prediction, it would not
be a critical problem if the representation cannot
represent the multiple tail nodes.

The comparison of the link prediction results

Plg Elg Eeg Ohsumed HoC
76.79 83.57

✓ 77.45 84.14
✓ 77.22 84.58

✓ 76.59 84.53
✓ ✓ 76.82 84.39
✓ ✓ 77.22 84.57

✓ ✓ 75.79 83.49

Table 6: Document classification results on the develop-
ment data set [%]. Plg is the paper representation of the
literature graph, Elg is the entity representation from
the literature graph, and Eeg is the entity representation
from the entity graph.

of the literature graph and entity graph is shown
in Table 4. For the hypernym-hyponym relations
(Hypernym), the performance was higher on the
literature graph than on the entity graph. On the
other hand, for the supplementary concept rela-
tions (Supp), the relations could be predicted only
on the entity graph. MeSH consists of two types
of concept records: descriptors and supplementary
concept records. The descriptors play a central role
in MeSH and have a tree structure. In addition,
each paper from Medline is assigned only the de-
scriptors as the entity representing the paper. On
the other hand, supplementary records do not have
a tree structure and are linked to descriptors. There-
fore, in the literature graph, descriptors have more
relationships than supplementary records. Thus the
Hypernym relations, which are relationships be-
tween descriptors, may be taken into account more
in the literature graph.

5.2 Document classification
The comparison of our model with the existing
models on the test set is summarized in Table 5.
The scores are taken from the original papers, with
the exception of the result of BioLinkBERT on
Ohsumed and our results. For our model, we show
the results with the best setting on the development
set, i.e., adding Plg for Ohsumed and Elg for HoC.
The tuning results on the development data sets
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Figure 3: Two analysis settings. Masking entities in the target text: Evaluate the effectiveness of Elg and Eeg by
comparing settings with and without Elg and Eeg. No text information: Exclude the target text from the BERT
input and evaluate the performance only with the representations obtained from the graphs.

are shown in Table 6. The classification scores are
higher than the previously reported scores, espe-
cially for Ohsumed.

As in Table 6, when we added each type of node
representation from the literature graph separately,
the performance improved over the baseline for
both datasets. As for the entity representations, the
entity representations from the literature graph are
more effective than those from the entity graph.
Especially on the Ohsumed dataset, adding the en-
tity representations from the entity graph shows a
negative effect on the performance. When we use
multiple types of representations, the performance
is not better than that of a single type of representa-
tions. The results show that the simultaneous use
of multiple types of representations is not simple.

6 Analysis

To check the effects of the representation vectors
of the literature graph and the entity graph alone,
we conducted two experiments: document classifi-
cation with masking the entities in the target text,
which eliminates the impact of entity information
in the text, and document classification with no text
information, which eliminates the impact of paper
and entity information in the text. The overview of
these experiments is shown in Figure 3. The results
of each experiment are shown in Table 7. Note that
in these experiments, only the representation of the
final layer of BERT corresponding to the [CLS] is
used for classification.
Masking entities in the target text. As shown
in Table 7, when the entities in the target text are
masked, the performance is degraded for all set-
tings. This may be because the entity information
in the language model is not available. We can

Plg Elg Eeg Mask entities No text
79.91 ± 1.21 –

✓ 79.22 ± 0.88 58.67 ± 0.62
✓ 80.51 ± 1.06 62.57 ± 2.13

✓ 79.10 ± 0.29 62.59 ± 2.36
✓ ✓ 80.32 ± 1.81 67.72 ± 1.36
✓ ✓ 79.41 ± 0.95 65.36 ± 1.70

✓ ✓ 79.35 ± 1.21 61.43 ± 2.87
✓ ✓ ✓ 80.29 ± 1.33 67.97 ± 2.48

Table 7: The results of document classification [%] on
the development data set of HoC with masking entities
(Mask entities) and without textual information (No
text)

.

see the use of Elg is effective by comparing the
settings with or without Elg. From this result, we
can say that Elg compensates for the missing en-
tity information caused by masking entities. The
performance with Eeg is lower than one with Elg,
which is consistent with the results in Table 6, sug-
gesting that the Eeg representation is less suitable
for document classification compared to Elg. This
may partly be because that Elg takes into account
the relationship of entities with documents instead
of independently representing entities as for Eeg.
No text information. To evaluate the performance
only with the representations obtained from the
graphs, we excluded the target text from the BERT
input, i.e., only paper and entity representations
were used as input to BERT. We found that even the
paper and entity representations from graphs alone
could classify documents to some extent despite
the lack of text information. The performance of
using both the paper and entity representations was
higher than that of using each representation. These
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results show that the paper and entity information
from literature and entity graphs are all helpful in
classifying documents, although combining them
with text information is not always helpful.

7 Conclusions

In this study, for the purpose of document classifi-
cation that can use multiple types of information at
the same time, we proposed a document classifica-
tion model that creates a representation vector from
a literature graph that contains a lot of informa-
tion, such as bibliographic and entity information,
considering various relationships between docu-
ments, and incorporates the representation vector
and textual information about the documents. Ex-
perimental results on two datasets, Ohsumed and
HoC, show that both models improve performance
with the information from the literature graph, and
the models show state-of-the-art performance on
both datasets. We also found that the performance
degraded when we simultaneously used multiple
information of paper and entity, showing that the
incorporation of different types of information is
not simple.

In the future, we will investigate representation
learning of large-scale literature graphs using meth-
ods such as GCN to obtain better representations.
We will also explore methods for simultaneously
learning representations of literature graphs and
document classification.

Limitations

Our proposed model has three limitations. Firstly,
because of the large size of the literature graph in
this study, representation learning is performed on
the literature graph using TransE, but in fact, there
are relations in the literature graph that cannot be
represented by TransE as shown in Section 5.1. To
overcome this issue, more expressive methods such
as RotatE (Sun et al., 2019) and GCN (Kipf and
Welling, 2017) could be investigated. These meth-
ods are expected to be able to represent complex
relationships associated with multiple types of ex-
ternal information. Secondly, our model adds a
representation of the literature graph to the target
text, so longer sentences require truncation of tex-
tual information. Thirdly, we have not analyzed
the results in detail and how the proposed method
positively and negatively impacted document clas-
sification. We leave these limitations for future
work.
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A Tuning results on the development data
set

The tuning results on document classification on
the development data set are shown in Table 8. The
representations used for the inputs were compared
as in Table 6, and tuning was performed to deter-
mine which combination of the representations of
the final layer of BERT corresponding to the [CLS]
token and the paper node, as well as the paper
representation of the literature graph is used for
classification using the FC layer. We also tuned
whether the representations used for classification
should be concatenated (concat) or pooled with
max pooling.
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Input Output
Plg Elg Eeg h[CLS] PL

lg Plg HoC Ohsumed
✓ – 83.43 ± 0.70 75.89 ± 0.88
✓ ✓ concat 83.57 ± 0.58 76.79 ± 0.36
✓ ✓ max pooling 83.06 ± 0.45 75.74 ± 0.21

✓ ✓ – 83.83 ± 0.58 76.72 ± 0.29
✓ ✓ – 84.14 ± 0.91 76.29 ± 1.11
✓ ✓ ✓ concat 83.67 ± 0.93 77.28 ± 0.77
✓ ✓ ✓ max pooling 83.37 ± 0.44 76.79 ± 1.31
✓ ✓ ✓ concat 83.70 ± 0.49 77.02 ± 0.30
✓ ✓ ✓ max pooling 83.54 ± 0.44 75.79 ± 0.53
✓ ✓ ✓ concat 83.64 ± 0.69 77.25 ± 0.80
✓ ✓ ✓ max pooling 83.41 ± 0.67 76.46 ± 1.20
✓ ✓ ✓ ✓ concat 84.13 ± 0.95 77.45 ± 0.55
✓ ✓ ✓ ✓ max pooling 83.09 ± 1.15 76.06 ± 0.15

✓ ✓ – 84.58 ± 0.84 75.86 ± 0.70
✓ ✓ ✓ concat 83.29 ± 1.03 77.22 ± 0.80
✓ ✓ ✓ max pooling 83.81 ± 0.59 75.56 ± 1.45

✓ ✓ – 84.53 ± 0.48 75.83 ± 1.09
✓ ✓ ✓ concat 83.63 ± 1.01 76.59 ± 0.91
✓ ✓ ✓ max pooling 83.54 ± 0.42 75.93 ± 1.20

✓ ✓ ✓ – 84.23 ± 1.28 76.29 ± 0.95
✓ ✓ ✓ – 83.80 ± 1.16 76.82 ± 0.94
✓ ✓ ✓ ✓ concat 84.20 ± 0.71 75.83 ± 1.18
✓ ✓ ✓ ✓ max pooling 83.56 ± 0.59 75.10 ± 1.89
✓ ✓ ✓ ✓ concat 84.01 ± 0.35 76.09 ± 0.55
✓ ✓ ✓ ✓ max pooling 82.94 ± 0.78 75.79 ± 0.95
✓ ✓ ✓ ✓ concat 83.91 ± 0.79 75.69 ± 0.69
✓ ✓ ✓ ✓ max pooling 83.95 ± 1.17 74.60 ± 3.12
✓ ✓ ✓ ✓ ✓ concat 84.39 ± 1.03 75.20 ± 2.21
✓ ✓ ✓ ✓ ✓ max pooling 83.78 ± 0.91 73.48 ± 1.89
✓ ✓ ✓ – 83.92 ± 1.29 76.03 ± 0.06
✓ ✓ ✓ – 84.57 ± 0.86 75.76 ± 0.66
✓ ✓ ✓ ✓ concat 83.67 ± 0.83 73.74 ± 2.61
✓ ✓ ✓ ✓ max pooling 83.68 ± 0.42 75.23 ± 0.97
✓ ✓ ✓ ✓ concat 83.74 ± 0.45 77.12 ± 0.77
✓ ✓ ✓ ✓ max pooling 82.98 ± 0.53 76.79 ± 0.60
✓ ✓ ✓ ✓ concat 84.20 ± 0.85 77.22 ± 0.29
✓ ✓ ✓ ✓ max pooling 82.51 ± 1.15 75.83 ± 0.50
✓ ✓ ✓ ✓ ✓ concat 83.67 ± 1.16 76.49 ± 1.05
✓ ✓ ✓ ✓ ✓ max pooling 81.90 ± 0.46 73.81 ± 1.54

✓ ✓ ✓ – 83.42 ± 1.09 75.36 ± 0.55
✓ ✓ ✓ ✓ concat 83.49 ± 1.11 75.79 ± 0.65
✓ ✓ ✓ ✓ max pooling 82.11 ± 1.22 74.80 ± 1.33

✓ ✓ ✓ ✓ – 83.31 ± 1.23 75.30 ± 0.55
✓ ✓ ✓ ✓ – 83.07 ± 2.72 75.17 ± 1.56
✓ ✓ ✓ ✓ ✓ concat 83.54 ± 0.38 74.54 ± 0.86
✓ ✓ ✓ ✓ ✓ max pooling 83.52 ± 1.61 74.27 ± 1.13
✓ ✓ ✓ ✓ ✓ concat 83.27 ± 0.50 75.93 ± 0.40
✓ ✓ ✓ ✓ ✓ max pooling 82.83 ± 1.22 73.54 ± 1.35
✓ ✓ ✓ ✓ ✓ concat 83.24 ± 1.48 75.86 ± 1.04
✓ ✓ ✓ ✓ ✓ max pooling 82.18 ± 1.22 73.81 ± 1.86
✓ ✓ ✓ ✓ ✓ ✓ concat 83.48 ± 1.35 75.96 ± 0.80
✓ ✓ ✓ ✓ ✓ ✓ max pooling 83.29 ± 1.62 73.02 ± 0.26

Table 8: Tuning results on the development data set [%]. Plg adds the paper representation of the literature graph,
Elg adds the entity representation of the literature graph, and Eeg adds the entity representation of the entity graph.
h[CLS] and PL

lg are the representations of the final layer of BERT that correspond to the [CLS] token and the token
representing the paper of the literature graph.
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