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Abstract

Automatically rating the quality of published
research is a critical step in medical evidence
synthesis. While several methods have been
proposed, their algorithmic fairness has been
overlooked, even though significant risks may
result when such systems are deployed in
biomedical contexts. In this work, we study
the fairness of two systems with respect to two
sensitive attributes: participant sex and med-
ical area. In some cases, we find important
inequalities, leading us to apply various debi-
asing methods. Upon examining the interplay
of predictive performance and fairness, as well
as medically-critical selective classification ca-
pabilities and calibration performance, we find
that it is possible to improve fairness through
debiasing, but often at a cost to other perfor-
mance measures.

1 Introduction

Automated methods for quality assessment of med-
ical evidence have been developed to assist human
experts in rating the quality of design, conduct, and
reporting of published medical research. This in-
cludes predicting whether a study is affected by
bias along several dimensions, or how strong the
evidence is for a body of medical evidence con-
strained by a clinical question. A number of stud-
ies have proposed techniques and datasets for au-
tomated quality assessment (Millard et al., 2015;
Marshall et al., 2020; Sarker et al., 2015; Šuster
et al., 2023a), as well as follow-up research on
practicality, expert acceptability, and reliability of
these approaches (Gates et al., 2018; Soboczenski
et al., 2019; Armijo-Olivo et al., 2020; Vinkers
et al., 2021; Arno et al., 2022; Jardim et al., 2022;
Šuster et al., 2023b).

Recent research has shown that machine learn-
ing (ML) techniques may suffer from bias when
making decisions for people in different subgroups,
which can lead to detrimental effects on the health

and well-being of disadvantaged and underrepre-
sented populations (Panch et al., 2019).1 How to
assess and mitigate such bias has been a topic of
ongoing research in broader ML and natural lan-
guage processing (NLP) contexts (Mehrabi et al.,
2021), including in the biomedical domain (Pfohl
et al., 2021; Thompson et al., 2021).

However, there has been a lack of research
specifically addressing fairness and bias mitiga-
tion in automated quality assessment of medical
evidence, despite unfair algorithmic decisions po-
tentially having a large impact on either promoting
or thwarting access to quality research for individ-
ual groups. A biased quality assessment classifier
may systematically favour or discriminate against
research conducted on participants of a specific
sex or within a particular medical area. It could,
for example, tend to systematically miss higher-
quality evidence for Urology while working better
for Cardiology.2 By extension, the findings from
studies conducted on a specific population (e.g.
from Urology) or within a particular area would be
undervalued or overlooked, and as a result, med-
ical evidence relevant to those patients may not
be recognized as such. An important reason for
variable performance across across medical areas
is the varying availability of medical evidence in
the first place as well as the prevalence of higher-
quality evidence (Šuster et al., 2023b). These may
be grounded in different research practices and ap-
proaches to scientific assessment of interventions
that have become established in medical fields (Vic-
tora et al., 2004). The consequences of such perfor-
mance disparities and inequalities in the availability
of medical evidence can be far-reaching, leading to
outdated, ineffective, or even incorrect treatment
recommendations.

1This notion of algorithmic bias needs to be distinguished
from the bias stemming from methodology and reporting,
which is formally assessed within the risk-of-bias and GRADE
frameworks, as described in detail in Section 2.

2This example comes from our own findings.
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We aim in this paper to:

• analyse fairness of existing systems along two
dimensions of protected attributes: (1) the sex
of participants; and (2) the medical area of a
study or a body of medical evidence. While
the former is a standard attribute in the fair-
ness literature (Sun et al., 2019), along with
gender,3 the latter extends the notion of a pro-
tected attribute to a highly multi-class group,
with strong professional-ethics implications.
Since medical practitioners or researchers typ-
ically work in a limited number of areas, the
performance of an ML quality assessor on spe-
cific areas would be of immediate concern to
them.

• show how debiasing affects different dimen-
sions of performance, namely predictive per-
formance, fairness, and selective classification
performance (i.e., removing a model’s less
confident predictions), as well as how these
interact in automated quality assessment.

While fairness can be understood in a number
of ways (Mulligan et al., 2019), we take it to mean
that all protected groups should have the same like-
lihood of being classified favourably (Hardt et al.,
2016). That is, regardless of participant sex in
a study or medical area within which a clinician
works, the system should be equally likely to cat-
egorise that evidence as higher-quality. We apply
bias mitigation techniques to either manipulate the
data or the learning mechanism in an attempt to
increase fairness.

We believe that investigating fairness in the con-
text of quality classification of medical evidence
can lead to more transparency, as well as raised
awareness of potentially disparate outcomes on sub-
groups to which classifiers are applied.

2 Models and data

We work with two systems that differ in their in-
tended use. EvidenceGRADEr rates the overall
quality of a group of related studies (Šuster et al.,
2023a; Guyatt et al., 2008), whereas Trialstream-
erRoB (Marshall et al., 2015b) focuses on overall
risk of bias (RoB) in a single clinical study. Next,
we describe those two systems in more detail.

3We would like to note that Cochrane’s Sex attribute used
in our work refers to the biological traits, such as physiological
characteristics, that generally distinguish males and females.
The extent to which sex can be distinguished from gender is
disputed (Tannenbaum et al., 2019).

2.1 EvidenceGRADEr
EvidenceGRADEr (Šuster et al., 2023a) is a ma-
chine learning system that performs quality assess-
ment in the context of systematic reviews accord-
ing to GRADE (Grading of Recommendations As-
sessment, Development and Evaluation) criteria
(Guyatt et al., 2008). The system assesses a body
of evidence — a set of studies included in a sys-
tematic review, grouped by a specific structured
research question — and outputs predictions for
various quality characteristics plus the overall qual-
ity of the body of evidence. In this work, we con-
sider the binary classification task (low/very low
vs. moderate/high quality of evidence). The system
is composed of different encoders for each input
feature type — a feed-forward neural network for
numerical, an embedding layer for categorical, and
the SciBERT language model (Beltagy et al., 2019)
for textual inputs. The outputs of the encoders are
composed by a top-level neural classifier. Such a
system is expected to work alongside human ex-
perts to flag cases for which it is more confident,
while other instances would require human review.

Data In our analysis, we use the dataset created
by Šuster et al. (2023a) from a 2020 snapshot of the
Cochrane Database of Systematic Reviews (CDSR)
containing more than eight thousand reviews.4 The
dataset was developed by extracting and organising
meta data of each review, textual parts of reviews
(abstracts and summaries), tabular summaries of
findings, and certain characteristics of primary stud-
ies. The two-tier grading dataset that we use in this
work comes divided into 10 folds, each with its
own train, development and test sets. We report the
dataset statistics in Tables A1 and A2.

2.2 TrialstreamerRoB
For assessing overall RoB in a single clinical study,
we broadly follow the approach in Marshall et al.
(2020). We implement a system that takes as input
an abstract describing the conduct and results of a
clinical trial, and outputs a binary decision about
whether the study is at low or high/unclear RoB.
The abstract is encoded using SciBERT (Beltagy
et al., 2019) and mapped to an RoB label using a
feedforward neural network. The predictions of an
abstract-based RoB classifier can be used to inform
search rankings of medical literature in evidence
exploration by clinicians or to quickly sift medical

4https://www.cochranelibrary.com/cdsr/
about-cdsr
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studies according to RoB before fine-grained RoB
assessment during a systematic review.

Data We collect a large dataset of clinical trial
abstracts from studies for which manual RoB anno-
tations exist in CDSR, similarly to Marshall et al.
(2015a). Starting with the PubMed identifiers for
the studies included in CDSR, we then searched for
abstracts using the metapub package,5 obtaining
a total of around 24,000 abstracts. We consider
four Cochrane RoB 1 criteria (Higgins et al., 2011)
modelled in previous work (Marshall et al., 2015b,
2020).6 An overall RoB decision is labelled as
“Low risk” whenever all individual criteria are at
low risk, and “High risk” otherwise, following Hig-
gins et al. (2019). Full dataset statistics appear in
Tables A3 and A4.

2.3 Protected attributes
Since both datasets are derived from the same
source (CDSR), we make use of the same two pro-
tected attributes readily available in CDSR:

• Sex, which is a subtype of Population anno-
tated as part of Cochrane’s ontology for study
characterisation (Mavergames et al., 2023).
It distinguishes between male and female
populations, as well as allowing for an all-
encompassing “male–female” category;

• Medical area (Area), obtained from
Cochrane’s topic annotations. As multiple
labels are possible here, i.e., a single review
can be described with more than one topic,
we simply create one instance for each topic.
This means that some instances are the same
except for the assigned protected label.

The availability of protected group annotations
varies by attribute, so we create different versions
of datasets depending on the protected attribute
(Sex or Area). These annotations are provided at
the level of a systematic review, so we trivially
linked them to data instances from our Evidence-
GRADEr and TrialstreamerRoB datasets, which
also have known systematic review identifiers.7

We expect that these attributes are known ahead of
prediction.

5https://pypi.org/project/metapub/
61) Random sequence generation, 2) allocation conceal-

ment, 3) blinding of participants and personnel, and 4) blind-
ing of outcome assessment.

7As TrialstreamerRoB instances are built from individual
clinical studies, we map the protected attribute obtained at
review level to all the included studies.

3 Methodology and evaluation

3.1 Debiasing techniques
For our experiments, we select methods belonging
to two groups of debiasing approaches based on
where debiasing occurs: (1) in-data processing (pre-
processing methods); or (2) in-model training (in-
training methods) by adding constraints to model
optimisation. To apply these techniques to our
tasks, we extended the fairlib library (Han et al.,
2022b).

Pre-processing methods. We use three differ-
ent pre-processing methods: (1) Downsampling
(DownS), which subsamples non-minority in-
stances to derive a balanced training dataset ac-
cording to a chosen objective (see next paragraph)
(Kubat and Matwin, 1997; Wallace et al., 2011;
Wang et al., 2019); (2) Resampling (ReS), which
samples with replacement the instances in each sub-
group to achieve a desired objective8 (Zhao et al.,
2018; Wang et al., 2019; Han et al., 2022a), and
(3) Reweighting (ReW), which manipulates the
weight of each instance in loss calculation during
training. In this case, weights of different subsets
of instances are derived from the empirical distribu-
tion in the training set, depending on the objective
(Lahoti et al., 2020; Han et al., 2022a).

Pre-processing objectives While the above ap-
proaches describe the types of data manipulation,
they can all work with different objective functions:
Balanced Demographics (BD) (Zhao et al., 2018)
encourages the model to equally focus on differ-
ent demographic groups. The correlation between
a group label and a class label is not explicitly
captured. This objective is closely related to the
Demographic Parity criterion (Dwork et al., 2012;
Feldman et al., 2015). Balanced Targets (BT) en-
courages the trained model to be equally good on
all target classes. In Conditional Balance of Demo-
graphics (CBD) (Wang et al., 2019), demographics
are stratified according to the class distribution,
capturing the conditional independence between
a group and a target class. Conditional Balance
of Targets (CBT) works analogously, but for tar-
get classes. In Joint Balance (JB) (Lahoti et al.,
2020), demographics and target classes are jointly
balanced. This is equivalent to using the combi-
nation of BT and CBD. Equal Opportunity (EO)

8For example, if the goal is to achieve balanced demo-
graphics and there are two protected groups, each group is
under/oversampled so that their sizes are the same.
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(Han et al., 2022a) balances the protected attributes
within advantage classes through resampling in-
stances based on equal opportunity objectives.

In-training methods We adopt the following ap-
proaches: (1) Adversarial training (Adv) (Elazar
and Goldberg, 2018) extends the training objective
with a discriminator component responsible for
making the model unlearn the protected attributes;
(2) Diverse Adversaries approach (DAdv) (Han
et al., 2021) is a variant of Adv that adds multi-
ple adversaries to the loss and subjects them to a
diversity constraint; and (3) Fair Supervised Con-
trastive Loss (FCL) (Shen et al., 2022) builds on
contrastive learning to encourage a latent space
that separates instances based on target label, while
mixing instances that share protected attributes.

3.2 Evaluation measures

Fairness Equality of opportunity is a widely used
criterion (Hardt et al., 2016; Ravfogel et al., 2020;
Han et al., 2022a). It measures the difference in
true positive rate (TPR, or recall) across all groups,
based on the notion that positive outcome repre-
sents a favourable decision. In our case, we view
as favourable outcomes either higher quality of
evidence (in the case of EvidenceGRADEr) or
lower risk of bias (in case of TrialstreamerRoB).
The difference (gap) in TPR reflects the degree to
which different groups lack equal opportunity (De-
Arteaga et al., 2019). The gap is calculated as vari-
ance across groups, where lower variance means
greater equality. When evaluating fairness, we re-
port 1−gap so that higher numbers mean greater
fairness. We refer to this measure as Fairness.

Predictive performance We report macro-
averaged F1 scores. In the case of Evidence-
GRADEr, the scores represent averages over 10
trials of cross-validation.

Selective classification performance Here, the
model (or alternatively, the user) is granted the abil-
ity to decide which predictions should be trusted
and kept (e.g. for subsequent processing by an ex-
pert), and which should be rejected (e.g. requiring
a complete re-assessment). The intuition behind
selective prediction is to reduce the error rate (risk)
by sacrificing coverage, i.e., the proportion of all
data points eligible for classification. In real-life
applications, a practitioner would prefer — when
comparing two models for selective prediction and
for some maximum permissible error rate — the

model with better coverage. Alternatively, cover-
age can be fixed and the model with better discrim-
ination capability selected.

To evaluate a system’s selective classification
capabilities, we impose a confidence threshold τ
on model predictions, keeping those that exceed
it, and discarding others. The effect can then be
captured in a risk–coverage curve that displays the
trade-off between the risk of error and the coverage
across the entire spectrum of τ (Ding et al., 2020;
Geifman and El-Yaniv, 2017). To obtain a single-
value conveying the significance of this trade-off,
we calculate the area under the risk–coverage curve
(AURC), where a smaller value indicates a better
selective-prediction performance. Finally, we re-
port 1−AURC in our experiments for consistency
with other evaluation metrics (i.e., higher is better).

Calibration One step towards understanding
whether a model can be trusted is by analysing
whether it is calibrated (Jiang et al., 2012; Desai
and Durrett, 2020). A calibrated model gives us a
signal that it “knows what it doesn’t know”, which
can make the model easier to deploy in practice. A
model is calibrated if the confidence estimates of
its predictions are aligned with the empirical like-
lihood of the model being correct. The difference
between the two is calibration error (Guo et al.,
2017). In our analysis, we report the average over
all predictions, known as expected calibration error
(ECE), as well as the maximum calibration error
(MCE). We empirically approximate calibration er-
ror by first discretising the probability interval into
20 bins containing an approximately equal number
of predicted probabilities, a procedure known as
“adaptive binning” (Nixon et al., 2019). We then
calculate the average offset between the average
confidence score and the proportion of samples be-
longing to the positive class (Guo et al., 2017). As
above, we report 1−ECE (1−MCE) for consis-
tency with other evaluation metrics.

3.3 Model selection

The results reported in the empirical part of the
paper are based on test sets using a model found
to perform best on a development set. All mod-
els are trained for 3 epochs with a patience of 1.
We fine tune the debiasing hyperparameters indi-
vidually for each model and for each protected
attribute,9 For pre-processing debiasing methods,

9For a total of T ×P ×S = 172 combinations, where T is
the number of tasks (2), P the number of protected attributes
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the hyperparameter space is defined as the set of ob-
jective functions described in Section 3.1, whereas
for in-training methods we finetune the lambda pa-
rameters controlling the strength of debiasing as
per the suggestions of Han et al. (2022b). Other
hyperparameters are left as default values.

To select the best epoch and the best hyperpa-
rameters, we use a DTO (distance to optimum)
criterion that combines three different measures of
performance into a single figure of merit. The origi-
nal formulation proposed in Han et al. (2022a) uses
two criteria, namely Fairness (as defined in Sec-
tion 3.2) and accuracy, to calculate Euclidean dis-
tance of normalised scores to a hypothetical system
achieving perfect scores (Vincent et al., 1983). We
make two adjustments to this formulation: (1) we
replace accuracy with F1 as a preferred evaluation
measure due to class imbalance; and (2) in addition
to Fairness, we include 1−AURC as a measure of
selective classification performance, adding a third
criterion that we deem critical in our tasks. The
calculation of Euclidean distance straightforwardly
extends from two to three dimensions.

4 Results

The results for EvidenceGRADEr and Trialstream-
erRoB with different protected attributes are shown
in Tables 1 to 4. Looking at the models without de-
biasing first (“vanilla”), the predictive performance
is somewhat higher for EvidenceGRADEr (around
.71 F1) than TrialstreamerRoB (.66 F1).10 Reasons
for this are likely varied but could include the fact
that inputs to TrialstreamerRoB are abstracts only
in our setting, while the overall RoB may only be
discernible from finer-grained judgments that re-
quire access to full texts. The models otherwise
perform similarly in terms of selective classifica-
tion and calibration.

The non-enhanced fairness of the vanilla models
is highest for EvidenceGRADEr+Sex, where we
find only small differences in TPR between groups
(Figure 1). For TrialstreamerRoB+Sex, as well as
for both models with the Area attribute (Figure 2),

(2), and S is the total number of hyperparameter settings for
different techniques (43). For EvidenceGRADEr, we tune
hyperparameters only on the development set of the first fold
of cross-validation, and use the best setting for the remaining
folds.

10Marshall et al. (2020) report an F1∼0.5 for RoB assess-
ment in Trialstreamer. Millard et al. (2015), whose approach
is markedly different from ours (e.g. their model predicts indi-
vidual criteria rather than overall risk), report AUC (∼0.69)
instead of F1.

Method F1 Fair. 1−AURC 1−MCE 1−ECE

vanilla .718 .940 .847 .845 .936

DownS −.000 −.005 −.014 +.012 +.011
ReS −.009 −.020 −.012 −.050 −.041
ReW −.025 −.117 −.024 +.004 +.010
Adv −.010 −.006 −.002 +.010 +.005
DAdv −.010 +.009 −.002 +.041 −.002
FCL −.310 +.030 −.276 −.001 +.007

Table 1: Main results for EvidenceGRADEr with Sex
as protected attribute. Methods other than the “vanilla”
method involve debiasing.

Method F1 Fair. 1−AURC 1−MCE 1−ECE

vanilla .714 .863 .839 .800 .911

DownS −.001 +.011 +.001 +.031 +.010
ReS −.012 +.009 −.017 −.054 −.050
ReW +.007 +.013 −.013 +.047 +.027
Adv −.000 +.013 +.005 +.016 +.002
DAdv +.006 +.003 −.001 +.038 +.013
FCL −.042 +.023 −.056 +.059 +.042

Table 2: Main results for EvidenceGRADEr with Area
as protected attribute. Methods other than the “vanilla”
method involve debiasing.

Figure 1: Variation in TPR per protected group (Sex),
for the two models without fairness correction.

the differences are substantial. On Area, they range
from as little as .47 up to .84.

In relation to this variability, we refer to rele-
vant prior work on the characteristics of quality
assessment data in Cochrane reviews (Šuster et al.,
2023b). As the amount of evidence and prevalence
of positive instances varies substantially, this may
affect the ML outcomes that we observe.11 For
some groups, there is comparatively less research
available. For example, sex-specific evidence is in

11For a related problem of spin, i.e., unjustified positive
reporting of trial results, extensive literature exists that sup-
ports varying prevalence of this phenomenon across medical
specialties: from lower (32–47%), found in anaesthesiology,
surgical research, cancer, and obesity (Kinder et al., 2019;
Fleming, 2016; Vera-Badillo et al., 2016; Austin et al., 2019);
to higher (57–71%), found in cardiovascular research, oto-
laryngology, and wound care (Khan et al., 2019; Cooper et al.,
2019; Lockyer et al., 2013).
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Figure 2: Variation in TPR per protected group (Area), for the two models without fairness correction.

Method F1 Fair. 1−AURC 1−MCE 1−ECE

vanilla .656 .862 .859 .760 .927

DownS −.003 −.083 −.001 −.002 −.020
ReS +.008 −.023 −.033 −.079 −.050
ReW −.011 +.045 −.010 +.039 −.030
Adv −.011 −.026 +.009 +.064 +.034
DAdv +.012 −.056 +.005 +.096 +.002
FCL −.015 +.047 −.072 +.041 +.007

Table 3: Main results for TrialstreamerRoB with Sex
as protected attribute. Methods other than the “vanilla”
method involve debiasing.

Method F1 Fair. 1−AURC 1−MCE 1−ECE

vanilla .663 .876 .855 .755 .914

DownS +.007 −.015 −.027 −.003 −.028
ReS −.011 −.002 −.022 −.050 −.015
ReW +.008 −.004 −.006 −.067 −.025
Adv +.016 −.015 −.002 +.053 −.001
DAdv +.002 −.017 +.006 +.037 −.008
FCL −.022 −.012 +.005 +.087 +.010

Table 4: Main results for TrialstreamerRoB with Area
as protected attribute. Methods other than the “vanilla”
method involve debiasing.

minority in our datasets with only around 13–22%
of data points belonging to Female, and as few as
1–2% to Male (Tables A1 and A3 in the Appendix).
We also see that higher-quality evidence is dispro-
portionately low for some groups. An example is
Public health, which can be explained by different
research practices and nature of the area (Victora
et al., 2004). However, such areas should not be
disadvantaged according to the equal opportunity
principle during ML-based quality assessment.

4.1 Effect of debiasing

As shown in Tables 1 to 4, debiasing can im-
prove fairness in certain cases, especially for Evi-
denceGRADEr+Area. However, there is no single

method that always works, which makes drawing
any conclusions difficult. As the results are for
models selected based on DTO (Section 3.3), this
amounts to choosing a good all-rounder model. Be-
cause of that, aspects of performance other than
fairness may sometimes increase, which can be
seen in the results. There is no ideal situation
where all main performance measures (F1, Fair-
ness, 1−AURC) would increase, however. Of-
ten, enhanced fairness comes at a price of reduced
predictive or selective classification performance,
adding to the evidence on the accuracy–fairness
trade-off (Han et al., 2021; Berk et al., 2023).

We inspect selective classification performance
separately in Figures 3a to 3d. In most cases,
the risk of error decreases steadily as we reduce
coverage, which is the expected behaviour. Ad-
versarial debiasing appears to work well, outper-
forming the vanilla model in the case of Evidence-
GRADEr+Area and TrialstreamerRoB+Sex. Us-
ing no fairness correction still shows good risk–
coverage trade-offs overall. It is clear from the
figures that two debiasing techniques, namely FCL
and ReS, cannot be recommended as they often
lead to an increased risk of error.

4.2 Effect of model selection

Here, we explore whether choosing another selec-
tion criterion will affect fairness. The hyperpa-
rameter settings leading to the best results on the
development sets are shown in Table A5. Com-
pared to DTO-based results for TrialstreamerRoB,
we find that optimising directly for Fairness leads
to models that more often have substantially higher
fairness (Tables 5 and 6). However, these large
increases go hand in hand with even a larger drop
in F1. As AURC is related to F1 (partly determined
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(a) EvidenceGRADEr, Sex

(b) EvidenceGRADEr, Area

(c) TrialstreamerRoB, Sex

(d) TrialstreamerRoB, Area

Figure 3: Risk–coverage curves showing the effect of debiasing at various rejection thresholds.

Method F1 Fair. 1−AURC 1−MCE 1−ECE

vanilla .656 .862 .859 .76 .927

DownS −.237 +.138 −.030 −.038 −.035
ReS +.008 −.023 −.033 −.079 −.050
ReW −.011 +.045 −.010 +.039 −.030
Adv −.237 +.138 −.035 +.113 +.017
DAdv −.002 −.047 +.007 +.076 +.006
FCL −.237 +.138 +.072 +.052 −.022

Table 5: Results for TrialstreamerRoB when using Fair-
ness as a model selection criterion. Protected attribute:
Sex.

by F1 at full coverage), our experiments suggest
that a similar trade-off exists between selective clas-
sification performance and fairness.

4.3 Gaps between groups

Next, we look at how debiasing reduces the TPR
gaps (i.e., increases fairness) in cases where it
works. How is it equalising TPR across groups? As
the first case in point, we look at the application of
ReW and FCL to TrialstreamerRoB+Sex (Table 3).
They provide numerical evidence for substantially
enhanced fairness, while maintaining competitive
F1. However, when inspecting individual changes

Method F1 Fair. 1−AURC 1−MCE 1−ECE

vanilla .663 .876 .855 .755 .914

DownS −.187 +.04 −.029 +.048 +.021
ReS −.011 −.002 −.022 −.050 −.015
ReW −.006 −.000 −.008 +.112 +.025
Adv −.249 +.124 −.009 +.033 −.004
DAdv +.002 −.017 +.006 +.037 −.008
FCL −.249 +.124 +.021 −.098 +.003

Table 6: Results for TrialstreamerRoB when using Fair-
ness as a model selection criterion. Protected attribute:
Area.

in TPR after debiasing (Table 7), we notice that
TPR of all groups decreases. This is noteworthy
because it implies that a fairer model is obtained
by harming the TPR of each group.

We find a similar situation in the case of Ev-
idenceGRADEr+Area. Here, TPR increases on
several groups but decreases on others, as shown in
Figure 4 when using Adv debiasing. We observe a
similar pattern with other debiasing methods that
display increased Fairness in Table 2.

Because of the above, we think it is necessary
to look not only at the change of the aggregate
fairness measure after debiasing but also at indi-
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Sex ∆TPRReW ∆TPRFCL

Male −.042 −.042
Female −.041 −.024
Male and Female −.009 −.018

Table 7: Per-group changes in TPR after debiasing with
either ReW or FCL. The results are for Trialstreamer-
RoB with Sex as protected attribute.

Figure 4: Positive values on the x-axis represent an
increase in TPR obtained with Adv over the vanilla
EvidenceGRADEr model. Negative values represent
worsened TPR.

vidual group scores on which a fairness metric is
based. The results of our experiments support the
existence of the “levelling down” phenomenon de-
scribed in Mittelstadt et al. (2023), which conveys
that fairness is achieved by making every group
worse off, or by bringing better performing groups
down to the level of the worst off. Such solutions
are unlikely to be acceptable in practice.

A road forward would be to incorporate value
constraints on TPR, so that it never decreases un-
der an admissible level. Another could be to stick
to the vanilla classifier on pre-specified “advan-
taged” groups or groups with highest TPR, and use
a fairness-enhanced classifier only on groups with
lower TPR. We leave the implementation of these
mechanisms for future work.

4.4 Intersectional groups

While we have investigated the protected attributes
Sex and Area independently, it is possible that they
may sometimes be confounding. To provide a pos-
sible explanation for varying TPR of Trialstream-
erRoB from Figure 1, we examine the relationship
between the groups constituting Sex and Area. Us-
ing instances with common PMIDs in the Sex and

Figure 5: Contribution of each Sex group to the evi-
dence within an Area. The counts are obtained from the
intersection of training sets of TrialstreamerRoB.

Area RoB datasets, we can examine cases with both
protected attributes. We calculate a contingency ta-
ble based on these and show the results in a stacked
bar plot (Figure 5).

There are a few areas with remarkably high oc-
currence of female-subject research (Gynaecology,
Pregnancy & childbirth, Cancer, and Infectious dis-
eases) and those with prominent research on male
subjects (Urology, Cancer). As we saw in the fair-
ness results for vanilla TrialstreamerRoB, females
have higher TPR than other groups. As most of evi-
dence on females is in areas with high TPR (Gynae-
cology, Cancer, and Infectious diseases) (Figure 2),
this could help explain the high TPR in Female
research. Debiasing along multiple dimensions is
a complex but important avenue for future work
(Subramanian et al., 2021; Lalor et al., 2022).

5 Conclusion and future work

We showed in this work that data rebalancing and
training-based debiasing methods can sometimes
improve fairness of quality assessment classifiers
using sex or medical area as protected attributes.
However, as this usually comes at the expense of
predictive and selective classification performance,
the decision about whether to mitigate bias should
lie with domain experts who can consider the rela-
tive importance of different performance aspects.

In future work, we plan to consider using differ-
ent weights for the contribution of different model
selection criteria, or imposing hard (minimal) con-
straints on specific criteria (e.g. TPR of individual
groups). Better understanding of this would enable
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practitioners to “interact” with different aspects of
performance in a more nuanced way.

6 Ethical considerations

In this work, we only considered two protected
attributes, although many others could be used.
Healthcare disparities encompass a wide range of
other dimensions, including but not limited to so-
cioeconomic status, insurance status, education sta-
tus, language, age, gender, and sexual identity. The
findings may differ depending on the attribute se-
lected. Using Cochrane or PubMed meta data alone
may conveniently provide many such attributes (e.g.
population-related such as age, and intervention-
related like disease).

7 Data and code availability

Details for obtaining CDSR data can be
found in the Appendix (Section A.1). The
repository with our code and the instruc-
tions to create the TrialstreamerRoB dataset is
located at https://github.com/SimonSuster/
fairlib/tree/develop.
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A Appendix

A.1 Obtaining the Cochrane dataset
Any requests from third parties to access the data
set should be referred first to the Cochrane Col-
laboration by emailing support@cochrane.org.
When Cochrane permits (at its discretion) the use of
the data by the third party, it will grant a license to
use the Cochrane Database of Systematic Reviews,
including a clause that confirms that Cochrane al-
lows us to grant third party access to the data set
created in this work.

A.2 Additional details of datasets and
experiments

We provide more context for the results in the fol-
lowing tables in the main paper.
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Train Dev Test

L H Total L H Total L H Total

Male 47 21 68 18 10 28 21 0 21
Female 738 597 1335 137 111 248 82 63 145
Male and Female 4628 3364 7992 441 418 859 460 433 893

Total 5413 3981 9395 596 540 1136 563 496 1059

Table A1: EvidenceGRADEr dataset statistics based on the first cross-validation split. Protected attribute: Sex.
Columns: L: Lower quality evidence (very low and low GRADE); H: Higher quality evidence (moderate and high
GRADE).

Train Dev Test

Not-high High-mod Total Not-high High-mod Total Not-high High-mod Total

Allergy & ... 47 24 71 0 0 0 0 0 0
Blood diso... 161 134 295 25 9 34 31 14 45
Cancer... 395 529 924 77 62 139 105 102 207
Child heal... 2183 1661 3844 187 140 327 173 175 348
Complement... 642 420 1062 80 56 136 56 73 129
Consumer &... 34 24 58 1 2 3 3 0 3
Dentistry ... 134 48 182 17 0 17 17 7 24
Developmen... 154 121 275 15 25 40 8 7 15
Ear, nose ... 127 70 197 8 11 19 0 1 1
Effective ... 78 116 194 14 3 17 32 16 48
Endocrine ... 232 74 306 8 6 14 14 37 51
Eyes & vis... 299 142 441 8 5 13 7 12 19
Gastroente... 511 297 808 47 46 93 73 63 136
Genetic di... 74 40 114 0 10 10 14 8 22
Gynaecolog... 610 436 1046 64 50 114 53 14 67
Health & s... 182 52 234 11 6 17 19 0 19
Heart & ci... 386 430 816 43 75 118 58 86 144
Infectious... 500 460 960 34 32 66 81 58 139
Insurance ... 571 303 874 59 35 94 46 44 90
Kidney dis... 156 195 351 13 22 35 16 16 32
Lungs & ai... 509 663 1172 43 70 113 57 60 117
Mental hea... 758 592 1350 84 126 210 27 28 55
Neonatal c... 92 154 246 14 16 30 4 17 21
Neurology... 597 565 1162 26 98 124 78 115 193
Orthopaedi... 356 194 550 44 21 65 32 3 35
Pain & ana... 313 286 599 59 43 102 73 39 112
Pregnancy ... 232 235 467 50 53 103 17 47 64
Public hea... 84 26 110 0 0 0 3 16 19
Rheumatolo... 283 208 491 16 64 80 29 64 93
Skin disor... 310 214 524 61 77 138 21 19 40
Tobacco, d... 181 128 309 25 18 43 33 26 59
Urology... 213 137 350 39 13 52 21 4 25
Wounds... 120 21 141 9 8 17 9 4 13

Total 11525 9004 20529 1183 1202 2385 1212 1177 2389

Table A2: EvidenceGRADEr dataset statistics based on the first cross-validation split. Protected attribute: Area.
Columns: L: Lower quality evidence (very low and low GRADE); H: Higher quality evidence (moderate and high
GRADE).

Train Dev Test

L H Total L H Total L H Total

Male 120 31 151 11 2 13 12 4 16
Female 1332 571 1903 146 54 200 151 65 216
Male and Female 8452 3319 11771 950 373 1323 1069 406 1475

Total 9904 3921 13825 1107 429 1536 1232 475 1707

Table A3: TrialstreamerRoB. Protected attribute: Sex. Columns: L: Lower quality evidence (high or unknown risk
of bias); H: Higher quality evidence (low risk of bias).
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Train Dev Test

High/ unclear Low Total High/ unclear Low Total High/ unclear Low Total

Allergy & ... 108 30 138 7 4 11 15 5 20
Blood diso... 339 136 475 46 18 64 37 15 52
Cancer... 1057 475 1532 137 64 201 120 58 178
Child heal... 3818 1477 5295 408 174 582 452 198 650
Complement... 895 412 1307 86 53 139 119 51 170
Consumer &... 215 43 258 23 6 29 33 11 44
Dentistry ... 505 217 722 49 29 78 64 28 92
Developmen... 371 98 469 37 10 47 42 17 59
Ear, nose ... 199 82 281 18 14 32 35 8 43
Effective ... 465 201 666 49 25 74 56 22 78
Endocrine ... 639 237 876 84 30 114 80 33 113
Eyes & vis... 382 174 556 33 19 52 47 17 64
Gastroente... 1264 475 1739 161 61 222 160 59 219
Genetic di... 228 69 297 23 8 31 25 13 38
Gynaecolog... 772 360 1132 83 51 134 97 49 146
Health & s... 320 47 367 25 5 30 39 11 50
Heart & ci... 1661 763 2424 185 84 269 202 106 308
Infectious... 916 422 1338 96 54 150 103 65 168
Insurance ... 1101 319 1420 111 36 147 120 43 163
Kidney dis... 685 299 984 80 27 107 78 35 113
Lungs & ai... 1493 564 2057 155 76 231 177 84 261
Mental hea... 1397 509 1906 139 55 194 155 65 220
Neonatal c... 251 144 395 26 14 40 30 20 50
Neurology... 833 504 1337 93 59 152 108 66 174
Orthopaedi... 685 246 931 65 33 98 87 28 115
Pain & ana... 890 288 1178 88 36 124 87 35 122
Pregnancy ... 711 229 940 84 23 107 98 27 125
Public hea... 169 28 197 13 5 18 18 3 21
Rheumatolo... 678 292 970 84 36 120 103 39 142
Skin disor... 373 48 421 36 4 40 44 6 50
Tobacco, d... 708 317 1025 73 34 107 87 29 116
Urology... 373 96 469 39 14 53 55 8 63
Wounds... 215 24 239 22 6 28 26 1 27

Total 24717 9625 34342 2658 1167 3825 2998 1255 4254

Table A4: TrialstreamerRoB. Protected attribute: Area. Columns: L: Lower quality evidence (high or unknown risk
of bias); H: Higher quality evidence (low risk of bias).

EvidenceGRADEr TrialstreamerRoB

Sex Area Sex Area

DownS BT BT BT BT
ReS CBT BD CBT EO
ReW CBD EO CBD CBT
Adv 10−1.2 10−1.8 10−.6 10−3

DAdv 100 0.01 10 100
FCL 10−2.6 10−2.6 10−3 10−3

Table A5: Best hyperparameters setting per debiasing method based on DTO. For the pre-processing methods (first
three), we indicate the chosen objective; for Adv, we include the chosen lambda parameter controlling the strength
of adversarial regularisation; for DAdv, we include the chosen diverse lambda parameter which controls the strength
of difference loss to encourage diversity of adversarial ensemble; for FCL, a single (joint) lambda parameter for
strength of fair supervised contrastive loss.

426


