@inproceedings{zou-etal-2023-social,
title = "Can Social Media Inform Dietary Approaches for Health Management? A Dataset and Benchmark for Low-Carb Diet",
author = "Zou, Skyler and
Dai, Xiang and
Brinkworth, Grant and
Taylor, Pennie and
Karimi, Sarvnaz",
editor = "Demner-fushman, Dina and
Ananiadou, Sophia and
Cohen, Kevin",
booktitle = "The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bionlp-1.38",
doi = "10.18653/v1/2023.bionlp-1.38",
pages = "406--412",
abstract = "Social media offers an accessible avenue for individuals of diverse backgrounds and circumstances to share their unique perspectives and experiences. Our study focuses on the experience of low carbohydrate diets, motivated by recent research and clinical trials that elucidates the diet{'}s promising health benefits. Given the lack of any suitable annotated dataset in this domain, we first define an annotation schema that reflects the interests of healthcare professionals and then manually annotate data from the Reddit social network. Finally, we benchmark the effectiveness of several classification approaches that are based on statistical Support Vector Machines (SVM) classifier, pre-train-then-finetune RoBERTa classifier, and, off-the-shelf ChatGPT API, on our annotated dataset. Our annotations and scripts that are used to download the Reddit posts are publicly available at \url{https://data.csiro.au/collection/csiro:59208}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zou-etal-2023-social">
<titleInfo>
<title>Can Social Media Inform Dietary Approaches for Health Management? A Dataset and Benchmark for Low-Carb Diet</title>
</titleInfo>
<name type="personal">
<namePart type="given">Skyler</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grant</namePart>
<namePart type="family">Brinkworth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pennie</namePart>
<namePart type="family">Taylor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarvnaz</namePart>
<namePart type="family">Karimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media offers an accessible avenue for individuals of diverse backgrounds and circumstances to share their unique perspectives and experiences. Our study focuses on the experience of low carbohydrate diets, motivated by recent research and clinical trials that elucidates the diet’s promising health benefits. Given the lack of any suitable annotated dataset in this domain, we first define an annotation schema that reflects the interests of healthcare professionals and then manually annotate data from the Reddit social network. Finally, we benchmark the effectiveness of several classification approaches that are based on statistical Support Vector Machines (SVM) classifier, pre-train-then-finetune RoBERTa classifier, and, off-the-shelf ChatGPT API, on our annotated dataset. Our annotations and scripts that are used to download the Reddit posts are publicly available at https://data.csiro.au/collection/csiro:59208.</abstract>
<identifier type="citekey">zou-etal-2023-social</identifier>
<identifier type="doi">10.18653/v1/2023.bionlp-1.38</identifier>
<location>
<url>https://aclanthology.org/2023.bionlp-1.38</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>406</start>
<end>412</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Social Media Inform Dietary Approaches for Health Management? A Dataset and Benchmark for Low-Carb Diet
%A Zou, Skyler
%A Dai, Xiang
%A Brinkworth, Grant
%A Taylor, Pennie
%A Karimi, Sarvnaz
%Y Demner-fushman, Dina
%Y Ananiadou, Sophia
%Y Cohen, Kevin
%S The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F zou-etal-2023-social
%X Social media offers an accessible avenue for individuals of diverse backgrounds and circumstances to share their unique perspectives and experiences. Our study focuses on the experience of low carbohydrate diets, motivated by recent research and clinical trials that elucidates the diet’s promising health benefits. Given the lack of any suitable annotated dataset in this domain, we first define an annotation schema that reflects the interests of healthcare professionals and then manually annotate data from the Reddit social network. Finally, we benchmark the effectiveness of several classification approaches that are based on statistical Support Vector Machines (SVM) classifier, pre-train-then-finetune RoBERTa classifier, and, off-the-shelf ChatGPT API, on our annotated dataset. Our annotations and scripts that are used to download the Reddit posts are publicly available at https://data.csiro.au/collection/csiro:59208.
%R 10.18653/v1/2023.bionlp-1.38
%U https://aclanthology.org/2023.bionlp-1.38
%U https://doi.org/10.18653/v1/2023.bionlp-1.38
%P 406-412
Markdown (Informal)
[Can Social Media Inform Dietary Approaches for Health Management? A Dataset and Benchmark for Low-Carb Diet](https://aclanthology.org/2023.bionlp-1.38) (Zou et al., BioNLP 2023)
ACL