@inproceedings{macharla-etal-2023-nav,
title = "nav-nlp at {R}ad{S}um23: Abstractive Summarization of Radiology Reports using {BART} Finetuning",
author = "Macharla, Sri and
Madamanchi, Ashok and
Kancharla, Nikhilesh",
editor = "Demner-fushman, Dina and
Ananiadou, Sophia and
Cohen, Kevin",
booktitle = "The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bionlp-1.55",
doi = "10.18653/v1/2023.bionlp-1.55",
pages = "541--544",
abstract = "This paper describes the experiments undertaken and their results as part of the BioNLP 2023 workshop. We took part in Task 1B: Radiology Report Summarization. Multiple runs were submitted for evaluation from solutions utilizing transfer learning from pre-trained transformer models, which were then fine-tuned on MIMIC-III dataset, for abstractive report summarization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="macharla-etal-2023-nav">
<titleInfo>
<title>nav-nlp at RadSum23: Abstractive Summarization of Radiology Reports using BART Finetuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sri</namePart>
<namePart type="family">Macharla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashok</namePart>
<namePart type="family">Madamanchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikhilesh</namePart>
<namePart type="family">Kancharla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the experiments undertaken and their results as part of the BioNLP 2023 workshop. We took part in Task 1B: Radiology Report Summarization. Multiple runs were submitted for evaluation from solutions utilizing transfer learning from pre-trained transformer models, which were then fine-tuned on MIMIC-III dataset, for abstractive report summarization.</abstract>
<identifier type="citekey">macharla-etal-2023-nav</identifier>
<identifier type="doi">10.18653/v1/2023.bionlp-1.55</identifier>
<location>
<url>https://aclanthology.org/2023.bionlp-1.55</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>541</start>
<end>544</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T nav-nlp at RadSum23: Abstractive Summarization of Radiology Reports using BART Finetuning
%A Macharla, Sri
%A Madamanchi, Ashok
%A Kancharla, Nikhilesh
%Y Demner-fushman, Dina
%Y Ananiadou, Sophia
%Y Cohen, Kevin
%S The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F macharla-etal-2023-nav
%X This paper describes the experiments undertaken and their results as part of the BioNLP 2023 workshop. We took part in Task 1B: Radiology Report Summarization. Multiple runs were submitted for evaluation from solutions utilizing transfer learning from pre-trained transformer models, which were then fine-tuned on MIMIC-III dataset, for abstractive report summarization.
%R 10.18653/v1/2023.bionlp-1.55
%U https://aclanthology.org/2023.bionlp-1.55
%U https://doi.org/10.18653/v1/2023.bionlp-1.55
%P 541-544
Markdown (Informal)
[nav-nlp at RadSum23: Abstractive Summarization of Radiology Reports using BART Finetuning](https://aclanthology.org/2023.bionlp-1.55) (Macharla et al., BioNLP 2023)
ACL