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Abstract

The question of what kinds of linguistic in-
formation are encoded in different layers
of Transformer-based language models is of
considerable interest for the NLP commu-
nity. Existing work, however, has overwhelm-
ingly focused on word-level representations
and encoder-only language models with the
masked-token training objective. In this paper,
we present experiments with semantic struc-
tural probing, a method for studying sentence-
level representations via finding a subspace of
the embedding space that provides suitable task-
specific pairwise distances between data-points.
We apply our method to language models from
different families (encoder-only, decoder-only,
encoder-decoder) and of different sizes in the
context of two tasks, semantic textual similar-
ity and natural-language inference. We find
that model families differ substantially in their
performance and layer dynamics, but that the
results are largely model-size invariant.

1 Introduction

It is more or less generally assumed that the success
of bidirectional masked language models (MLMs),
such as BERT (Devlin et al., 2019), on downstream
tasks is largely due to the fact that in pre-training
they learn to compute rich and well-structured rep-
resentations of their inputs. More precisely, it is
often argued that the task of masked language mod-
elling encourages models to successively aggregate
lexical/collocational, syntactic, and semantic in-
formation from the input text as the activations
progress through encoder layers (Tenney et al.,
2019). The extent to which BERT-like models
follow the stages of the classical NLP pipeline
(Niu et al., 2022) or accumulate contextual infor-
mation (Kunz and Kuhlmann, 2022) has been ques-
tioned. However, the association of middle layers
of MLMs with syntax and higher levels with seman-
tic information is not widely disputed as a general
principle and is taken for granted in many papers on

model analysis and downstream applications (Chi
et al., 2020; Li et al., 2021; Sharma et al., 2022).

Despite the high volume of literature on Trans-
former representations, these studies are mostly
constrained in two ways: (i) they deal almost exclu-
sively with word/token-level and not sentence-level
embeddings, and (ii) the lion’s share of attention
is given to encoder-only MLMs, notably variants
of BERT (cf. Reif et al., 2019; Hewitt and Man-
ning, 2019; Vulić et al., 2020; Conia and Navigli,
2022). As a result, the representations computed
by text-to-text models, such as T5, and causal lan-
guage models, such as members of the GPT fam-
ily, remain understudied. This can be largely at-
tributed to the fact that the standard way of analyz-
ing pretrained language models, namely probing,
proceeds by applying linear classifiers to token rep-
resentations at different layers (Belinkov, 2022).
This approach is not as easily applicable to MLM-
derived sentence representations or to representa-
tions computed by other types of models.1 Con-
versely, while it is possible to provide nuanced anal-
yses of causal Transformer-based models (Geva
et al., 2021, 2022), such analyses are not easily
transferable to MLMs (Nikolaev and Padó, 2023).

In this study, we propose a unified methodol-
ogy for studying layer-specific sentence-level rep-
resentations extracted from masked, text-to-text,
and causal language models. We analyze these
representations via structural semantic probing,
largely inspired by Chi et al. (2020). Instead of
directly predicting features of interest from repre-
sentations, structural probing projects them onto
lower-dimensional subspaces where distances are
interpretable in terms of task properties, or where

1Cf., however, Liu et al. (2019) and works targeting repre-
sentations computed by LSTM-based LMs: Giulianelli et al.
(2018); Aina et al. (2019); Sorodoc et al. (2020); Sukumaran
et al. (2022), and others. In this work, we focus on the pro-
cessing of natural language, cf. Bhattamishra et al. (2020) and
Traylor et al. (2021) on the ability of LMs to tackle formal
languages.
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different classes of data points are directly linearly
separable. By varying the dimensionality of the
projection space, we can gauge the amount of in-
formation contained in the embeddings.

While Chi et al. (2020) identify well-structured
syntactic subspaces, i.e. those encoding the topol-
ogy and labels of Universal Dependency trees, we
target sentence-level semantic subspaces and carry
out experiments on two semantic tasks, viz. sen-
tence similarity and natural language inference
(NLI). Our contributions are as follows:

1. We analyse the efficiency of solving different
semantics-level downstream tasks using only
suitably projected sentence embeddings de-
rived from vanilla pre-trained encoder-only,
encoder-decoder, and decoder-only models.

2. We conduct an extensive analysis of the in-
formativeness of embeddings derived from
different model layers using varying dimen-
sionalities of projection subspaces. Many of
the models we study have never been analysed
in this way, and we find that their behaviour is
influenced in interesting ways by both archi-
tecture and training regime.

3. We conduct our experiments at widely differ-
ing model scales: from BERT base, T5 mini,
and OPT 125m to T5 XXL, Llama 13B, and
OPT 66b. Our main finding is that the way in-
formation is structured across layers is largely
scale invariant, with models sharing the same
architecture and training regime demonstrat-
ing similar activation patterns.

4. We show that three major NLI datasets –
SNLI, MNLI, and ANLI – lead to very differ-
ent results when tackled with projected vanilla
embeddings. While SNLI and MNLI, surpris-
ingly, can be almost ‘solved’ with most vanilla
models, ANLI, in contrast, is nearly com-
pletely opaque, and only embeddings from
the biggest models are useful there.

The structure of the paper is as follows: § 2 intro-
duces structural probing and its application; § 3
lays out our experimental setup; § 4 presents and
discusses our findings, and § 5 concludes.

2 Semantic structural probing

In all our experiments, we assume that we are given
a set of sentences si ∈ S and a corresponding set

of sentence representations rsi,m,l ∈ R, where
each element is indexed with a sentence, a model
from which it was derived, and the model layer.
(Model and layer subscripts will be omitted when
not needed.) Depending on the task, we also have
labels of different types either for sentence pairs
(li,j) or individual sentences (li). We target the
following tasks:

1. Semantic textual similarity (STS): a pair of
sentences is labelled with a number from 0 to
5, where 0 corresponds to the smallest degree
of semantic similarity and 5 to the maximal
degree. We map these labels to the range [0,
1] of semantic differences.

2. Textual entailment (TE): an ordered pair of
sentences is labelled according to whether the
second sentence is entailed by the first one or
contradicts it. To simplify the analysis, we do
not address neutral sentence pairs.

To study the semantic organisation of sentence rep-
resentations, we aim to find a projection matrix
M to a lower-dimensional space, such that we can
directly ‘read off’ the answer from the application
of the matrix to elements of R.

For the STS task, we choose an M that min-
imises the differences between the gold-label simi-
larities and the Euclidean distance between embed-
dings (averaged over the mini-batch):

LSTS = (||Mrsi −Mrsj ||2 − li,j)
2 (1)

This corresponds to learning an approximation to
the Mahalanobis matrix MTM , that is, to learning
a distance metric in the embedding space. (This in-
terpretation carries over to our other experiments.)
This distance metric is optimised to correlate well
with the manually provided similarity judgements.
Correspondingly, we evaluate the performance of
the probing approach by computing the Spearman
correlation between ||Mrsi −Mrsj ||2 and li,j .

The number of columns of M is equal to the
dimensionality of the embedding space, but we
can control the number of rows and thus vary the
dimensionality of the projection subspace. In all
experiments, we use the sequence of the powers of
two from 21 to 29, augmented with the embedding
dimension of the model (e.g., 768 for BERT base).

We apply a similar approach for a subset of data
from the TE task: for sentence triplets where we
have both an entailment ei and a contradiction ci
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for a given premise pi, we define qi = ||Mrpi −
Mrej ||2 and ri = ||Mrpi −Mrcj ||2 and minimise

LTE-triplet = [qi − ri]+ (2)

where [·] stands for max(0, ·). In this manner, we
encourage premises to be closer to their entailments
than to contradictions.

By replacing Euclidean distances with cosine
similarities, we can further tackle any premise–
hypothesis pair (pi, hi) by minimising LTE-pair ={

(1− Cos(Mpi,Mhi))
2 if li = entail.,

(−1− Cos(Mpi,Mhi))
2 if li = contr.

(3)

where Cos is cosine similarity. In this manner, we
induce entailments to show positive cosine similar-
ities to their premises, and contradictions to show
negative similarities to their premises.2

We evaluate the TE models using accuracy. In
the triplet setting, we count as hits all cases where
ri − qi < 0. In the sentence-pair setting, we follow
the intuition above and consider answers to be cor-
rect if Cos(Mpi,Mhi) > 0 for entailments and
Cos(Mpi,Mhi) ≤ 0 for contradictions.

It must be stressed that by ‘evaluation’ we mean
a proxy measure of the informativeness of vanilla
embeddings and not a measure of how well the
models can solve the original task. The labels of
the tasks themselves constitute an ‘abuse of nota-
tion’ as in all cases we are dealing with reformu-
lations of the original tasks, which in the case of
NLI involve a considerable simplification. Thus,
numbers should not be compared to results on the
original tasks. Nevertheless, we believe that our
proxy tasks can provide interesting insights into
the models.

Representation extraction The extraction of
sentence representations depends on the architec-
ture of the model. When working with encoder-
only MLMs, such as BERT, we follow the standard
practice of averaging all token representations in
a given layer. When working with T5-type mod-
els, which have both an encoder and a decoder, we
hypothesise that the heavy lifting in representation
learning is being done by the encoder and apply the
same approach to it (cf. Ni et al., 2022). For causal
LM models, such as GPT-2, Llama, and OPT, we

2Even though Cosine, as a symmetrical measure, is not
an ideal match for asymmetrical entailment, it works well in
practice (Reimers and Gurevych, 2019).

extract the representation of the last token of the
input sentence.

Recall that since our goal is to probe general
models, we always work with vanilla pre-trained
versions with no fine-tuning. Our structural prob-
ing approach is, however, also applicable to fine-
tuned models.

3 Models, data, and experimental setup

3.1 Models
We experiment with the following models:

• MLMs: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2020), and ELECTRA
(Clark et al., 2020).

• Text-to-text: the original T5 series of models
(Raffel et al., 2020) and the T5-efficient model
series (Tay et al., 2022).

• Causal LMs: GPT-2 (Radford et al., 2019),
Llama3 and OPT (Zhang et al.).4

We aim at providing maximum coverage by model
type and size for all tasks, but due to very high
computational costs of running larger models on
large datasets (T5 XXL and causal LMs with 7b+
parameters), even in inference mode, gaps remain.

3.2 Datasets
For the STS task, we use the STS bench-
mark (Cer et al., 2017) distributed with the
sentence-transformers Python library.5

For the TE task, we use SNLI (Bowman et al.,
2015), MNLI (Williams et al., 2018), and ANLI
(Nie et al., 2020), all distributed by HuggingFace.

See the Appendix for the sizes of data splits.

3.3 Experimental setup
All experiments are implemented using PyTorch
and the transformers library (Wolf et al., 2020).6

Projection matrices are implemented as single Py-
Torch linear layers without bias and are fit to data
using AdamW (Loshchilov and Hutter, 2019) and
the learning rate of 10−5. A separate matrix is fit-
ted for each combination of the model, layer, and
subspace dimensionality.

3https://huggingface.co/openlm-research
4All model checkpoints were downloaded from Hugging-

Face.
5https://sbert.net/datasets/stsbenchmark.tsv.

gz
6Scripts for conducting the analyses can be found at https:

//github.com/macleginn/semantic-subspaces-code

https://huggingface.co/openlm-research
https://sbert.net/datasets/stsbenchmark.tsv.gz
https://sbert.net/datasets/stsbenchmark.tsv.gz
https://github.com/macleginn/semantic-subspaces-code
https://github.com/macleginn/semantic-subspaces-code
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For the STS task, where the dataset is compara-
tively small, the optimisation is allowed to run for
the maximum of 300 epochs with early stopping
after 10 epochs without improvement on the devel-
opment set. For the TE task, where training takes
much longer, each optimisation is run for 5 epochs
with the best checkpoint selected by performance
on the development set. All the results are reported
for the test set. In the context of the STS task,
we conduct 10 runs of each experiment to assess
the robustness of results to random initialisation of
projection matrices.

4 Results

In this section, we first describe our presentation of
the results of the experiments (§ 4.1) and then go
over individual tasks and model types (§ 4.2).

4.1 Presentation of results

The result for each experiment run is a matrix with
rows corresponding to projection-subspace dimen-
sionalities and columns corresponding to layers.
When it was feasible to run the experiments sev-
eral times, we obtain a matrix of averages and a
matrix of standard deviations. As we show below,
these matrices exhibit interesting patterns of how
semantic information is distributed in the models.

However, it is unwieldy to operate with a large
number of such matrices, and for summary compar-
ison of model architectures and sizes, we collapse
them into by-layer and by-dimensionality vectors
by applying the maximum function to the columns
or the rows of the matrices respectively. In order
to compare models of different sizes, which have
different numbers of layers, we further map layer
numbers to the interval [0, 1], encoding relative
layer position, such that 0 corresponds to the em-
bedding layer and 1 to the final layer, respectively.
We visualise these results as line graphs.

4.2 Results by task

4.2.1 Semantic textual similarity
Results across model architectures We first as-
sess to what extent sentence representations com-
puted by encoder-only, text-to-text, and causal lan-
guage models contain subspaces where distances
between representations mirror their semantic dis-
tances according to human annotations. Here, and
in the other experiments, our results provide a lower
bound on the amount of structure and informative-
ness of the embeddings extracted from vanilla pre-

BERT large cased
2 4 6 8 10 12 14 16 18 20 22 24

2 0.36 0.32 0.29 0.3 0.34 0.31 0.28 0.26 0.28 0.36 0.28 0.25
4 0.49 0.4 0.39 0.41 0.48 0.47 0.39 0.42 0.52 0.51 0.42 0.35
8 0.57 0.57 0.57 0.54 0.59 0.61 0.6 0.6 0.63 0.61 0.62 0.63

16 0.63 0.63 0.63 0.64 0.66 0.66 0.65 0.65 0.67 0.67 0.67 0.68
32 0.66 0.65 0.65 0.67 0.68 0.69 0.68 0.68 0.69 0.69 0.7 0.7
64 0.67 0.67 0.66 0.68 0.7 0.7 0.69 0.69 0.69 0.69 0.71 0.71

128 0.57 0.67 0.67 0.68 0.68 0.7 0.7 0.55 0.51 0.49 0.54 0.57
256 0.57 0.56 0.55 0.55 0.56 0.56 0.53 0.5 0.5 0.48 0.5 0.56
512 0.57 0.55 0.54 0.54 0.56 0.55 0.53 0.5 0.49 0.48 0.5 0.56

1024 0.57 0.55 0.54 0.54 0.56 0.55 0.52 0.5 0.49 0.47 0.49 0.56
1024′ 0.57 0.55 0.54 0.53 0.57 0.55 0.52 0.5 0.51 0.49 0.5 0.58

RoBERTa large
2 0.31 0.27 0.35 0.35 0.31 0.28 0.37 0.31 0.29 0.26 0.27 0.19
4 0.41 0.41 0.52 0.44 0.37 0.37 0.41 0.4 0.38 0.38 0.37 0.25
8 0.56 0.58 0.61 0.63 0.62 0.63 0.64 0.61 0.48 0.54 0.48 0.3

16 0.61 0.64 0.66 0.68 0.7 0.72 0.72 0.72 0.73 0.73 0.72 0.36
32 0.64 0.68 0.7 0.71 0.73 0.74 0.74 0.75 0.76 0.76 0.75 0.42
64 0.66 0.69 0.71 0.72 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.72

128 0.58 0.55 0.57 0.56 0.75 0.75 0.58 0.74 0.77 0.77 0.77 0.73
256 0.54 0.54 0.56 0.55 0.57 0.56 0.55 0.55 0.56 0.57 0.58 0.74
512 0.54 0.54 0.56 0.55 0.55 0.55 0.54 0.54 0.55 0.56 0.57 0.74

1024 0.54 0.54 0.56 0.54 0.55 0.55 0.54 0.54 0.54 0.55 0.56 0.52
1024′ 0.53 0.53 0.57 0.57 0.57 0.57 0.58 0.58 0.57 0.58 0.58 0.47

ELECTRA large
2 0.29 0.31 0.33 0.34 0.3 0.28 0.35 0.36 0.33 0.24 0.23 0.19
4 0.37 0.41 0.46 0.47 0.4 0.38 0.4 0.44 0.45 0.29 0.23 0.2
8 0.42 0.54 0.62 0.55 0.63 0.47 0.62 0.63 0.64 0.46 0.32 0.23

16 0.59 0.68 0.69 0.7 0.69 0.69 0.69 0.69 0.68 0.67 0.6 0.36
32 0.68 0.71 0.71 0.72 0.72 0.71 0.72 0.71 0.7 0.69 0.63 0.48
64 0.69 0.72 0.72 0.73 0.73 0.72 0.72 0.71 0.7 0.69 0.64 0.49

128 0.7 0.73 0.73 0.74 0.73 0.72 0.71 0.69 0.7 0.69 0.64 0.49
256 0.71 0.63 0.62 0.73 0.58 0.53 0.52 0.52 0.5 0.46 0.63 0.5
512 0.59 0.61 0.61 0.59 0.55 0.52 0.51 0.51 0.49 0.45 0.38 0.49

1024 0.59 0.6 0.6 0.58 0.55 0.52 0.51 0.51 0.48 0.44 0.38 0.31
1024′ 0.57 0.59 0.6 0.57 0.54 0.53 0.54 0.54 0.51 0.44 0.35 0.23

T5 large
2 0.27 0.28 0.28 0.25 0.25 0.25 0.24 0.23 0.21 0.21 0.16 0.2
4 0.37 0.36 0.36 0.34 0.36 0.33 0.33 0.29 0.28 0.27 0.22 0.25
8 0.45 0.45 0.43 0.42 0.42 0.41 0.41 0.36 0.32 0.32 0.3 0.31

16 0.49 0.5 0.5 0.48 0.48 0.46 0.45 0.4 0.36 0.36 0.33 0.35
32 0.52 0.53 0.53 0.52 0.51 0.49 0.49 0.42 0.39 0.37 0.35 0.39
64 0.54 0.56 0.56 0.54 0.53 0.53 0.51 0.44 0.4 0.39 0.36 0.45

128 0.55 0.57 0.57 0.56 0.55 0.53 0.53 0.45 0.4 0.4 0.36 0.74
256 0.56 0.57 0.57 0.56 0.56 0.54 0.54 0.45 0.41 0.4 0.37 0.74
512 0.56 0.58 0.58 0.57 0.56 0.54 0.54 0.46 0.41 0.4 0.37 0.73

1024 0.56 0.58 0.58 0.57 0.56 0.55 0.54 0.46 0.41 0.4 0.37 0.72
1024′ 0.54 0.54 0.51 0.44 0.41 0.38 0.31 0.22 0.2 0.14 0.14 0.49

Table 1: Spearman correlations of sentence-similarity
scores derived via projection from averaged-token rep-
resentations by model, layer (columns), and subspace
dimensionality (rows) with the STS benchmark scores.
1024′ stands for using vanilla representations without
projection. The results are averaged over ten runs.

trained models. Assuming, however, that our probe
provides a reasonable proxy for the informativeness
of the embeddings, we can also ask which layer
provides the richest embeddings and what is the
minimal necessary dimensionality of the projection
subspace to achieve good results.

Table 1 shows the full results for MLMs. (For
space considerations, odd-numbered layers were
omitted: they continue the same pattern.) It can be
seen that the task can be solved rather well using
only projected vanilla embeddings and that, while
RoBERTa shows better performance than BERT
(r = 0.77 vs. 0.71), best results are achieved using
the same setup: extracting representations from the
layers close to the last one and projecting them to
64 or 128 dimensions. ELECTRA, whose perfor-
mance is in between the classic MLMs (r = 0.74)
can also be made to perform well by using 128-
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GPT-2 large
3 6 9 12 15 18 21 24 27 30 33 36

2 0.23 0.25 0.21 0.24 0.3 0.31 0.24 0.25 0.19 0.18 0.22 0.38
4 0.39 0.37 0.36 0.36 0.37 0.33 0.29 0.26 0.23 0.23 0.27 0.49
8 0.45 0.4 0.38 0.41 0.4 0.29 0.29 0.26 0.27 0.27 0.3 0.55

16 0.46 0.4 0.38 0.41 0.38 0.27 0.29 0.28 0.28 0.28 0.32 0.57
32 0.44 0.38 0.37 0.38 0.26 0.29 0.3 0.28 0.29 0.29 0.33 0.56
64 0.42 0.39 0.36 0.23 0.26 0.3 0.3 0.28 0.29 0.3 0.33 0.33

128 0.43 0.35 0.2 0.23 0.26 0.3 0.31 0.29 0.29 0.3 0.34 0.32
256 0.3 0.21 0.19 0.23 0.27 0.3 0.31 0.29 0.3 0.3 0.34 0.32
512 0.3 0.21 0.19 0.23 0.27 0.3 0.31 0.29 0.3 0.3 0.34 0.32

1280 0.29 0.21 0.2 0.23 0.27 0.3 0.31 0.29 0.3 0.3 0.34 0.32
1280′ 0.28 0.21 0.19 0.22 0.27 0.3 0.31 0.29 0.31 0.32 0.35 0.31

Llama 7B
1 2 5 8 11 14 17 20 23 26 29 32

2 0.11 0.09 0.21 0.17 0.24 0.37 0.36 0.35 0.3 0.24 0.23 0.43
4 0.11 0.12 0.34 0.24 0.5 0.49 0.45 0.44 0.33 0.27 0.26 0.53
8 0.11 0.24 0.42 0.44 0.56 0.55 0.52 0.4 0.28 0.3 0.3 0.57

16 0.11 0.17 0.47 0.56 0.58 0.56 0.5 0.3 0.29 0.32 0.33 0.54
32 0.12 0.3 0.51 0.56 0.57 0.53 0.3 0.3 0.3 0.32 0.34 0.35
64 0.12 0.39 0.51 0.54 0.54 0.31 0.3 0.3 0.3 0.32 0.34 0.35

128 0.12 0.41 0.51 0.52 0.49 0.3 0.29 0.3 0.3 0.33 0.34 0.34
256 0.12 0.42 0.5 0.49 0.31 0.29 0.29 0.3 0.3 0.33 0.34 0.34
512 0.13 0.43 0.49 0.44 0.3 0.29 0.29 0.3 0.3 0.33 0.34 0.33

4096 0.18 0.44 0.4 0.19 0.29 0.29 0.29 0.29 0.3 0.33 0.34 0.33
4096′ 0.2 0.15 0.16 0.19 0.34 0.35 0.35 0.36 0.36 0.41 0.43 0.36

OPT 30B
4 8 12 16 20 24 28 32 36 40 44 48

2 0.08 0.13 0.13 0.12 0.16 0.38 0.38 0.33 0.3 0.23 0.21 0.41
4 0.14 0.12 0.15 0.15 0.17 0.44 0.5 0.46 0.3 0.29 0.27 0.53
8 0.15 0.15 0.16 0.17 0.2 0.52 0.51 0.44 0.33 0.32 0.33 0.56

16 0.18 0.16 0.17 0.17 0.19 0.51 0.5 0.34 0.34 0.33 0.35 0.53
32 0.19 0.19 0.19 0.17 0.19 0.5 0.36 0.33 0.35 0.34 0.37 0.35
64 0.24 0.21 0.21 0.19 0.21 0.45 0.36 0.35 0.35 0.36 0.37 0.35

128 0.52 0.25 0.23 0.21 0.4 0.38 0.35 0.34 0.35 0.35 0.37 0.34
256 0.5 0.47 0.42 0.38 0.34 0.32 0.35 0.34 0.35 0.35 0.38 0.34
512 0.48 0.45 0.35 0.33 0.31 0.27 0.34 0.34 0.35 0.35 0.38 0.34

7168 0.3 0.29 0.28 0.26 0.23 0.26 0.34 0.33 0.35 0.35 0.38 0.33
7168′ 0.19 0.19 0.2 0.19 0.2 0.28 0.41 0.42 0.44 0.46 0.49 0.39

Table 2: Spearman correlations of sentence-similarity
scores derived via projection from averaged-token rep-
resentations by model, layer (columns), and subspace
dimensionality (rows) with the STS benchmark scores.
′ stands for using vanilla representations without projec-
tion. The results are averaged over ten runs.

dimensional subspace, but its best performance is
achieved much earlier in the model, on layers 8–
10, and then slowly degrades. This demonstrates
that the specialisation of higher levels on semantic
features, characteristic of BERT-like models (Li
et al., 2021), does not apply straightforwardly to
ELECTRA, which raises the question of what kind
of hierarchy of linguistic features ELECTRA en-
codes. In line with the results by Chi et al. (2020),
the use of very high-dimensional subspaces, with
or without projection, leads to bad performance.

The encoder from T5 large demonstrates yet an-
other pattern: the performance is low for almost all
parameter combinations, but then suddenly jumps
to 0.74 at the last layer. (The results on layer 23,
not shown in the table, are very similar to those
from layer 22.) Additionally, T5 seems to encode
semantics in a higher-dimensional subspace, with
projecting on 128 dimensions being the minimum
and 1024 still working well.

The results from causal models, shown in Ta-
ble 2, demonstrate a different consistent pattern.
The best performance is worse, r = 0.56–0.58,
and it is usually achieved in the last layer, simi-

larly to T5, but the optimal dimensionality of the
projections is much lower (between 8 and 32), de-
spite the models’ higher embedding dimensionality.
Also, there is a clear cyclic development in perfor-
mance across layers. E.g., with a dimensionality
of 16, GPT-2 large first goes high (0.46), then low
(≈ 0.28), then high again (0.57). Llama 7B shows
1.5 cycles and OPT 30B two full cycles (cf. also
Figure 2).

The relatively lower informativeness of causal
models’ representations compared to those pro-
vided by MLMs seems to support the argument
that they are less suited for representation learning
(Clark et al., 2020; Reimers, 2022). However, the
fact that they are most informative in the last layer
goes against the previous interpretation that the last
layer of GPT-2 undergoes a representation collapse
(Ethayarajh, 2019) and rather supports the argu-
ment that the extreme anisotropy of the last layer
of GPT-2 is an artefact of inadequate similarity
modelling (Timkey and van Schijndel, 2021).7

Results across model sizes We now study the
connection between the semantic content of mod-
els’ representations, as measured by our structural
probe, and their size. Classic MLMs, such as BERT
and RoBERTa, are only available in a few sizes, not
counting various smaller distilled versions, such
as TinyBERT (Jiao et al., 2020). Later models
(both text-to-text and causal) were published in
a larger size range. Aggregated results are pre-
sented visually in Figure 1 (cf. Section 4.1). The
left pane shows the performance of encoder-only
MLMs across two model sizes each. We see that
while bigger models perform better, the distribu-
tion of the semantic information across layers is
very similar across model sizes. This finding is
further strengthened by the analysis of the perfor-
mance of the T5-efficient, Llama, and OPT models
shown in the right-hand pane of Figure 1. All T5-
efficient models attain the best performance in the
very last layer and show some loss of informativity
in middle layers.

The three Llama models, shown in the left pane
of Figure 2, follow the pattern from Table 2: the
performance of the lower layers is almost zero,
while middle layers attain maximum performance,
which then decreases and goes up again at the end.
The behaviour of the OPT models is even more

7Figures 5 and 6 in the Appendix provide a visualisation
of the distribution of the performance by the normalised layer
position and projection-space dimensionality across models.
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Figure 1: Performance of encoder-only and text-to-text MLMs on the STS probing task by layer and model size.
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Figure 2: Performance of Llama and OPT on the STS probing task by layer and model size.

complicated: nearly all of them demonstrate the
‘double dip’ pattern, where as the layer number in-
creases the performance first goes down, then up,
then down again, and finally reaches the peak in
the last layer. This oscillating pattern in the perfor-
mance of causal LMs does not fully align with the
the conclusions reached by Geva et al. (2021), who
claim that there exists a progression of lexical, syn-
tactic, and semantic features as information flows
through decoder-only models language models.

OPT, interestingly, is also the only model class
where we see a substantial effect of model size:
the smallest model, OPT 125m, shows a steady
increase in performance with a slight drop at the
very end. It outperforms all larger models and
nearly reaches the results of T5. This seems to
suggest that extremely small causal LMs have non-
trivial representation-learning capacities.

4.2.2 Natural Language Inference
In this section, we check if the distribution of se-
mantic information across model layers we identi-
fied in the context of the STS task can also be ob-
served in the context of NLI. We further check if the
patterns are dependent on the dataset and on the ex-
act operationalization: we contrast triplet-focused
probing, which is structurally close to our STS op-
erationalization, with cosine-similarity-based prob-
ing, which operates on the level of sentence pairs
and permits us to cover more data.

Figure 3 shows the performance of the MLMs,
text-to-text, and causal models of different sizes
on ANLI, MNLI, and SNLI; best results by model
class are summarised in Table 3. What comes to the
fore in this analysis are stark differences between
the three datasets, visible across all architectures.

ANLI presents the worst results across all model
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Triplet loss Cosine loss
Task

Model Acc Model Acc

OPT 30b 0.701 Llama 13b 0.613
Llama 3b 0.675 OPT 30b 0.609ANLI
ELECTRA l 0.658 ELECTRA l 0.561
ELECTRA l 0.939 OPT 30b 0.773
RoBERTa l 0.935 Llama 7b 0.764SNLI
OPT 6.7b 0.929 RoBERTa l 0.743
RoBERTa l 0.914 OPT 30b 0.86
OPT 30b 0.908 Llama 13b 0.856MNLI
ELECTRA l 0.902 ELECTRA l 0.821

Table 3: Best-performing model types (intervening mod-
els of the same type but different size were skipped) by
task and setting. Acc stands for accuracy; l, for large.

types, albeit with interesting differences. While
the T5-efficient models never do better than ran-
dom guessing and the MLMs guess randomly
in the cosine-similarity setting and sporadically
achieve accuracies of ≈ 0.6 in the triplet setting, the
models from the Llama and OPT families consis-

tently achieve accuracies above 0.6 in both settings,
squarely beating the encoder-equipped models.

The results on SNLI show the greatest differ-
ences between operationalizations. In the triplet set-
ting, all encoder-based models achieve accuracies
of ≈ 0.93 in their lower layers, and the results then
remain stable or degrade (ELECTRA). Causal mod-
els attain similar results in the upper layers, and
T5-efficient models demonstrate slightly lower re-
sults regardless of the layer. In the cosine-similarity
setting, however, the task becomes much harder,
with no model showing accuracy above 0.77, and
causal models again showing best performance.

The differences between layers are most pro-
nounced in MNLI. In the triplet setting, MLMs
show the best performance in middle layers, while
text-to-text and causal models achieve slightly
worse results in upper layers. In the cosine-
similarity setting, however, middle and upper lay-
ers of causal models again demonstrate the best
performance, approaching 0.86.
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Figure 4: Performance of models on NLI across datasets, model types and sizes, and projection-space dimensions.

On the whole, causal models demonstrate sur-
prisingly good results, outperforming T5-efficient,
competing with MLMs in the triplet setting, and
consistently outperforming them in the more chal-
lenging cosine-similarity setting.

Difference between layers The observations on
the distribution of information across model layers
made based on the STS task are largely repeated:
Llama models tend to achieve peak performance in
middle layers, while larger OPT models have a dip
in performance between early and late layers, with
the best performance attained near the end. The
largest OPT models are also distinguished by an
almost uninformative first layer.

Effect of subspace dimensionality Fig. 4 shows
that on MNLI and SNLI all models types achieve
peak performance with a dimensionality of at least
128 in the triplet-loss setting. This is in contrast
to the STS task, where only T5 profited from a
dimensionality above 64. However, no model can
profit from more than 16 dimensions for the cosine-

similarity setting, which highlights the influence
of the finer details of probing methodology on the
experimental results. The results on ANLI are gen-
erally inconclusive, as performance is low and un-
stable throughout; only OPT-30b seems to system-
atically gain from dimensionalities above 128.

Effect of model size Up to a certain point, the
size of the model is of a much smaller importance
than the architecture and training regime, and even
in the finer details of their performance, differently-
sized Llama models resemble each other more than
the OPT models that are close to them in parameter
count. When it comes to the best performance
on the probing task, however, the most successful
model is nearly invariably also the biggest in its
class, with the cosine setting being the most size
demanding.

5 Conclusion

Despite a surge of interest in prompting techniques
targeting large decoder-only language models (Liu
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et al., 2023), there are still settings where vector
representations of sentences remain a competitive
alternative, e.g. semantic search and information
retrieval (Thakur et al., 2021; Zhuang et al., 2023).
Therefore, it seems worthwhile to investigate sen-
tence representations from pre-trained models so
as to not only better understand models themselves
but also guide practical applications.

The results of our study suggest two general ob-
servations. First, no architecture is best suited for
representation learning, and the informativeness of
vanilla sentence representations can only be mea-
sured with regard to a particular task. Thus, while
the pre-trained RoBERTa provides the best repre-
sentations for semantic textual similarity, beating
much larger Llama 13b or OPT 30b and 66b, when
it comes to NLI, causal models can provide more in-
formative embeddings even at smaller model sizes,
in line with the findings of Muennighoff (2022)
regarding the informativeness of causal model em-
beddings for semantic search.

Secondly, different models arrive at very dif-
ferent patterns of information processing across
layers. Most surprisingly, ELECTRA, despite its
similarities to BERT, demonstrates a degradation
in performance on all surveyed tasks in its upper
layers, which begs the question of what kind of
linguistic hierarchy this model encodes. Similarly,
Llama and OPT models, despite sharing the same
architecture, also show markedly differing patterns
of information restructuring.

In this study, we targeted two rather general
semantics-oriented tasks. However, the proposed
methodology can be applied to other problems –
straightforwardly to regression tasks, such as po-
litical scaling (Glavaš et al., 2017) or emotion-
intensity estimation (Zad et al., 2021), but also
to classification tasks, as long as they support a rea-
sonable similarity-based reformulation. We leave
the exploration of these areas to future work.

Limitations

The results of this study depend on a long series
of design choices as to the particular ways of ex-
tracting sentence embeddings, reformulating the
downstream tasks, choosing the loss function, etc.
We believe that the choices we made are justifiable
and help to provide a strong lower bound on the in-
formativeness of sentence representations, but the
results we obtained are still dependent on them and
different operationalization may lead to somewhat

different conclusions.
A more general issue with this type of analysis

is the fact that the notion of semantics as encoded
by LMs is not well defined, and while STS and
NLI are both reasonable approximations, there are
differences in the way the surveyed models encode
information relevant for these tasks, which, among
other things, points to the importance of lexical
effects. Disentangling these aspects is an important
area for future work on model interpretability.

Finally, the validation and test splits of the ANLI
dataset in the triplet setting are small, which leads
to noticeable instability of the performance of all
models, except for OPT 30b.
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• ANLI Train: 94076; dev: 2132; test: 2132.
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Figure 5: Best performance on the STS task by layer.

Figure 6: Best performance on the STS task by projection-space dimensionality.


