
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, pages 516–523
July 13, 2023 ©2023 Association for Computational Linguistics

CUED at ProbSum 2023: Hierarchical Ensemble of Summarization Models

Potsawee Manakul, Yassir Fathullah, Adian Liusie,
Vyas Raina, Vatsal Raina, Mark Gales

ALTA Institute, Engineering Department, University of Cambridge
{pm574,yf286,al826,vr313,vr311,mjfg}@cam.ac.uk

Abstract

In this paper, we consider the challenge of sum-
marizing patients’ medical progress notes in
a limited data setting. For the Problem List
Summarization (shared task 1A) at the BioNLP
Workshop 2023, we demonstrate that Clinical-
T5 fine-tuned to 765 medical clinic notes out-
performs other extractive, abstractive and zero-
shot baselines, yielding reasonable baseline sys-
tems for medical note summarization. Further,
we introduce Hierarchical Ensemble of Summa-
rization Models (HESM), consisting of token-
level ensembles of diverse fine-tuned Clinical-
T5 models, followed by Minimum Bayes Risk
(MBR) decoding. Our HESM approach lead
to a considerable summarization performance
boost, and when evaluated on held-out chal-
lenge data achieved a ROUGE-L of 32.77,
which was the best-performing system at the
top of the shared task leaderboard.1

1 Introduction

Summarization is a common natural language gen-
eration (NLG) task with growing recent interest
(El-Kassas et al., 2021). The 1A shared task of
BioNLP 2023 considers medical problem list sum-
marization (Gao et al., 2023), where patient notes
are summarized to assist medical diagnosis appli-
cations. There are several challenges faced in de-
signing systems for this task: First, the challenge
is low-resource, with only 765 examples available
for training/validation. Second, a high-stake appli-
cation with specialized medical terms requires sys-
tems that can deal with domain-specific terms and
find relevant diagnoses from patient documents.

This paper introduces Hierarchical Ensemble of
Summarization Models (HESM), an approach that
is composed of two sequential ensembling layers,

1Our code is available at https://github.com/
potsawee/hierarchical_ensemble_summ.
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Figure 1: Hierarchical ensemble of summarization models
where each individual model is a fine-tuned Clinical-T5.

of token-level ensembles, followed by Minimum
Bayes Risk (MBR) decoding, as shown in Figure
1. Ensembling methods combine the predictions of
various models (Fort et al., 2020) and have been
effective in NLG tasks, such as in summarization
(Manakul and Gales, 2020). For low-resource set-
tings, this method allows outputs to be composed
from multiple different ensemble members, which
can reduce the influence of noise and eliminate
spurious signals, reducing the chance of medically
inaccurate summaries. We demonstrate that using
HESM with Clinical-T5 models (Lehman et al.,
2023) leads to systems that have a good grasp of
medical knowledge, and that are able to generate
outputs that are consistently closer to ground-truth
summaries. Our proposed HESM method was sub-
mitted to the BioNLP problem list summarization
challenge, and achieved the top position of the
shared task leaderboard, out of 9 teams.

2 Background and Related Work

2.1 Existing Pre-Trained Language Models

A common approach for current NLP applications
has been the pre-train and fine-tuning paradigm,
where pre-trained models are fine-tuned to specific
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target tasks. The community has open-sourced a
variety of pre-trained backbones of different sizes
and architectures, including encoder-only such as
BERT (Devlin et al., 2019), decoder-only such as
GPT-2 (Radford et al., 2019), and encoder-decoder
such as BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020). Medical domain versions of lan-
guage models have also been created, including
ClinicalBERT (Huang et al., 2019), BioBERT (Lee
et al., 2020), BioMed-RoBERTa (Gururangan et al.,
2020), BioGPT (Luo et al., 2022), and Clinical-T5
(Lehman et al., 2023).

2.2 Summarization Methods

The two main summarization approaches
are extractive methods, which select relevant
words/phrases present in the input for the sum-
mary, and abstractive methods, which can freely
generate text (even text that may not be present
in the source). Previous work in medical list
summarization demonstrated significant gain
from adapting BART and T5 (both are abstractive
models) to the medical domain and by fine-tuning
them for summarization (Gao et al., 2022). For
long-input summarization, a preliminary stage
of selecting the most relevant input sentences
before summarization was shown to be effective
(Manakul and Gales, 2021). Alternatively, large
language models have recently shown success in
zero-shot summarization (Brown et al., 2020).

3 Hierarchical Ensemble of
Summarization Models

When working with a small dataset, individual
models are prone to overfit specific aspects of the
data due to the limited number of training samples.
By training multiple models on the same dataset,
each model can potentially capture different aspects
of the data that are generalizable and not prone to
overfitting. Combining these diverse models to-
gether can then create a more robust and accurate
prediction model (Sim et al., 2007).

Various approaches can be used to create diverse
individual systems. A simple approach is to use dif-
ferent weights’ initialization (Lakshminarayanan
et al., 2017) for different seeds. Alternatively for
pre-trained systems (as considered in this work),
one can set different random seeds, which will in-
fluence training dropout and stochastic gradient
descent batch creation, resulting in variability in
the final models’ weights. One can also use a form

of data bagging, where a different subset of the
data is used to train each model (Galar et al., 2011).
For example for the clinical notes, one model can
be trained using only the assessment section of
the notes, whilst another can be trained using the
assessment+subjective sections.

Given an ensemble of diverse models, one may
then combine them for a more robust ensemble
system. A possible model combination method
is weight averaging. Although weight averaging
across training runs has shown success in image
classification (Wortsman et al., 2022), weight aver-
aging across different training runs is expected to
work only when individual runs operate in similar
weight spaces. This limits the types of combina-
tions for weight averaging to only models with the
same architecture and the same input format. As
a result, we focus instead on two other methods
of combination: token-level ensembling and Mini-
mum Bayes Risk decoding (Rosti et al., 2007a,b).

Token-level Ensemble
Token-level ensemble (also known as product-of-
expectations) is a technique to improve the perfor-
mance of sequence-to-sequence models by combin-
ing predictions from multiple models at the token-
level (Sennrich et al., 2015; Freitag et al., 2017;
Malinin and Gales, 2021; Fathullah et al., 2021).
Let us consider M different models, where we want
to generate an output sequence, y = y0, y1, . . . ,
from an input sequence x. In the standard decoding
setup, we can generate each token sequentially:

p(y|x) =
∏

i

p(yi|x, y<i) (1)

In token ensembling, each token’s probability is
the average probability of the individual models:

p(yi|x, y<i) =
1

M

∑

m

pm(yi|x, y<i) (2)

Minimum Bayes Risk (MBR) Decoding
Given all possible output sequences, Y , standard
decoding (inference) strategies such as beam search
are used to select the sequence with the greatest
likelihood:

y∗ = argmax
y∈Y

{p(y|x)} (3)

However, the above method is not well aligned
with the final reward metric, R, used to assess
the quality of samples (e.g. ROUGE-L). Follow-
ing MBR decoding (Kumar and Byrne, 2004; Sim
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et al., 2007), we can seek to select the most average
sample, y∗ ∈ Y , as per our desired reward metric:

y∗ = argmax
y∈Y

{
Ep(ỹ|x)[R(y, ỹ)]

}
(4)

where y∗ is expected to be the most representa-
tive of all generated samples. In practice, with
only access to N sequences, Y = {y1, . . . ,yN},
sourced from different model structures, there may
not be available sensible or meaningful posterior
distributions, p(y|x) and hence we approximate
the expectation as a simple average, where each
observed output y is taken to be equiprobable:

y∗ ≈ argmax
y∈Y

{
N∑

n=1

R(y, ỹn)

}
(5)

The selection of y∗ can also be viewed as a method
to automatically reject the anomalous samples and
thus improve overall performance. Previous work
showed that MBR decoding improves machine
translation (Rosti et al., 2007a,b), and the high-
est evaluation score is obtained when R matches
the evaluation metric (Freitag et al., 2022). Thus,
we use ROUGE-L as the reward metric R.

We note that MBR decoding is applied at in-
ference time, and it can be applied to any set of
models regardless of their architectures or training
techniques, but it is expected to be effective when
there is diversity in the models’ outputs.

Hierarchical Ensembling
Finally, hierarchical ensembling is a method that
aims to combine the above two approaches. Mul-
tiple output sequences, Y , can be generated by
performing token ensembling over different sets of
individual models. Subsequently, MBR decoding
can be used to select the most representative sam-
ple from these different output sequences to give
a single output sequence, y∗. This hierarchical
structure is depicted in Figure 1.

4 Experiments

4.1 Experimental Setup
Data. Training data consists of 765 progress notes
along with output medical summaries, which were
sourced from MIMIC-III. Due to the small amount
of data available, systems were initially evaluated
using 5-fold cross-validation. The test (held-out
competition) data consists of 237 progress notes,
where for the competition evaluation we submit-
ted generated summaries onto an online platform

where the ROUGE-L was calculated. ROUGE-
1, ROUGE-2 and ROUGE-L (Lin, 2004) were all
computed during cross-fold validation.

The medical reports have three fields available:
‘assessment’ {A}, ‘objective’ {O}, and ‘subjective’
{S}, with word statistics shown in Table 1. We also
consider different permutations by concatenating
fields, separated by special tokens.

Field {O} {S} {A} Summary

#words 304.7±83.4 85.5±54.8 33.7±17.1 10.5±7.5

Table 1: Medical report and summary statistics.

Models. For abstractive summarization, we con-
sider T5 and Clinical-T5 as the backbone. Clinical-
T52 was initialized from scratch and pre-trained on
the union of MIMIC-III and MIMIC-IV databases
(Lehman et al., 2023). The models are downloaded
through HuggingFace; we finetune models with
teacher forcing on our training data and use beam
search during inference. More details about train-
ing and inference are provided in Appendix A.

4.2 Baseline Selection

We start our investigation by comparing zero-shot,
extractive, and abstractive summarization methods.
Note that we provide the results of zero-shot sum-
marization based on open-sourced large language
models in Appendix B.1.

Extractive Summarization
To obtain an empirical upper bound, we compute
ROUGE-1 between each input sentence against its
ground-truth summary. The input sentences are
ordered by the sections {A}, {S}, {O}.

We consider two oracle options: (1) All-overlap,
which concatenates all input sentences where
ROUGE-1 recall is positive to the generated sum-
mary; and (2) Greedy-best, which uses a greedy
algorithm to obtain extractive sentences similar to
Nallapati et al. (2017). This greedy-best method
iteratively adds sentences one at a time to the gen-
erated summary, where the added sentence is the
one which yields the highest ROUGE-1 (F1) score.
This process is repeated until the ROUGE-1 (F1)
of the generated summary does not improve. Our
results in Table 2 show that even the oracle (greedy-
best) approach achieves lower scores than fine-
tuned T5 models (in Table 3).

2https://huggingface.co/xyla/Clinical-T5-Large.
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Method R1 R2 RL

Oracle (All-overlap) 20.37 6.41 15.44
Oracle (Greedy-best) 29.14 11.09 22.74

Table 2: Empirical upper bounds of extractive summarization
methods on the training data.

Abstractive Summarization
Our first experiment is to determine the best trans-
former backbone for abstractive summarization.
Table 3 shows T5 performance when fine-tuned
using the assessment field only. We find that T5-
Large significantly outperforms T5-Small, but that
performance does not further scale with size with
T5-Large and T5-XL performing similarly.

Pre-Trained Model R1 R2 RL

T5-Base 26.77 10.33 24.82
T5-Large 29.56 12.01 27.88

T5-XL 29.46 12.72 27.58

Clinical-T5-Base 26.62 12.11 24.96
Clinical-T5-Large 32.22 14.30 30.15

Table 3: ROUGE-scores of various T5/Clinical-T5 models on
cross-validation, with inputs being {A} only.

We further find that domain adaptation can lead
to an additional boost, with Clinical-T5-Large
showing ROUGE scores 2% higher than T5-Large.
Domain adaptation, however, was not helpful for
our low-capacity model, with Clinical-T5-Base
performing similarly to T5-Base. We, therefore,
use Clinical-T5-Large, the best-performing sys-
tem during cross-validation, as our backbone trans-
former for all further systems.

The next experiments consider which input fields
are most useful for generating the summary. Table
4 shows that the assessment field, {A}, contains the
key information for the patient’s problem summary
with ROUGE scores below 20 when any other field
is used alone. We further observe better perfor-
mance when {A} is augmented with {S}.

Inputs R1 R2 RL

∅ 9.61 2.93 9.24
{O} 14.09 4.99 13.27
{S} 17.96 7.00 16.81
{A} 32.22 14.30 30.02

{A}+{S} 33.46 15.07 31.03

Table 4: Comparison of Clinical-T5-Large performance when
using different inputs on training data (using cross-validation).
The empty input baseline ∅ is trained to generate summaries
without the input report.

4.3 Ensemble Methods

To maximize the performance, we apply ensemble
methods to fine-tuned Clinical-T5-Large models.
For the simplicity of notation, we use θA and θAS
to denote the system where the input is {A} and
{A}+{S}, respectively. We train nine θA individ-
ual models where all models are initialized from
Clinical-T5-Large weights, and have the same train-
ing hyperparameters except random seeds for data
batching. In Table 5, we compare different meth-
ods for combining nine θA models and the results
show that: 1) weight averaging results in a slightly
worse system; 2) both token-level ensemble and
MBR decoding yield better performance than sin-
gle models. In addition, we observe a similar trend
when combining θAS models as shown in Table 6.

Method ROUGE-L
F1 Prec Rec

Individual 29.84±0.69 40.11±1.40 27.68±0.76

Weight Avg. 29.39 39.68 27.50
Tok. Ensemble 30.50 41.09 28.37
MBR Decoding 30.72 40.96 28.91

Table 5: ROUGE-L on the test data. This table compares
combination methods of nine θA models.

Method ROUGE-L
F1 Prec Rec

Individual 29.44±0.45 37.57±0.69 28.33±0.65

Weight Avg. 28.00 35.65 27.16
Tok. Ensemble 30.04 36.35 29.96
MBR Decoding 30.30 38.39 28.92

Table 6: ROUGE-L on the test data. This table compares
combination methods of nine θAS models.

Hierarchical Ensemble. We explore combining
θA and θAS models in a token-level ensemble fol-
lowed by MBR decoding to form a hierarchical
ensemble. Based on nine θA models and nine θAS
models, Table 7 provides the results of hierarchical
combination in different setups.

The first block shows the performance when
combining one θA and one θAS in a token-level en-
semble, followed by an MBR combination stage
over 9 of these ensembles. Similarly, the sec-
ond block shows the performance when combining
three θA and three θAS each in a token-level ensem-
ble fashion followed by an MBR decoding stage
over 3 of these ensembles.
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Name Ensemble ROUGE-L
Token MBR F1 Prec Rec

θA+θAS (1, 1) ✗ 31.17±0.67 39.51±1.30 29.66±1.02

HESM (1, 1) 9 32.31 41.16 30.16

θA+θAS (3, 3) ✗ 31.50±0.42 39.74±0.79 29.97±0.57

HESM (3, 3) 3 31.87 39.63 30.24
(3, 3) 9 31.88 40.07 30.17

Table 7: ROUGE-L of HESM on the test data. (a, b) denotes
token-level ensemble consisting of aθA models and bθAS mod-
els. MBR=c denotes the outputs of c token-level ensembles
combined using MBR decoding. For HESM(3,3) w/ MBR=3,
ensembles with non-overlap members are chosen.

4.4 Evaluation System

This section discusses the specific nature of our
HESM systems submitted to the shared task. Given
the flexibility in an MBR combination, members
of HESMs are not limited to token-level ensem-
bles. Hence, during the competition we made use
of previously submitted systems to build the final
HESM. As a result, our HESM consists of six sys-
tems: best-performing θA; weight averaging of 3θA;
token-level ensemble of 3θA with LRL; 2×token-
level ensemble of 9θA; and token-level ensemble
of 9θAS. The results of the HESM’s members are
provided in Table 11 in the appendix.

We further consider combining this HESM with
the token-level ensembles of 3θA+3θAS investigated
in Section 4.3. The first ensemble (v1) is obtained
by selecting three θA and three θAS (out of the nine
θA and nine θAS) with the lowest cross-entropy train-
ing losses. The second ensemble (v2) is obtained
by training variants of the three θA and three θAS
in the first ensemble using different hyperparame-
ters to increase diversity. The results of these two
token-level ensembles are reported in Table 8.

Ultimately, we combine the above HESM with
these two ensembles using MBR decoding, and this
combined system can be viewed as a higher level of
HESM as it consists of HESM as a member of the
MBR combination. This final combination sets the
state-of-the-art performance of the task, achieving
the ROUGE-L score of 32.77.

System ROUGE-L
F1 Prec Rec

HESM 31.86 43.52 28.90
TokEns(3θA+3θAS)-v1 32.03 41.01 30.16
TokEns(3θA+3θAS)-v2 32.19 39.59 30.88

+ MBR Combination† 32.77 41.69 30.51

Table 8: ROUGE-L on the test data. †This system attains the
top position on the shared task leaderboard.

5 Conclusions

In low-resource and medical-domain summariza-
tion, our work has demonstrated that abstractive
summarization outperforms extractive and zero-
shot methods. Furthermore, both token-level en-
semble and MBR decoding improve the overall
performance. Our HESM, which utilizes both en-
sembling techniques, achieves state-of-the-art per-
formance with the highest ROUGE-L score in the
BioNLP 2023’s shared task 1A leaderboard.

6 Limitations

The limitations of this work are mainly that there
is a small amount of data available for inference
to test the models. ROUGE-L is used as an as-
sessment metric and n-gram overlap metrics are
notably not optimal for abstractive summarization
assessment (Zhang* et al., 2020; Deutsch, 2022).

7 Ethics Statement

The study used de-identified health data to develop
a system that overcomes biases in medical decision-
making. However, social biases in language models
need to be addressed to ensure fairness in model
training. Therefore, before deploying any pre-
trained language model, fairness audits are nec-
essary to ensure an ethical and trustworthy model
for all stakeholders. Note, doctors should not rely
on automated summarization systems for diagnoses
in the interest of patient care.
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A More details about experiments

A.1 Inference Hyperparameters

num_beams = 4, length_penalty = 0.6, min_length
= 5, max_length = 256, no_repeat_ngram_size = 4.

A.2 RL training

We follow Paulus et al. (2018) in using reinforce-
ment learning (RL) based loss:

LRL = (R(ȳ,y)−R(ŷ,y)) logP (ŷ|x) (6)

where ȳ is the sequence obtained by greedy search,
ŷ is the sequence obtained by sampling, and ŷ
is the ground-truth sequence. To improve the sta-
bility of training, we initialize the model using
the weights from the maximum likelihood training
(cross-entropy loss), and we use a combined loss:
L = γLRL + (1− γ)LML where γ = 0.9 and LML
is the standard cross entropy loss. The results are
provided in Table 11, showing that a marginal gain
can be achieved from RL training.
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B Additional Results

B.1 Zero-shot Summarization

Since state-of-the-art LLMs such as GPT-3 or Chat-
GPT are only available via API services, using
them would violate the MIMIC data use agreement.
Instead, we use open-source LLMs. We use the fol-
lowing text input to large language models (LLMs),

{prompt}:
{clinical_note}

where clinical_note is the assessment section,
and we consider two prompts:

• P1: Summarize these clinical notes.

• P2: Give a one or two word summary for these
clinical notes.

We use open-source LLMs including OPT-IML
(Iyer et al., 2022), GPT-J (Wang and Komatsuzaki,
2021), and GPT-NeoX (Black et al., 2022). We
provide the results on training data in Table 9. The
poor performance could be attributed to the small
size of LLMs, and larger systems such as GPT-3 or
ChatGPT could potentially perform much better.

LLM prompt R1 R2 RL

OPT-IML-1.3B P1 4.97 0.80 4.37
P2 4.46 0.65 4.05

OPT-IML-30B P1 2.76 0.44 2.51
P2 2.07 0.36 1.96

GPT-J-6B P1 4.13 0.58 3.68
P2 4.66 0.73 4.29

GPT-NeoX-20B P1 2.41 0.38 2.21
P2 3.04 0.59 2.79

Table 9: Zero-shot Summarization performance on training
data of LLMs with different user prompts.

B.2 More Analysis

Table 10 shows our post-evaluation studies on the
performance using different input fields, and the
results suggest that it is possible to improve the
performance further by using {A}+{S}+{O} in ad-
dition to {A} and {A}+{S} as the input.

B.3 Submitted Systems

In Table 11, we present other approaches that
were submitted to the shared task, including model
weight averaging, and RL-based training. These
models also formed components of the final HESM
model submitted.

Inputs R1 R2 RL

{A} 32.22 14.30 30.02

{A}+{O} 32.50 13.81 30.31
{A}+{S} 33.46 15.07 31.03
{A}+{S}+{O} 33.80 15.38 31.28

Table 10: Comparison of Clinical-T5-large performance when
using different inputs on training data (using cross-validation).

System ROUGE-L
F1 Prec Rec

Weight Avg. of 3θA 30.26 42.51 27.31
TokEns 3θA w/ L†

RL 30.40 43.78 27.10
Best-performing θA 30.56 39.97 28.95
TokEns 9θA-v1 30.74 42.14 27.93
TokEns 9θA-v2 30.50 41.09 28.37
TokEns 9θAS 30.04 36.35 29.96

Table 11: ROUGE-L scores on test data of the members of
HESM. †LRL is described in Appendix A.2.

C Post-evaluation Ablation Study

The results in Table 8 found that a higher-level Hi-
erarchical Ensemble (HESM) model had the best
performance. This model performs MBR decoding
over the output from an existing shallower HESM
model (we will refer to as HESM-shallow) and
2×token-level ensemble of 3θA+3θAS. Table 12
explores the impact on performance with unpack-
ing the token level-ensemble systems and perform-
ing MBR decoding over all individual systems.
The system labelled with unpack-1 performs MBR
decoding over the 6 ensemble systems that form
HESM-shallow and the 12 individual systems used
to make the two token level ensemble systems; i.e.
MBR decoding is performed over 18 system output
sequences. The unpack-2 system considers further
unpacking the 6 ensemble systems used for HESM-
shallow, such that MBR decoding is now performed
over a total of 34 unique individual systems.

System ROUGE-L
F1 Prec Rec

HESM (final) 32.77 41.69 30.51

HESM-unpack-1 32.38 42.98 29.91
HESM-unpack-2 32.26 43.18 29.62

Table 12: ROUGE-L scores on the test data. This table consid-
ers the impact of performing MBR decoding on the individual
systems after unpacking token-level ensemble systems used as
components for the final higher-level HESM model submitted
in the competition in Table 8.
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