
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 199–211
December 7, 2023. ©2023 Association for Computational Linguistics

199

Introducing VULCAN:
A Visualization Tool for Understanding our Models and Data by Example

Jonas Groschwitz
University of Amsterdam∗

j.d.groschwitz@uva.nl

Abstract

Examples are a powerful tool that help us un-
derstand complex concepts and connections. In
computational linguistics research, looking at
example system output and example corpus en-
tries can offer a wealth of insights that are not
otherwise accessible. This paper describes the
open-source software VULCAN, a visualiza-
tion tool for strings, graphs, trees, alignments,
attention and more. VULCAN’s unique abil-
ity to visualize both linguistic structures and
properties of neural models make it particularly
relevant for neuro-symbolic models. Neuro-
symbolic models, combining neural networks
with often linguistically grounded structures,
offer a promise of increased interpretability in
an age of purely neural black-box end-to-end
models. VULCAN aims to facilitate this inter-
pretability in practice. VULCAN is designed
to be both easy to use and powerful in its capa-
bilities.

1 Introduction

Humans effortlessly abstract patterns and complex
generalizations from even small sets of examples
(Posner and Keele, 1968; Gick and Holyoak, 1983;
Brown and Kane, 1988). This ability is particularly
useful for researchers in the field of NLP: Look-
ing at entries in a corpus helps us understand what
kinds of structures and phenomena occur in the cor-
pus, and looking at example model outputs helps
us understand the abilities and limitations of the
model. This empowers us to form a more precise
notion of how much we can (or cannot) trust the
model to be correct, and it often provides us with
ideas for how the model can be improved.

Here we introduce VULCAN: Visualizations for
Understanding Language Corpora And model pre-
dictioNs. VULCAN is a flexible, user-friendly tool
for visualizing linguistic structures and NLP model
predicions. For example, Fig. 1 shows VULCAN

∗Work done in part at the University of Edinburgh

visualizing an entry from the Little Prince Abstract
Meaning Representation (AMR; Banarescu et al.,
2013) corpus.1 It shows both the gold AMR anno-
tation (left) and an AMR predicted by a semantic
parser (right).

Beyond visualizing linguistics structures like
strings, trees and graphs, VULCAN can also dis-
play information such as alternative model predic-
tions, attention (including transformer’s multi-head
attention; Vaswani et al., 2017) and alignments.

Thus, VULCAN is particularly useful for inter-
preting neuro-symbolic models, which combine
neural networks with explicit (often linguistically
grounded) reasoning and structures. One sell-
ing point of neuro-symbolic models is their inter-
pretability. VULCAN, with its unique ability to
display both linguistic structures and properties of
neural models, makes that interpretability accessi-
ble in practice.

VULCAN also includes an advanced search
functionality to find examples relevant to a cer-
tain research question or problem statement. The
software is designed to be easy to use, and to be
applicable to a wide range of corpora and models.
VULCAN is available open source.2

2 Related Work

Many NLP visualization tools exist. However, they
tend to be limited to a smaller range of linguistic
objects they can display, are often tied to a spe-
cific framework, and don’t always allow displaying
model properties such as attention. We provide a
selection of examples here:

• AllenNLP Interpret (Wallace et al., 2019) is a
flexible tool to visualize neural models’ pre-
dictions, including features such as visualiz-
ing attention. However, AllenNLP Interpret
does not visualize more complex objects such

1https://amr.isi.edu/download/
amr-bank-struct-v3.0.txt

2https://github.com/jgroschwitz/vulcan

https://amr.isi.edu/download/amr-bank-struct-v3.0.txt
https://amr.isi.edu/download/amr-bank-struct-v3.0.txt
https://github.com/jgroschwitz/vulcan


200

Figure 1: VULCAN visualizing a sentence, the corresponding gold Abstract Meaning Representation (AMR)
semantic graph (left) and a predicted AMR (right).

as trees and graphs. Further, it is closely tied
to the AllenNLP library (Gardner et al., 2018),
development of which has been discontinued.

• Spacy’s Displacy3 is limited to POS tags and
dependency trees. It does not show e.g. alter-
native model predictions.

• NeAt-vision4 and VisuaLLM (Trebuňa and
Dusek, 2023) visualize model information,
such as alternative predictions including their
likelihoods,but only support strings.

• MaltEval (Nilsson and Nivre, 2008) allows
comparison between gold annotation and
model prediction, but is limited to dependency
trees.

• AMR-utils5 visualizes AMR graphs only.

• Many corpora have their own online visual-
ization. For example for the Universal Depen-
dencies (de Marneffe et al., 2021) treebanks,
multiple examples can be found.6 VULCAN
makes basic corpus browsing functionality
available out of the box.

In sum, VULCAN fills a gap by visualizing both
linguistic structures and (neural) model proper-
ties, a crucial combination for interpreting neuro-
symbolic systems.

There are also more general visualization tools

3https://demos.explosion.ai/displacy
4https://github.com/cbaziotis/neat-vision
5https://github.com/ablodge/amr-utils
6E.g. http://lindat.mff.cuni.cz/services/

teitok/ud211/index.php?action=browser&class=lang
and https://clarino.uib.no/iness-prod/sentences.

available. This includes LATEX packages like TikZ,7

and e.g. the graph plotting software Graphviz.8

Their broad functionality, that usually goes far be-
yond NLP, can be a hurdle for learning how to use
them effectively and can make them cumbersome
to use even for experts. By contrast, VULCAN
is designed to require little specialized knowledge
and comparatively little effort to use. Further, these
general tools tend to be non-interactive, and often
have long compile times.

3 The Core Design of Vulcan

The core functionality of VULCAN is to visualize
entries in a corpus, as well as model predictions on
that corpus. Advanced functionality includes the
display of further information such as alternative
predictions and their likelihood. A full description
of features follows in Section 4.

Fig. 1 shows an example, where VULCAN visu-
alizes an entry from the Little Prince AMR corpus.1

This is the third sentence in the corpus, displayed
together with the annotated AMR from the corpus
(left) and a predicted AMR (right; this AMR was
predicted by the parser of Groschwitz et al., 2018).

Throughout this paper, we will make a distinc-
tion between the host, who runs VULCAN and
provides the data, and the viewer, who looks at
the visualizations. In practice, host and viewer can
be the same person: take for example a researcher
who uses VULCAN to visualize her model’s pre-
dictions on the development set, in order to analyze

7https://tikz.net
8https://graphviz.org

https://demos.explosion.ai/displacy
https://github.com/cbaziotis/neat-vision
https://github.com/ablodge/amr-utils
http://lindat.mff.cuni.cz/services/teitok/ud211/index.php?action=browser&class=lang
http://lindat.mff.cuni.cz/services/teitok/ud211/index.php?action=browser&class=lang
https://clarino.uib.no/iness-prod/sentences
https://tikz.net
https://graphviz.org


201

errors and find the best next step for improving the
model. This researcher is then both the host and
the viewer. But if, say, VULCAN is used to host a
visualization of a corpus on the web, to showcase
the corpus to the public, then host and viewer are
different people.

Following this principle of host and viewer,
VULCAN uses a server/client design. The server
side is operated by the host; the viewer interacts
with the client side, which runs in the browser.
Thus, the viewer simply sees an intuitive browser
interface like the one in Fig. 1.

During setup by the host, VULCAN takes as
input a file in a dictionary format (see Section 6),
containing all (and only) the information required
for the visualization. All model predictions, atten-
tion etc. that are to be visualized must be included
in this input file, which uses a simple, generic for-
mat – this allows VULCAN to be agnostic about
the model’s implementation framework. The dic-
tionary can be presented as a pickle or JSON file
(generating JSON is particularly widely supported
across programming languages). Inside the dic-
tionary, structures like graphs and trees can be in-
cluded in a variety of formats: VULCAN supports
a range of input codecs (Section 6) that can be
further extended (Section 7).

The visualization can then be accessed from a
browser as long as the server program runs. View-
ers can browse the corpus, and access further in-
formation through e.g. mouseover interaction (Sec-
tions 4, 6.2).

4 Features

This section describes the visualization capabilites
of VULCAN in detail.

Throughout this section, we will use three exam-
ples:

UD Visualizes the PUD test set of the Japanese
Universal Dependency treebank (Fig. 2; Mc-
Donald et al., 2013). This is an example of
visualizing only a corpus and no model predic-
tions. This also highlights VULCAN’s ability
to render characters outside the latin alphabet.

LEAMR Visualizes the alignments predicted by
LEAMR (Blodgett and Schneider, 2021) on
the Little Prince AMR dataset.1 LEAMR
aligns nodes of the AMR semantic graphs to
tokens, using a combination of heuristics and
machine learning.

AM-parser Visualizes the predictions of the AM
parser (Groschwitz et al., 2018) on the Lit-
tle Prince AMR dataset.1 The AM parser is
a neuro-symbolic compositional parser that
predicts a so-called AM tree for a given sen-
tence, which consists of graph fragment su-
pertags and dependency edges that represent
graph-combining operations. The AM tree
then deterministically evaluates to an AMR
graph. Here, VULCAN shows the AM tree
both directly on top of the sentence and stan-
dalone (right), and shows both the gold and
the predicted AMR for comparison (left and
center respectively).

4.1 Visualized structures.
Vulcan can currently visualize:

• Strings and their tokenization (all examples),

• Tags for strings (UD, AM-parser examples,
Figs. 2, 4),

• Tables,

• Trees (AM-parser example, Fig. 4),

• Dependency trees (UD, AM-parser examples,
Figs. 2, 4),

• Graphs (LEAMR, AM-parser examples,
Figs. 3, 4).

Each of these structures has labeled elements:
tokens for sentences, cells in a table, nodes in a
graph etc. Each such element can be labeled with a
string, but also with a more complex structure from
the list above. For example, note how in Fig. 4,
the supertags on top of the string are themselves
graphs, and the nodes in the AM tree on the right
are labeled with graphs as well.

4.2 Alignments and model internals
VULCAN displays alignments by highlighting
aligned elements in blue when mousing over an
element. For example, in the LEAMR visualization,
when the mouse hovers over a token in the sen-
tence, aligned graph nodes are highlighted (and
vice versa).

Similarly, attention (e.g. Bahdanau et al., 2015)
is visualized: the higher the attention weight, the
stronger the highlighting shade (Fig. 5). VULCAN
can also visualize transformer’s multihead attention
(Vaswani et al., 2017). In that case, the highlighting
takes the shape of a matrix, where the different
heads of one layer are each represented in one row



202

Figure 2: VULCAN visualizing a dependency tree over Japanese text (Universal Dependencies).

Figure 3: VULCAN visualizing alignments for an AMR from the Little Prince corpus. The mouseover on the token
‘constrictor’ highlights the aligned node in the graph.

Figure 4: VULCAN visualizing predictions of the AM parser.



203

Figure 5: VULCAN visualizing multihead attention (left) and the attention of a single head (right), on a machine
translation example.9

Figure 6: VULCAN visualizing alternative supertags for the token constrictor from the example shown in Fig. 4
(CTRL + mouseover effect; screenshot of detail).

(Fig. 5, left). The viewer can also select a specific
attention head from a drop-down menu in the web-
interface, to show only the weights from that head
(Fig. 5, right).

Finally, for each element, VULCAN can display
alternative labels predicted by the model, and their
assigned probabilities, as long as this information
is provided by the host. This feature is accessed by
mousing over an element with the CTRL key pressed.
Fig. 6 shows the top five supertags predicted as
most likely, for the AM-parser example.

4.3 Search function

VULCAN provides a search interface to filter a
corpus for entries matching certain criteria. The
search functionality is based on a range of prede-

fined search patterns that can also be combined.
An example search for the visualization shown in
Fig. 1 is illustrated in Figs. 7-9.

Any search can have multiple search filters that
a corpus entry must all satisfy in order for it to be
included in the search results. The two search filters
of this example are shown in Fig. 7 and Fig. 8.

For each search filter, the viewer first selects
which structure of the corpus entry the filter ap-
plies to (Fig. 7A). Then, an outer search pattern
(Fig. 7B) is selected. For example, should the filter
focus on the graph’s nodes, on the edges, or on the
graph as a whole?

Then, multiple inner search patterns (Fig. 7C)

9Note that this example is fictional, for illustrating VUL-
CAN’s capabilities only. No actual model was trained.

Figure 7: VULCAN’s search interface (screenshot of detail). The blue markers A-D were added to the screenshot
for reference in the paper.



204

Figure 8: Second search filter used in Fig. 9 (screenshot of detail).

Figure 9: Search results with highlights. The search filters used here are the ones from Figs. 7 and 8, with the
matching nodes and tokens highlighted in green and red respectively.

can be selected (the available inner search patterns
depend on the selected outer pattern). The inner
patterns specify the actual search criteria, e.g. a
node having a certain label.

Executing the search then displays all corpus
entries that match all patterns. The structure’s ele-
ments (here nodes and tokens) that match the pat-
terns are highlighted in the search results, see Fig. 9.
Each filter has its own color (Fig. 7D), here green
and red.

5 Case Study

To illustrate the kinds of insights VULCAN makes
available, let us take a closer look at the AM-parser
example from Section 4. Specifically, we will inves-
tigate the sentence Once when I was six years old
I saw a magnificent picture in a book, called True
Stories of Nature, about the primeval forest. The
VULCAN visualization is shown in Fig. 10. In this

case study, we will gain insights into the probabil-
ity distributions that the parser predicts in practice
and find the reasons why the parser makes a spe-
cific error. Based on these insights, we develop
concrete ideas for a statistical analysis to confirm
the found issues, and possible model changes to
address them.

But before we jump into the analysis, let us
look at the AM parsing model in more detail (see
Groschwitz et al., 2018 for a full description). Re-
call that the AM parser predicts a so-called AM
tree, consisting of dependency edges and supertags,
that then evaluates to an AMR graph. Given a sen-
tence, the parser computes for each token, let us say
here the token at position i, three types of scores:

1. The supertag scores ω(G) for each possible
graph fragment supertag G from a lexicon
during training.10

10Technically, this score is further split into scores for delex-



205

Figure 10: Vulcan visualization for the sentence in the case study of Section 5, with each structure zoomed in on
the relevant parts. From left to right, top to bottom: gold AMR graph, predicted AMR graph, predicted AM tree,
input sentence with predicted AM tree. The numbers above each token specify the head of that token; -1 signifies a
dummy token outside the sentence for tokens that do not contribute to the actual AM tree.

2. The head scores ω(k → i), the likelihood
that the head of the token at position i is the
token at position k. I.e. the likelihood that
the incoming edge at position i comes from
position k.

3. The edge label scores ω(l|k → i) that a de-
pendency edge from k to i has label l.

A symbolic decoding algorithm then finds the
best AM tree based on these scores and the type
constraints of the AM algebra. This AM tree then
evaluates deterministically to the graph.

In the visualization in Fig. 10, the heads and su-
pertags of that best AM tree are shown above each
token, and the dependency edge labels (APP_s etc.)
are shown directly on the edge. Note that some
tokens in the graph do not have a supertag assigned
to them, and are not part of the dependency trees.
These tokens do not contribute directly to the final
graph, and the parser has decided to ignore them.
For a token to be ignored this way, three things
must happen: (1) it must have the dummy supertag
represented here with an underscore “_”, (2) its
head must be a ficticious token at position −1, and
(3) the label of the incoming edge must be IGNORE
(note that IGNORE edges are omitted in the visual-
ization here). That is, the supertag, head and edge

icalized supertags and separate lexical labels. This detail is
however not relevant for the analysis here, and we bundle the
scores into one.

label scores all contribute to a token being ignored
(they do not have to all say that ignoring the to-
ken is most likely, but in total must make ignoring
the token the most likely choice for the decoding
algorithm).

This case study focuses on the token was, the
fourth token in the sentence. It should be ignored
– it does not directly contribute information that is
represented in the gold AMR –, but it is not. Here
we want to find out why.

Figures 11-13 show the top five supertags, heads
and incoming-edge-labels, respectively, for the to-
ken was. Each possible prediction is given with
its score ω as a probability. We can make a first
observation immediately: the scores differ wildly
in how confident the model is. The scores for the
supertag (Fig. 11) have medium confidence, with
the dummy supertag “_” having the highest score
by quite a margin, but the other options also having
a significant amount of probability mass among
them. By contrast, the score distribution for the
head (Fig. 12) is very flat. The option of choosing
saw as the head, (wrongly) predicted as most likely,
has just barely a higher score than the (correct)
choice of the dummy token at position −1, which
is fourth most likely. By contrast in the other direc-
tion, the distribution for the edge label is extremely
peaky, assigning nearly all of the probabily mass to
the label MOD_mod. The correct edge label IGNORE
is not even in the top five.



206

Figure 11: Top five supertags with probability scores
for the token was (CTRL + mouseover effect).

Figure 12: Top five possible heads with probability
scores for the token was (CTRL + mouseover effect).

This explains why the token was is not ignored:
while the supertag and head prediction together
would indicate ignoring the token, they are not
strong enough to overcome the confidently wrong
edge label prediction.

A first takeaway then is that the score distribu-
tions may be unevenly balanced in general. Look-
ing at some more examples further supported this
hypothesis. A possible next step would be to ex-
amine the "peakiness" and "flatness" of the score
distributions with corpus-wide metrics, for exam-
ple by measuring the average entropy of supertag,
head, and edge label scores, and see if the pat-
tern holds: that the head scores are consistently
overly flat, and edge label scores are consistently
too peaky. If so, countermeasures such as hyperpa-
rameters to balance out the scores during decoding
would be a promising avenue to improve parser
performance.

A second takeaway is to look more closely at the
edge label predictions. Why are they so confidently
wrong? The answer lies in the following design de-
cision of the AM parser. To save computation time,
not all edge label scores ω(l|k → i) are computed.
Instead, for each token position i, edge label scores
are only computed for the most likely head kmax,
and then this distribution is used for all k. That is,
for all possible heads k, the score ω(l|k → i) is
approximated as ω(l|kmax → i). In our example,
kmax = 8 (saw). But the training data taught the
parser that IGNORE edge labels go with the dummy
head k = −1. Thus, the score of the IGNORE la-
bel here, which would be the correct prediction, is
very low. As a conclusion, this shortcut to save
computation time has a cost in terms of accuracy
here. Revisiting this decision is another promising

Figure 13: Top five edge label alternatives with prob-
ability scores for the incoming edge to the token was
(CTRL + mouseover effect).

avenue to improve parsing performance.
This concludes the case study. Looking at the

probability distributions for just a single token gen-
erated multiple hypotheses for how the parser could
be improved. A good first next step towards con-
firming these hypotheses would be to look at more
examples and see if the pattern holds. Then, corpus-
wide statistical analyses can serve as further con-
firmation where applicable. Finally, implementing
model changes, and iterating this pattern of evalu-
ation, interpretation and implementation continue
the research loop.

6 Usage and Data Formats

6.1 Hosting corpora with VULCAN
The key step in hosting a corpus with VULCAN
is to create a VULCAN visualization file. Once
such a file exists, running vulcan takes just one line
(technical details in the code documentation).

Technically speaking, a VULCAN visualization
file is simply a dictionary in a specific format,
which can be provided as a JSON or pickle file.
However, VULCAN contains Python functions that
allow building a VULCAN visualization file in an
intuitive way, without having to worry about the
concrete dictionary format.

The general idea is that each entry in the cor-
pus has a fixed set of structures that we want to
visualize. For example, in Fig. 1, there are struc-
tures named the ‘Gold graph’, ‘Predicted graph’
and ‘Sentence’. To build a VULCAN visualization
file, one first specifies this fixed list of structures
that each corpus entry consists of. Then one adds
the corpus entries one by one.

More technically speaking, the first step is to
create a VulcanFileBuilder object, whose con-
structor takes as only parameter a dictionary like
this (again, for the example in Fig. 1):

{"Gold graph": "penman_string",
"Predicted graph": "penman_string",
"Sentence": "string"}

It maps structure names (like “Gold graph”) to their
visualization type (like “penman_string“). The vi-



207

sualization type is a string that describes what input
codec to use for a structure, and how the structure
will be visualized (as a table, graph, etc.). For ex-
ample, “penman_string“ is registered in VULCAN
as a format that uses the Penman11 input codec to
read a string encoding of a graph, and then displays
the output as a graph. VULCAN features a range of
input codecs for common formats, such as Penman
graphs and NLTK12 trees.

After this initialization, corpus entries
can be added with VulcanFileBuilder’s
add_instances_by_name function. The function
adds one corpus entry at a time, and takes as only
argument a dictionary like this:

{"Gold graph": "(b / be-loc...",
"Predicted graph": "(b / be-loc...",
"Sentence": "Here is a copy of

the drawing ."}

(with the string encodings of the graphs abbrevi-
ated here). The dictionary maps structure names
to the actual structures for this corpus entry, en-
coded in a way that is compatible with the input
codec specified during initialization. For example,
the string “(b / be-located-at-91 :ARG1 ...”
(and so on) is in the correct format for the Penman
codec.

Alignments, attention scores and alternative la-
bel predictions can be added similarly, using the fol-
lowing format. In VULCAN, each element within
a structure (a token in a string, a cell in a table, a
node in a graph, etc.) has a unique identifier in that
structure, the element name. For example, a token’s
name is its position in the sentence. Alignments
and attention are specified as dictionaries that map
pairs of element names to a score (for alignments,
the scores are 1 or 0). Alternative label predictions
are also encoded as a dictionary, mapping an ele-
ment’s name to a list of its alternative labels (and
their scores). These generic formats make it easy
to create input for VULCAN from any source.

A VULCAN visualization file can also be built
by hand, e.g. if the host prefers building it in a
programming language other than Python. The full
dictionary file format is described in Appendix A.

6.2 Viewing corpora with VULCAN
Viewing a VULCAN visualization essentially con-
sists of opening the respective website in a browser.
Navigating and searching the corpus is performed

11https://github.com/goodmami/penman
12https://www.nltk.org/

with self-explanatory buttons. Intuitive zoom
(mousewheel) and drag gestures are implemented
so that the viewer can focus in on a specific part
of an object (like in Fig. 10), or view the object as
a whole. Mousing over an element shows corre-
sponding alignments and attention, where applica-
ble (Figs. 3, 5). Mousing over an element while
holding the CTRL key displays alternative label pre-
dictions (if given; e.g. Fig. 6).

6.3 Under the hood
The server side of VULCAN is implemented in
Python. Communication between the client and the
server uses Eventlet13 and Socket.IO.14 VULCAN
can be hosted both locally and on the web. The
client side is implemented in JavaScript and D3.15

7 Extensibility

VULCAN is modular, built with extensibility in
mind. In particular, it is straightforward to add
new input codecs, and to add new search patterns.
This way, the host can customize VULCAN to their
needs.

Future work could also add functionality to vi-
sualize completely new objects, such as images, or
the ability to play sound files.

8 Conclusion

We have displayed the capabilities of VULCAN, a
visualization tool for linguistic structures, neural
models, and their interactions.

Among the features showcased in this paper
are the visualization of strings, trees, graphs and
complex supertags, as well as alternative predic-
tions with their likelihoods and multi-head atten-
tion. This combination of features makes VUL-
CAN particularly suited to facilitate the interpreta-
tion of neuro-symbolic models in practice. VUL-
CAN also features a powerful search functionality
and has broad compatibility due to its flexible input
format.

We built VULCAN to make it easier to gain
insights into corpora and models by looking at ex-
amples. We hope that VULCAN will play a part in
making neural models in natural language process-
ing and generation more interpretable and tangible.

13https://eventlet.net/
14https://socket.io/
15https://d3js.org/

https://github.com/goodmami/penman
https://www.nltk.org/
https://eventlet.net/
https://socket.io/
https://d3js.org/


208

Limitations

One potential application of VULCAN is formal
error analysis. However, in this use case, VUL-
CAN can currently only contribute the visualiza-
tion. Other tasks, such as logging of errors, must
be done separately (though possible future work
could extend VULCAN to allow error annotation
within the visualization interface). For a detailed
discussion of good practices in error analysis, see
e.g. van Miltenburg et al. (2021).

As mentioned in Section 7, VULCAN does not
yet support visualization of multimodal elements
such as images, audio or video.

Ethics Statement

We do not see any particular ethics concerns with
this work.

Acknowledgements

Many thanks go to Meaghan Fowlie and Matthias
Lindemann for their feedback and encouragement.
Special thanks to Ivan Titov and Raquel Fernández
for their support in making this work possible. This
work has been funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)
– 492792184.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Austin Blodgett and Nathan Schneider. 2021. Prob-
abilistic, structure-aware algorithms for improved
variety, accuracy, and coverage of AMR alignments.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3310–3321, Online. Association for Computational
Linguistics.

Ann L Brown and Mary Jo Kane. 1988. Preschool chil-
dren can learn to transfer: Learning to learn and learn-
ing from example. Cognitive psychology, 20(4):493–
523.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

Mary L Gick and Keith J Holyoak. 1983. Schema induc-
tion and analogical transfer. Cognitive psychology,
15(1):1–38.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841, Melbourne,
Australia. Association for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló,
and Jungmee Lee. 2013. Universal Dependency an-
notation for multilingual parsing. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 92–97, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Jens Nilsson and Joakim Nivre. 2008. MaltEval: an
evaluation and visualization tool for dependency
parsing. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Michael I Posner and Steven W Keele. 1968. On the
genesis of abstract ideas. Journal of experimental
psychology, 77(3p1):353.

František Trebuňa and Ondrej Dusek. 2023. VisuaLLM:
Easy web-based visualization for neural language
generation. In Proceedings of the 16th International
Natural Language Generation Conference: System
Demonstrations, pages 6–8, Prague, Czechia. Associ-
ation for Computational Linguistics.

Emiel van Miltenburg, Miruna Clinciu, Ondřej Dušek,
Dimitra Gkatzia, Stephanie Inglis, Leo Leppänen,
Saad Mahamood, Emma Manning, Stephanie Schoch,
Craig Thomson, and Luou Wen. 2021. Underreport-
ing of errors in NLG output, and what to do about it.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/P18-1170
https://aclanthology.org/P13-2017
https://aclanthology.org/P13-2017
http://www.lrec-conf.org/proceedings/lrec2008/pdf/52_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/52_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/52_paper.pdf
https://aclanthology.org/2023.inlg-demos.3
https://aclanthology.org/2023.inlg-demos.3
https://aclanthology.org/2023.inlg-demos.3
https://aclanthology.org/2021.inlg-1.14
https://aclanthology.org/2021.inlg-1.14


209

In Proceedings of the 14th International Conference
on Natural Language Generation, pages 140–153,
Aberdeen, Scotland, UK. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002


210

A Format of VULCAN visualization files

VULCAN visualization files, the input to the VUL-
CAN software, consist of basic list and dictionary
structures. VULCAN can read them in pickle and
JSON format.

At the top level, VULCAN visualization files are
lists of dictionaries. The list contains two types of
dictionaries: one for data that specifies the struc-
tures (graphs, strings, etc.) to be visualized. and
one for linkers that specifies alignments and atten-
tion.

A data dictionary describes all structures of one
type in the corpus. For example, for the visualiza-
tion in Fig. 1, there is one data dictionary for all
“Gold graph” objects, one for all “Predicted graph”
objects, and one for all “Sentence” objects. A data
dictionary has the entries specified in Table 1:

A linker dictionary describes a relation between
two structures: alignments or attention (both use
the same format). It has entries as specified in
Table 2

A.1 Label alternatives format
The entries for one ‘label alternative’ are:

Dictionary key Value
“label” The alternatively predicted la-

bel (can itself be a string,
graph, etc).

“format” Like the format in the data
dictionary above. Specifies
the format the label is in.

“score” The score (or likelihood) that
was predicted for this label

We recommend specifying the top k label alterna-
tives, where k is around 3-5.



211

Key Value
“type” For data dictionaries, this is always the string “data”

“name” The name of this structure, e.g. “Gold graph”. This is displayed in
the top right of the visualization for this structure.

“format” A name from a predefined list of possible formats. This specifies
the format in which the structures are provided; in particular, what
input codec to use and whether to display the structure as a string,
graph, etc.

“instances” The list of objects of this type in the corpus. For example, all gold
graphs, or all predicted graphs, or all sentences. The objects in this
list must be in the format specified in the “format” entry.

“label_alternatives” Optional. A list, with one entry for each instance in “instances”.
Each such entry is a dictionary, mapping element names to a list
of ‘label alternatives’. Each ‘label alternative’ is itself a dictionary
with entries specified in Section A.1.

“dependency_trees” Optional. Only available if the structures are strings (or tagged
strings, which are treated as tables on a technical level). A list of
dependency trees, one for each entry in “instances”. A dependency
tree is a list of triples (source, target, label), where source is the
0-based index of the edge’s origin (-1 if the edge has no origin, e.g.
the root indicator), target is the 0-based index of the word the edge
points to, and label is the edge label (a string).

Table 1: Key-value pairs of the data dictionary.

Dictionary key Value
“type” For linker dictionaries, this is always the string “linker”

“name1” The name of one of the structures that this links (for example,
"AMR" in Fig. 3).

“name2” The name of the other structure that this links (for example, "Sen-
tence" in Fig. 3).

“scores” A list of outer dictionaries, one for each entry in the corpus. Each
outer dictionary maps element names from the structure with name
name1 to inner dictionaries. Each inner dictionary maps element
names from the structure with name name2 to scores between 0 and
1. Closer to 1 means a higher attention weight. For alignments, use
1 for aligned (and 0 for not aligned, but this is the default value and
does not need to be specified). In other words, the outer and inner
dictionaries describe a sparse matrix between the element names of
the structure name1 and the element names of the structure name2;
the entries in the matrix are the scores. (Sparse in the sense that
not all entries in the matrix need to be specified in the matrix; they
default to 0).

Table 2: Key-value pairs of the linker dictionary.


