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Abstract

This paper presents our system at the Radiol-
ogy Report Summarization Shared Task-1B of
the 22nd BioNLP Workshop 2023. Inspired
by the work of the BioBART model, we con-
tinuously pre-trained a general domain BART
model with biomedical data to adapt it to this
specific domain. In the pre-training phase, sev-
eral pre-training tasks are aggregated to inject
linguistic knowledge and increase the abstrac-
tivity of the generated summaries. We present
the results of our models, and also, we have car-
ried out an additional study on the lengths of
the generated summaries, which has provided
us with interesting information.

1 Introduction

Radiology reports are documents that interpret radi-
ological examinations. Usually, a radiology report
consists of three sections: (1) a background section
that describes general information about the pa-
tient and exam, (2) a findings section that presents
details of the examination, and (3) an impression
section that summarizes the findings against the
background. This last section is the most crucial
for doctors to make clinical decisions.

Due to the recent success of self-supervised
learning, the focus of text summarization re-
search has exhibited a gradual shift from extrac-
tive techniques to abstractive techniques. The best-
performing abstractive models are BART (Lewis
et al., 2020), T5 (Raffel et al., 2020), PEGASUS
(Zhang et al., 2020a), and GPT-3 (Brown et al.,
2020), being all of them Transformers (Vaswani
et al., 2017) pre-trained self-supervisedly as denois-
ing sequence to sequence autoencoders. This kind
of approaches allow to pre-train deep architectures
to learn vast amounts of general linguistic knowl-
edge from large corpora, that can be transferred
to downstream tasks by means of fine-tuning. Al-
most all of these systems used benchmark datasets
compiled from news articles, such as the CNN-

DailyMail dataset (CNN-DM) (Hermann et al.,
2015) and NEWSROOM (Grusky et al., 2018).
However, not so many efforts have been carried
out in the biomedical domain.

Language models pre-trained on biomedical cor-
pora may further enhance the performance of cur-
rent biomedical NLG methods, such BioBERT
(Lee et al., 2020) or PubMedBERT (Gu et al.,
2021). However, there are very few in-domain gen-
erative language models for biomedicine. In (Yuan
et al., 2022), authors proposed a biomedical auto-
regressive generative language model, BioBART,
pre-trained on the biomedical corpora. They con-
tinuously pre-train BART on PubMed1 abstracts
to achieve biomedical domain adaption only using
the text-infilling task. The in-domain BioBART
outperforms BART model and sets strong baselines
for several NLG tasks.

In the framework of BioNLP workshop, some
challenges and shared tasks focusing on summa-
rization were created. MEDIQA 2019 edition fo-
cused on question entailment and textual inference
and their applications in medical Question Answer-
ing (Ben Abacha et al., 2019). MEDIQA 2021
(Ben Abacha et al., 2021) promoted research on
summarization for consumer health QA and clin-
ical text. In this edition, the winner system (Dai
et al., 2021), based on PEGASUS, employed a do-
main adaptation strategy by further fine-tuning a
small amount of in-domain data to improve gener-
alization and transfer abilities.

2 Task Description

The Shared Task-1B of the 22nd BioNLP Work-
shop 2023 (Delbrouck et al., 2023), focuses on
the summarization of radiology reports. The task
of the summarization of radiology reports can be
defined as follows: given a radiology report with
findings and background sections, the goal is to

1https://pubmed.ncbi.nlm.nih.gov/
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generate the impression section. For this shared
task, the Impressions are only generated from the
Findings section.

Shared Task 1B was divided into two subtasks.
The first one is about generating impressions
sections based exclusively on the text report. The
second one is summarizing the report based on the
text information and the indicators that could be
extracted from the attached radiology image. The
participants were invited to approach both subtasks
but were allowed to participate in one; we chose to
participate only in the first subtask.

2.1 The Dataset

For the subtask where we participated, a dataset
is provided based on MIMIC-III (Johnson et al.,
2016) with 79 779 samples from two different
radiography modalities and six anatomical parts.
This dataset was split into four partitions: train
(59 320 samples), validation (7413), test
(6526), and hidden-test (6531).

Findings Impressions
Sent. Words Sent. Words

train 8.80 124.90 3.91 52.26
validation 8.85 125.69 3.93 52.65
test 9.28 134.95 3.75 50.97
hidden-test 10.23 155.28 - -

Table 1: Average sentences and words on Findings and
Impressions for each partition.

Table 1 details the average number of sentences
and words for Findings and Impressions, exclud-
ing the Impressions of the hidden-test that were
not available to participants. On the one hand, we
notice that train and validation have similar
lengths for both, Impressions and Findings. On
the other hand, the test partitions contain longer
Findings, especially the hidden-test. Moreover,
Impressions are shorter in the test partition than
in the train and validation ones; thus, test
presents a higher compression ratio in its Impres-
sions partition than those of the other two parti-
tions.

2.2 System Evaluation

For evaluating the systems, the ViLMedic
framework (Delbrouck et al., 2022b) was used.
It is a framework that aims to increase results
reproducibility for medical tasks, such as medical

report summarization. Specifically, the systems
were evaluated with the following metrics and
scores: ROUGE-L (Lin, 2004), BLEU (Papineni
et al., 2002), BERTScore (Zhang et al., 2020b),
and RadGraph (Delbrouck et al., 2022a).

3 Pre-training Model

Inspired by the work of the BioBART model,
we continuously pre-trained a general domain
BART model with biomedical data to adapt it to
this specific domain. Specifically, our starting
point was the architecture and weights of the
base version of BART2, publicly available at the
repository of HuggingFace (Wolf et al., 2020).

For the pre-training phase, we followed the
methodology used in the News Abstractive Sum-
marization models (NAS) work (Ahuir et al., 2021).
In NAS, several pre-training tasks are aggregated to
inject linguistic knowledge during the pre-training
stage and to increase the abstractivity of the
generated summaries. We chose this methodology
because we hypothesize that reference impressions
are written in a mostly abstractive way. Also,
the pre-training method helped to transfer more
knowledge to the summarization task, which
increased the model’s performance in the original
work.

For pre-training, we chose data that were as
similar as possible to radiology reports in terms
of vocabulary and grammar. We selected the
following MIMIC datasets available at PhysioNet
(Goldberger et al., 2000): note events in MIMIC-
III (2 083 180 samples) (Johnson et al., 2016),
radiology reports in MIMIC-CXR (128 032)
(Johnson et al., 2019), and discharge (331 794)
and radiology reports (2 321 355) in MIMIC-IV
(Johnson et al., 2023). Additionally, we included
Wikipedia articles related to medicine to reinforce
the domain vocabulary (97 192).

The base version of the BART model is limited
to 1024 input tokens; however, most samples
exceeded this size. This fact could lead us to lose
valuable training data. To overcome this limitation,
we split texts into narrower samples as follows:
having the text split by lines and a window of no
more than 1000 words, we generated sub-samples

2https://huggingface.co/facebook/bart-base
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that contained at least a new line and filled the
window with as many words as possible. With
this method, we obtained a dataset of 40 894 042
samples.

Due to infrastructure limitations, we could only
train the model for one epoch, which took 12 days
with four NVIDIA RTX 3090 graphic cards. The
following hyperparameters were used: 4 samples
per device, 256 gradient accumulation steps, a
learning rate of 5×10−5 with a linear scheduler, 1%
of the epoch for warm-up, and 32 bits of training
precision. For the hyperparameters not mentioned,
we have used the default values of the 4.23.1 ver-
sion of transformers library of HuggingFace3.

4 Models for the Task

For the downstream task, we obtained three models
based on our pre-trained model. The first model
(M1) was fine-tuned with the train partition of the
shared task. The second one (M2) was fine-tuned
with the train and validation partitions. Finally,
the third one (M3) was fine-tuned with all the
partitions with available references: train,
validation, and test.

For the fine-tuning phase, we did a grid
search of certain hyperparameters with RayTune
(Liaw et al., 2018) through the HuggingFace
library. We did 20 trials over the following
hyperparameters: learning_rate (from 8× 10−6

to 4 × 10−5), num_train_epochs (10 or 15),
and gradient_accumulation_steps (2, 4, or 8).
Since we wanted to find which models obtained a
more balanced performance among the four met-
rics of the task (ROUGE-L, BLEU, RadGraph-F1,
and BertScore-F1), we defined the objective to
maximize as the harmonic mean (Ferger, 1931)
of these four scores. Finally, the three models
were fine-tuned during 15 epochs with an NVIDIA
RTX 4090 with the following hyperparameters: 8
samples per device, 4 gradient accumulation steps,
and a learning rate of 2.14× 10−5.

For the generation of impressions, we used the
generate method4 of HuggingFace. To achieve

3https://huggingface.co/docs/transformers/
v4.23.1/en/main_classes/trainer#transformers.
TrainingArguments

4https://huggingface.co/docs/transformers/
v4.23.1/en/main_classes/text_generation#
transformers.generation_utils.GenerationMixin

better performance, we identified certain hyperpa-
rameters and performed grid search using the M1
model and the validation partition, specifically:
max_length (60, 70, 80, 90, or 100), num_beams
(3, 4, 6, 8, or 10), and no_repeat_ngram_size (3,
4, 5, 6, 8, or 10). The bolded values maximized
the harmonic mean score; thus, we fixed them to
generate impressions with ours models.

5 Results

Pt Md BL RL BS RG HM

T

M1 17.61 30.19 53.13 31.19 28.41
M2 17.41 29.57 52.24 31.40 28.10
G1 15.99 34.07 56.30 35.25 28.89
G2 17.33 33.93 55.49 34.93 29.89

HT
M1 16.98 30.52 54.03 31.79 28.24
M3 18.06 30.19 53.94 32.58 29.04
G1 18.36 35.32 57.26 36.94 31.42

Table 2: Results on test partitions of our models and
those of the groups that achieved the highest score on
any of the four measures. For all measures, a higher
value means a better performance. M1, M2 and M3 are
the three models created with our approach. G1 and G2
are the models that have, at least, a highest value in any
measure, without taking into account our models.

Table 2 shows the results of our models (M1, M2,
M3) and those of the groups (G1, G2) that reached
the highest score, excluding our models, on any
of the four scores: BLEU (BL), ROUGE-L (RL),
BertScore-F1 (BS), and RadGraph-F1 (RG). The
overall performance on the four metrics is reflected
by the harmonic mean (HM). The results are di-
vided in two sections: test (T) and hidden-test
(HT). The leaderboard scores were computed by
limiting the prediction and the reference to 256
words.

Overall, our models have lower performance
than the best systems. In the test partition, our
best model (M1) averages a 9% lower performance
than the other two groups if BLEU is excluded
from the count, and 5.3% less when is included,
meaning that M1 performs substantially better in
BLEU than the other systems. Comparing our
models, M2 seems to perform worse than M1, de-
spite being trained with more data. In the case
of hidden-test, our best model (M3) averages
10.7% lower performance than G1 if BLEU is ex-
cluded from the count and 8.43% if not. Comparing
the performance of our models, unlike what hap-
pened in the test partition, M3 performs better
than M1. Therefore, the inclusion of the test par-
tition in training resulted in more acknowledgment
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for the model, probably because of the additional
findings types.

6 Discussion

When we observe Table 2, two main questions
rapidly come to our mind: Why did our models
obtain lower values in all scores but BLEU?, and
Why the M2 model performed worse than M1, de-
spite being trained with more data?. Surprisingly,
both questions point to a main problem in our mod-
els: the length of the generated impressions.
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Figure 1: Distribution of samples per number of words.
Reference impressions (blue) and generated ones M1
(red), M2 (green). X-axis: length of the impressions
in words, Y-axis: percentage of samples with a certain
length.

Figure 1 presents the distribution of the
impressions by their length in words. The blue
distribution is the reference impressions, the red
one is for those generated by M1, and the green
one is for M2. It is noticeable that the impressions
of our models follow a completely different
distribution than the references. However, the three
distributions have similar averages in word count:
51 for the references, 49 for the M1, and 51 for
the M2. Our models are trying to set a common
length for the impressions instead of identifying
which ones should be shorter and which ones
should be longer. Therefore, BLEU seems to be
weaker in this situation than the other metrics.
Moreover, M2 generates longer impressions than
M1, lowering the precision and, by extension,
its general performance. However, there is a
chance that M2 excels in some interesting aspects
compared to M1.

Table 3 shows the precision and recall obtained
by the models M1 and M2 on test for ROUGE-
L, BERTScore, and RadGraph; also, the harmonic
means of these six measures are shown. The SLN

group shows the real performance of the models.
Contrary, SLY shows the performance when, at
most, the first n sentences of the prediction are

precision/recall
M RL BS RG HM

SLN
1 30.59/36.47 52.31/54.56 30.40/37.43 38.17
2 29.16/37.55 49.66/55.45 30.17/38.34 37.90

SLY
1 35.75/33.29 56.38/52.77 34.05/34.14 39.12
2 35.73/33.94 56.09/53.45 33.34/34.69 39.26

Table 3: Precision and Recall of M1 and M2 models
in the test partition when there is no sentence limit
(SLN) and when the prediction is limited by the number
of sentences of the reference (SLY).

taken into account, where n is the number of sen-
tences of the reference. On SLN, we observe that
M2 has better recall than M1 but worse precision
due to the longer generated impressions, which
caused the final lower performance. On SLY, it is
noticeable that both models gain more precision
than lose recall; thus, our models place more rel-
evant information at the beginning. SLY shows
higher harmonic mean values than SLN, which in-
dicates that we could improve the performance of
our models by just focusing on making the models
increase their focus on the reference length. More-
over, the harmonic mean values also show that M2
places more relevant content than M1 at the be-
ginning of the text because limiting the number of
sentences was more beneficial for M2 than for M1.
Therefore, the additional data boosted the model
in aspects that were not noticeable by using F1
measures.

7 Conclusions

We presented an approach for Radiology Report
Summarization that continuously pre-trains a
general domain BART model. This approach
focuses on two main aspects: the use of biomedical
data to adapt the model to this specific domain
and the use of several pre-training tasks designed
to inject linguistic knowledge and increase the
abstractivity of the generated summaries. After the
pre-training phase, we fine-tuned this model with
different amounts of data from the shared task.
We also presented a study of the relationship
between the models performance and the lengths
of the generated summaries. We observed that
our models condense the main information in the
first sentences of the summaries. From the length
distribution of the summaries, we found that our
models tend to generate summaries with a common
length; meanwhile, the reference summaries
present more length variability. It seems that this
behavior could penalize the performance of our
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models, especially on those reports with short
reference summaries.

Limitations

The pre-training methodology used in this work
applies a masking process at the sentence level that
requires scoring the relevance of each sentence
within the text. Therefore, this implies additional
computational costs, limiting the scalability of our
approach.

Due to time restrictions, the appearance of hal-
lucinations in the generated radiology reports by
our models has not been measured. It would be
necessary to quantify this aspect because of the
criticality of the domain of use in future works.

Ethics Statement

The additional data that we have used for the
pre-training process are from the MIMIC dataset,
which meets the ethical requirements of Patient
Health Information.
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