
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 233–249
December 7, 2023. ©2023 Association for Computational Linguistics

233

METAPROBE: A Representation- and Task-Agnostic Probe

Yichu Zhou
School of Computing

University of Utah
flyaway@cs.utah.edu

Vivek Srikumar
School of Computing

University of Utah
svivek@cs.utah.edu

Abstract

Probing contextualized representations typi-
cally involves comparing task-specific model
predictions against ground truth linguistic la-
bels. Although this methodology shows what
information can be recovered by a classifier, it
does not reveal how a classifier uses the repre-
sentation to make its decision. To address the
latter problem, we ask: Do task-classifiers rely
on representation- and task-independent geo-
metric patterns in the embedding space? We ex-
plore this question by developing METAPROBE,
an approach that uses geometric properties of
representations to predict the behavior of task-
specific classifiers (i.e, their predictions as op-
posed to the ground truth). Our experiments
reveal the existence of universal geometric pat-
terns across representations that can predict
classifier predictions. Consequently, this al-
lows us to posit a geometric explanation for
the impressive performance of contextualized
representations.

1 Introduction

Pre-trained contextualized representations (e.g., Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al.,
2019b; He et al., 2021) have advanced the state-
of-the-art across NLP. Unsurprisingly, probing
representations, i.e., understanding what linguistic
information they encode, and how they do so, has
provoked much recent interest in the NLP research
community (e.g., Hupkes and Zuidema, 2018; Ten-
ney et al., 2019; Voita and Titov, 2020; Lasri et al.,
2022; Immer et al., 2022; Belinkov, 2022; Choud-
hary et al., 2022; Wang et al., 2023).

Although previous work undoubtedly helps un-
derstand contextualized representations, they suffer
from two major drawbacks. First, they do not offer
a justification of how classifiers trained on a rep-
resentation arrive at their decisions. For example,
the commonly used paradigm of classifier-based
probing treats representations as black boxes, and
relies on the final predictive performance to infer

the knowledge encoded in them. Second, since
previous work probes representations individually,
they do not uncover common patterns in classifiers’
decisions across tasks and representations. The
fact that most contextualized representations work
well on across tasks (Liu et al., 2019a) leads us
to conjecture the existence of universal patterns
in the decision processes of classifiers that can be
uncovered by examining representations.

In this work, we ask: Are there universal geomet-
ric patterns in how contextualized representations
embed text that explain their impressive perfor-
mance across tasks? To explore this question, we
propose a new supervised probing paradigm that
studies predictions of multiple task-specific clas-
sifiers (henceforth task-classifiers) based on geo-
metric properties of representations. By mimicking
the behavior of task-classifiers in this fashion, we
discover and analyze the patterns in the representa-
tions that lead to task-classifier decisions.

We present METAPROBE, an instantiation of this
idea of exploring universal geometric patterns in
contextualized representations. Given an unseen
example and a representation, METAPROBE esti-
mates how probable it is for a trained task-classifier
to predict each label. Importantly, it does so only
using features that use geometric properties of the
representation and the task data. In other words,
instead of trying to mimic the consensus of an-
notators as standard classifiers do, METAPROBE

mimics other classifiers trained on the same rep-
resentation and data. This probability distribution,
coupled with the choice of features, allows us to
analyze the usefulness of a representation for pre-
dicting an example. For example, a uniform label
distribution for an example indicates that the cur-
rent representation is not informative for that exam-
ple because classifiers will be maximally confused
about it. METAPROBE is a linear model; conse-
quently, its parameters help understand which geo-
metric properties are relevant for task-classifiers.
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Our experiments on ten NLP datasets (covering
five different tasks) and four contextualized repre-
sentations reveal task- and representation-agnostic
patterns in how the geometry of embeddings is em-
ployed by successful models. We show that these
common patterns can serve as “zero-shot probes”
for unseen tasks (manifested as datasets) and rep-
resentations. Finally, by inspecting the learned
METAPROBE parameters, we find that the task-
classifiers make their decisions using not only sim-
ple geometric properties such as distances between
examples (which is usually employed by a nearest
neighbor probe), but also more sophisticated geo-
metric properties, e.g. involving potential changes
to the decision surfaces that separate two differ-
ent labels (which cannot be captured by a nearest
neighbor probe).

In summary, the contributions of this work are:
1. We propose a new supervised probing

paradigm of predicting the behavior of task-
classifiers using the geometric structure of
examples in an embedding space. We in-
stantiate this idea with a linear model called
METAPROBE.

2. We hypothesize and verify the existence of
universal geometric patterns over contextual-
ized representations that can explain the pre-
dictions of classifiers trained over them.

3. Via experiments, we show that METAPROBE

identifies important geometric properties that
account for the predictive decision process of
a task-classifier, even on previously unseen
tasks and representations.

2 Two Characteristics of Representations

Contextualized representations have two character-
istics: their predictiveness and their descriptive in-
trinsic properties. Existing probing methodologies
focus on one or the other (Michael et al., 2020).
Predictive probing involves training supervised
classifiers to predict one or more specific linguistic
properties using the given representations. Repre-
sentation quality is evaluated using various criteria,
e.g. accuracy, complexity, etc., derived from the
learned classifiers (e.g. Conneau et al., 2018; Kim
et al., 2019; Kassner and Schütze, 2020; Goodwin
et al., 2020; Pimentel et al., 2020b,a; Aghazadeh
et al., 2022; Tucker et al., 2022; Gonen et al., 2022;
Arps et al., 2022). In contrast, descriptive prob-
ing looks into the intrinsic structure of representa-
tions (Ethayarajh, 2019; Zhou and Srikumar, 2021;

Xypolopoulos et al., 2021; Chang et al., 2022), and
focuses on discovering properties of the representa-
tion using cluster analysis (Aharoni and Goldberg,
2020) or visualization technqiues (Reimers et al.,
2019; Vig, 2019).

2.1 Predictiveness of Representations

A large class of today’s NLP applications involve
building a classifier (denoted by h henceforth) us-
ing a dataset (denoted byD) with a pre-trained con-
textualized representation such as RoBERTalarge
(denoted by ϕ) as a feature space. As a result, a
representation’s predictiveness—that is, the perfor-
mance of a classifier trained over it—has received
most attention in the probing literature (e.g., Xiang
et al., 2022; Evci et al., 2022, and many others).
However, Zhou and Srikumar (2021) point out that
using the performance of a single task-classifier
may not relibly characterize the quality of a repre-
sentation because other confounding factors may
affect its performance. Instead, the entire set of
classifiers H learned over the representation may
provide more information. With such a set, we
can ask several natural questions about an unseen
example x:

• What label will the majority of the classifiers
in H predict for x?

• Which labels are confusable for x? That is,
which labels will be predicted by at least one
of the classifiers in H?

• Suppose we draw a random classifier from H .
What is the probability that it will predict a
label y?1

The first question is commonly investigated in pre-
dictive probing work by taking the average accu-
racy of multiple runs. It directly shows how well
a contextualized representation captures a linguis-
tic property. The second question can tell us how
confidently a representation encodes an example
x—something that the answer to the first question
does not reveal. The last question tells us how
difficult the example x is. For example, if the prob-
ability that a randomly chosen classifier in H pre-
dicts a label is uniformly distributed over the label
set (see footnote 1), then the representation ϕ is
not informative for x even though many individual
classifiers in H may be correct in their predictions.

1Note that the probability described here is different from
the distribution over labels predicted by any single classifier.
Here, the label uncertainty is due to the choice of classifiers.
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2.2 Descriptive Properties of Representations
One shortcoming of predictive probing is that it
treats the representation as a blackbox. It cannot
reveal how representations help learned classifiers
to make their decisions. This question is the focus
of another line of work, called descriptive prob-
ing (e.g., Reif et al., 2019; Voita et al., 2019; Saphra
and Lopez, 2019), and we refer to the attributes un-
covered by such work as the descriptive intrinsic
properties of a representation. Descriptive prob-
ing analyzes a representation on its own terms by
finding patterns in the representations without ref-
erence to any specific task. We can ask:

• Are there any task-agnostic regularities in a
representation?

• Do they correlate with an NLP task?
• If so, how do they contribute to the predictive

behavior of the representation?
However, without a target task, descriptive prob-

ing fails to connect these structural patterns with
the predictiveness of a representation.

2.3 Quantifying Predictiveness and
Descriptive Properties

To understand how task-classifiers make their de-
cisions for unseen examples, we propose to use
descriptive aspects of a representation to estimate
its predictiveness for a target task. We first need to
quantify these two characteristics.

Quantifying Predictiveness. As discussed in
§2.1, we care about how different task-classifiers
behave on the given representation. Beyond the
usual source of uncertainty stemming from the data,
we also have uncertainty over the choice of classi-
fiers (Hewitt and Liang, 2019; Talmor et al., 2020;
Zhou and Srikumar, 2021). One way to address this
is to “marginalize away” the uncertainty by enumer-
ating all (or, many of) the possible classifiers. That
is, we can quantify the predictiveness of a represen-
tation by having many classifiers make predictions
on the same example. The empirical distribution
over their predictions captures the predictiveness of
the representation for this example. We will refer
to this label distribution for each unseen example
x as predicted label distribution:

Ppred(y | x) = 1

|H|
∑
h∈H

1[h(x) = y] (1)

Here, the set H is the set of classifiers learned
from a dataset D using a representation ϕ, and the
notation 1[·] represents the indicator function.

As an illustration, given an example and 100
task-classifiers, suppose 90 classifiers predict label
A, 5 predict B, and 5 predict C. The empirical distri-
bution of interest is the distribution that allocates
90% probability to A and 5% each to B and C.

Two points are worth noting about Ppred. First,
Ppred is a property of a representation ϕ and an
example x, and not any specific task-classifier. Sec-
ond, Ppred does not require the ground truth la-
bel. It describes how task-classifiers would behave
given the representation and an example.

Quantifying Descriptive Intrinsic Properties.
To quantify the descriptive properties of a repre-
sentation, we use geometric attributes based on
DIRECTPROBE (Zhou and Srikumar, 2021), a re-
cently proposed supervised clustering technique.
Given a representation ϕ and training set D, DI-
RECTPROBE returns a set of linearly separable clus-
ters of examples, which we will call C = {Ci}ni=1.
Each cluster Ci is guaranteed to contain examples
from D that have the same label. There may be
multiple clusters for a label as the labels may not
be linearly separable in the given representation.
Importantly, any decision boundary separating the
labels must cross the regions between differently
labeled clusters. Abstractly, we can think of the
clusters as forming a geometric layout of labels in
the embedding space. Subsequent work by Zhou
and Srikumar (2022) showed that the margin be-
tween two clusters correlates with the how well
task-classifiers using the representation generalize.
In this work, we take a step further to explore other
geometric properties beyond the margin.2

3 From Descriptive Properties to
Predictiveness

In this section, we first present METAPROBE, a
linear model that uses the geometric features of
a representation to predict the predicted label dis-
tribution (from §2.3) for an example. Then, we
introduce the geometric features we will explore
in this work. Finally, we describe details about the
training process of METAPROBE.

3.1 Modeling Predicted Labels
Given a pair of dataset and representation (D,ϕ),
suppose q is the predicted label distribution (eq. (1))
for an unseen example x. Let C = {Ci}ni=1 denote
the set of DIRECTPROBE clusters for the data. We

2We use the DIRECTPROBE implementation from https:
//github.com/utahnlp/DirectProbe.

https://github.com/utahnlp/DirectProbe
https://github.com/utahnlp/DirectProbe
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define METAPROBE to be a linear model that uses
only properties of the clusters C and an example x
to predict the predicted label distribution q.

Before getting into the details of METAPROBE,
we first give a high level overview. Recall from
§2.3 that each DIRECTPROBE cluster is associated
with one label, but a label may be spread across
multiple clusters. For an unseen example, a natural
prediction strategy is to use the nearest cluster and
its label, which was explored by Zhou and Sriku-
mar (2021). Rather than predicting a single label,
we seek to construct a distribution over all labels
(i.e. the predicted label distribution). To do so,
we consider all clusters. For each cluster Ci, we
compute a score that indicates the affinity between
x and Ci. Since a label may correspond to multiple
DIRECTPROBE clusters, we score labels by aggre-
gating the scores of clusters for each label, before
normalizing to obtain a valid probability distribu-
tion over the labels. To operationalize this idea,
we extract geometric features ψ(x,Ci) ∈ Rd that
characterize the relationship of the example x to
the cluster Ci (described in §3.2). The score of x
and Ci is the weighted combination of its features:

s(x,Ci) =W⊤ψ(x,Ci) (2)

where W ∈ Rd is a learned parameter vector that
is shared by all clusters.

Let v ∈ Rn be the score vector for all n clusters,
i.e. vi = s(x,Ci). While we may normalize the
scores using the softmax function σ to obtain a
probability distribution σ(v) ∈ Rn over clusters,
we are interested in the distribution over labels
rather than over clusters. We resolve this mismatch
and score each label using the sum of scores for all
its clusters. To do so, we introduce a matrix M ∈
{0, 1}n×m (where m is the number of labels):

Mij =

{
1 if i-th cluster has j-th label
0 otherwise

(3)

We project the scores over clusters to the scores
over labels by multiplying the score vector by M .
Then, we can compute the predictive label distribu-
tion for x as softmax(v ·M).

3.2 Geometric Features for METAPROBE

In the discussion that follows, we will assume that
for an example x, the clusters in C are indexed their
closeness to x. That is, C1 is closer to x than C2

and so on.3 Also, for brevity, we use the notation
x to denote both an example and its representation
ϕ(x); the context will make it clear whether we are
referring to an example or a point in the represen-
tation space. For each pair (x,Ci), we extract fea-
tures to decide if x should be merged by cluster Ci.
We consider three classes of features: cluster-only
features, distance features, and merging features.

Cluster-only Features. We first consider the
properties of the cluster Ci by itself. For exam-
ple, such features allow us to investigate how the
number of examples in the cluster affects the deci-
sion of a task-classifier. Specifically, we consider
four properties for each cluster Ci: (i) The number
of examples it contains; (ii) the average pairwise
distances between them; (iii) the standard devia-
tion of the pairwise distances; and (iv) the distances
between the cluster Ci and other clusters.

Distance Features. Intuitively, the cluster-only
features are insufficient to explain the decision of a
task-classifier for an example x. Distances between
x and Ci are also informative. For example, if x
is inside the cluster Ci (having zero distance), any
task-classifier will likely assign it the same label as
Ci. We have four distance features: (i) An indicator
for whether x is inside the convex hull of points in
Ci; (ii) the distance between x and the convex hull
of Ci; (iii) the distance between x and the centroid
of Ci; (iv) the distance between x and the span of
a pair of clusters (Ci, Cj), for 1 ≤ j ≤ k. 4 We
include the distances between x and the span of a
pair of clusters because this information might be
helpful to find confusing labels for a task-classifier.

Merging Features. Apart from the cluster-only
and distance features, we also consider how much
geometry will change if we merge x into the cluster
Ci. For example, suppose we find that including
x in Ci produces a convex hull in the embedding
space that overlaps with some other existing cluster
belonging to a different label. (Recall that DIRECT-
PROBE clusters are linearly separable, and hence
non-overlapping.) In this case, a task-classifier will
probably not predict label of Ci. We use three sets
of features to estimate the change caused by merg-
ing x to Ci: (i) An indicator for whether x can

3In this work, all distances are Euclidean. Other distances
may offer novel geometric insights, and studying them is a
direction of future work.

4This feature follows the intuition thatCj could be a strong
competitors for Ci if x lies in the span of (Ci, Cj)
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Figure 1: Diagram of the geometry. ⋆ marks the unseen
example. Ci and Cj are two clusters in the neighbor-
hood of the unseen example. Ci is the current cluster
we are considering. Left (right) subfigure shows the
layouts before (after) merging the unseen example to
Ci. Wbefore and Wafter are the max-margin hyperplanes
between Ci and Cj before and after merging.

be merged by Ci without breaking the linear sep-
arablability condition; (ii) the change in distance
between the merged x and Ci and another cluster
Cj for 1 ≤ j ≤ k, i ̸= j; (iii) the change of the
max-margin hyperplanes between the merged x
and Ci and Cj for 1 ≤ j ≤ k, i ̸= j.

As an illustration, let us look at the last of the
merging features, Figure 1 shows a simple example.
It shows the max-margin hyperplanes before and
after merging an example ⋆ to Ci, represented by
Wbefore and Wafter, respectively. The last merg-
ing feature is defined as ∥Wbefore−Wafter∥1

∥Wbefore∥1+∥Wafter∥1 . Ap-
pendix F gives additional details for all features.

3.3 Training METAPROBE

Next, we will discuss the process of training
METAPROBE, summarized as Algorithm 1 and Fig-
ure 2. After training, we use the learned linear
classifier (parameterized by W ) to make predic-
tions for unseen examples as described in §3.1.

Task-classifier Set. Since METAPROBE seeks to
mimic the predicted label distribution from eq. (1),
we need to estimate the distribution for one or more
dataset-representation pairs. Recall that we need a
set of task-classifiersH to compute the distribution.
To this end, we train a large set of classifiers—
from simple linear classifiers to two-layer neural
networks with various activation functions—on the
training split of each dataset and representation,
resulting in N task-classifiers in total per setting 5,
i.e., |H| = N (Algorithm 1, line 4). Appendix C
gives more details about this undertaking.

Sampling for Training Set. Next, we need a col-
lection of examples (points in the embedding space)
that can be paired with the empirical predicted label

5In our experiments, N = 1010.

distribution. But we cannot use the task training set
for this purpose: not only are the classifiers above
trained on it, we also use it to construct DIRECT-
PROBE clusters for feature extraction. To resolve
this issue, we note that we seek to examine the
geometry of the representation space, and not the
text that led to the embeddings. Moreover, the task
classifiers operate on embeddings, and are unaware
of whether those embeddings are derived from lin-
guistically meaningful text. Consequently, we can
use any points in the embedding space, provided
they are distributionally similar to real data points.

Following this observation, we sample 20k
points in the embedding space by linearly inter-
polating training examples. Let v0 and v1 be two
randomly chosen vectors from the training set (em-
bedded by a representation). We sample a random
point vs in the span of these two vectors. That is,

vs = αv0 + (1− α)v1 (4)

where α is uniformly sampled from [0, 1]. These
points need not correspond to a linguistically mean-
ingful textual input, but since they live in the span
of training points, our trained classifiers can make
predictions on them.

We use the learned task-classifiers to make pre-
dictions for the sampled vectors and compute the
predicted label distribution using eq. (1). Note
that there is no ground truth for these sampled vec-
tors; we seek to understand how task-classifiers
make their decisions—a process independent of
the ground truth. These sampled 20k vectors and
their predicted label distributions, form the training
data for METAPROBE (Algorithm 1, lines 4-6).

Optimization. Finally, to complete the discus-
sion on training, let us look at the loss function
whose minimization will provide the weights W
that define METAPROBE. Let q denote the target
predicted label distribution for an example x, and
v denote its score vector as defined by eq. (2). We
use the Kullback-Leibler divergence between the
two label distributions as our loss:

ℓ(q, p) = KL(q, p) = KL(q, softmax(v ·M)) (5)

We use standard optimization tools for training and
optimization. Appendix D has details.

4 Representations and Tasks

In this section, we describe the English representa-
tions and tasks we will use in our experiments.
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Figure 2: An illustration of training steps for METAPROBE. (a) A dataset with three labels (◦,■,▲) embedded in a
representation space. (b) The clusters of points C obtained by DIRECTPROBE. Each cluster has only one label, but
there are two ▲ clusters. (c) Ten interpolated data points (•). The original dataset is also shown in the panel for reference,
but is not used as METAPROBE training data. (d) The N classifiers that are trained on the original data. (e) The classifiers are
applied to the sampled points to obtain the predicted label distribution, which is the supervision for training METAPROBE.

Algorithm 1 Training METAPROBE using a collec-
tion of dataset-representation pairs D.
Input: Dataset-Rep pairsD = {(D,ϕ)}, METAPROBE feature extractor ψ,

Number of task-classifiersN
Output: METAPROBE modelW
1: Initialize data for METAPROBE Dg ← ∅
2: for (D,ϕ) ∈ D do
3: C ← DIRECTPROBE(D,ϕ)
4: H ← TrainN classifiers on (D,ϕ)

5: D̂ ← generate interpolated data fromD,ϕ,H

6: Dg ← Dg ∪ ψ(D̂, C)
7: end for
8: Train a linear modelW onDg

9: returnW

Representations. We conduct experiments on
four English representations: RoBERTabase,
RoBERTalarge (Liu et al., 2019b), Distil-
BERT (Sanh et al., 2019) and ELMo (Peters
et al., 2018). As a group, they represent a diverse
collection of architectures, pre-training methods,
and pre-training data. Their characteristics are
summarized in Appendix B.

Tasks. We investigate five different English NLP
tasks represented by ten datasets, covering various
usages of word representations, and diverse linguis-
tic phenomena. We briefly describe them here and
Appendix A gives details about these tasks.

Preposition supersense disambiguation (PS)
is a task of predicting supersense labels for single-
token prepositions. It involves two sets of labels:
semantic role (PS-role) and semantic functions
(PS-func). We use the annotation from Streusle
v4.2 corpus (Schneider et al., 2017).

Part-of-speech Tagging (POS) the task of pre-
dicting part-of-speech tags for each token in the
sentence. We use the English portion of the paral-

Groups Tasks Datasets Representations

Training PS,POS,TC PS-role, PS-func, POS
TREC-6, TREC-50

RoBERTabase
RoBERTalarge

Test NER,SR,TC CoNLL04, SciERC
SemEval, ATIS

ELMo
DistilBERT

Table 1: Summary of datasets and representations.

lel universal dependencies treebank (ud-pud, Nivre
et al., 2016).

Text Classification (TC) predicts a label for a
piece of text. We use three datasets in this work:
TREC-6, TREC-50 (Li and Roth, 2002) and
ATIS (Tür et al., 2010).

Semantic Relation (SR) involves predicting
the semantic relation between a pair of nominals.
We use three datasets for semantic relation task:
CoNLL04 (Roth and Yih, 2004), SciERC (Luan
et al., 2018) and SemEval 2010 Task 8 (SemEval)
(Hendrickx et al., 2010) dataset.

Named Entity Recognition (NER) requires
finding named entities in a sentence. In this work,
we use the SciERC (Luan et al., 2018) dataset.

The above datasets and representations are di-
vided into training and test groups (shown in Ta-
ble 1), which will be used in cross task/representa-
tions experiments in §5.2.

5 Experiments and Analysis

In this section, we will look at the main find-
ings obtained using METAPROBE. Across our
experiments, we compare the performance of
METAPROBE against a linear probe and a nearest
neighbor probe (1-NN). The linear probe baseline
represents a general setting of predictive probing.
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The 1-NN probe builds upon the simplest geometric
property: the distance between one unseen example
and its closest labeled example. For efficiency, for
METAPROBE, we consider the closest c = 10 clus-
ters of unseen examples.6 To account for outliers,
we ignore clusters with fewer than two examples.

Note that we do not seek to build a better probe.
Instead, METAPROBE provides a comparable per-
formance and also exposes the more sophisticated
geometric structures of the representations used by
predictors, which other probing approaches that
operate directly on embeddings can not reveal.

5.1 Single Task & Representation

First, let us examine if the geometry of represen-
tations can predict the task-classifiers’ behavior.
Table 2 summarizes the results for single task/repre-
sentation setting, where we evaluate METAPROBE

on the test sets using the representations on which
it was trained. We make the prediction using
the label with maximum probability predicted by
METAPROBE.
Finding 1: The geometry of representations in-
deed contains information that can predict the
decisions of task-classifiers. The third column
from the left of Table 2 shows the accuracies of
METAPROBE. The last three columns show the
accuracy differences between METAPROBE and a
linear probe, 1-NN probe, and average accuracy
over 1010 task-classifiers respectively. For exam-
ple, a linear probe achieves 79.65% (77.90+1.75)
with RoBERTabase on the PS/role task. It is not sur-
prising that the linear probe sometimes fares better
than METAPROBE; the latter is trained for the pre-
dicted label distribution (instead of gold labels) and
uses the sampled points (instead of the actual train-
ing set). What is surprising is that METAPROBE

matches or even outperforms a linear probe in some
cases. We see that METAPROBE achieves higher
accuracy on four of ten cases than a linear probe
and 1-NN probe, and on three of ten cases than the
average accuracy over 1010 task-classifiers. These
observations suggest that using only geometric fea-
tures from the embeddings, METAPROBE can pre-
dict task-classifiers’ predictions.

6We consider the ten closest DIRECTPROBE clusters to
keep computation costs down. Importantly, this does not
change the results; an example is unlikely to be merged with
distant clusters. In terms of the implementation, this choice
means that the matrix M in Equation (3) is a {0, 1}c×m ma-
trix, and that each example x has its own separate M because
different examples will have different sets of closest clusters.

Task/Dataset Rep MetaProbe Linear
Probe

1-kNN
Probe

Average
CLS

PS/role RoBERTabase 77.90 +1.75 +0.66 +1.23
RoBERTalarge 74.18 +3.06 0.00 +1.01

PS/func RoBERTabase 83.15 +5.69 +5.03 +5.14
RoBERTalarge 82.71 +3.72 +1.31 +3.67

POS/ud-pud RoBERTabase 94.06 +0.37 +0.21 +0.34
RoBERTalarge 93.85 -0.37 -0.44 -0.11

TC/TREC-6 RoBERTabase 91.40 -3.20 +0.60 +0.79
RoBERTalarge 90.80 -1.20 -0.20 -0.43

TC/TREC-50 RoBERTabase 84.00 -7.20 -7.00 -0.93
RoBERTalarge 81.40 1.80 -3.00 1.08

Table 2: Accuracy comparsion in single task/representa-
tion setting. The last three columns show the accuracy
difference between METAPROBE and other probes and
task-classifiers.

Finding 2: Different datasets and representa-
tions independently learned similar patterns.
Since METAPROBE is a linear model, we can exam-
ine its weights to see if the task-classifiers trained
on different representations and datasets exploit
similar geometric properties. To do so, we compute
the Pearson correlation between the METAPROBE

weights learned from different datasets and repre-
sentations. The correlations range from 0.58 to
0.97, averaging at 0.80, with even the lower end
being a strong positive correlation. Appendix G
shows the full table. The high correlations of these
feature weights suggest that the patterns behind the
decision process of task-classifiers are universal.

5.2 Cross Tasks & Representations

We hypothesized above that task-classifiers make
decisions based on universal geometric patterns.
A natural experiment to verify this hypothesis is
to apply the learned model to unseen datasets and
representations. To this end, in this subsection, we
investigate the cross tasks/representations setting.

We sampled 2k training points from each dataset
and representation in the training group of Table 1
to compose a cross task/representation training set
(with 20k points in all). We train METAPROBE on
this cross task/representation dataset and evaluate it
on unseen tasks (test tasks in Table 1) and represen-
tations. If the patterns identified by METAPROBE

are not stable across tasks and representations, then
we expect that METAPROBE show much lower ac-
curacies than the other probes.
Finding 3: There exist universal geometric pat-
terns across tasks and representations. Table 3
shows the results of cross tasks/representations set-
ting. We first observe that METAPROBE shows
higher accuracy on nine out of ten cases than a
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Task/Dataset Rep MetaProbe Linear
Probe

1-kNN
Probe

Average
CLS

NER/SciERC elmo 76.62 +0.95 -0.95 -2.08
DistilBERT 74.96 +3.50 -1.78 +2.86

SR/CoNLL04 elmo 96.45 0.00 +0.47 +0.20
DistilBERT 94.31 +0.47 -6.64 +0.98

SR/SciERC elmo 74.64 +1.85 -3.49 +0.20
DistilBERT 77.10 +2.16 -8.32 +0.13

SR/SemEval elmo 74.35 +1.91 -4.05 +2.01
DistilBERT 75.52 +3.46 -4.01 +2.10

TC/ATIS elmo 95.07 -1.46 -4.59 -0.27
DistilBERT 93.39 -2.35 -2.80 -0.60

Table 3: Accuracy comparsion in cross task/represen-
tation setting. Note that METAPROBE is trained from
the datasets and representations in the training group.
All the accuracies are evaluated based on the same
METAPROBE parameters. On the other hand, other
probes and classifiers are trained individually.

1-NN probe, on two out of ten cases than a linear
probe, and on three out of ten cases than average
task-classifiers. Note that each linear probe, 1-NN
probe, and task-classifier is trained individually for
each task/representation while the METAPROBE

parameters are unchanged. Results in Table 3
are surprising because recall that we are operat-
ing in the cross tasks/representation setting, where
METAPROBE never sees these tasks (e.g. NER and
Semantic Relation) and representations (e.g. ELMo
and DistilBERT) during its training stage. Thus,
we do not expect METAPROBE would achieve good
performances. Nevertheless, it predicts with high
accuracy for unseen datasets and representations.
These observations show that METAPROBE cap-
tures universal geometric patterns of the decision
process of task-classifiers.
Finding 4: Different tasks/representations can
use geometry differently. To understand how dif-
ferent features affect these universal patterns, we
run ablations on the three groups of features from
§3.2. Table 4 shows partial results (A full analysis
can be found in Appendix E). We observe that dif-
ferent sets of features contribute differently based
on the tasks and datasets. For example, SR/SciERC
relies heavily on cluster-only features; NER/Scir-
ERC relies on the distance features, while SR/Se-
mEval relies on the merging features. These obser-
vations suggest that although some universal pat-
terns exist, different datasets and representations
still have rely on different geometric structures.

5.3 Analyzing METAPROBE’s Weights

In this subsection, we show three features with dis-
tinguishable weights from cross task/representation

Dataset Rep W/o
Cluster-only Distance Merging

NER/SciERC ELMo +2.08 -8.55 -0.42
DistilBERT +2.02 -4.81 -3.03

SR/SciERC ELMo -5.65 -1.95 -2.87
DistilBERT -6.98 -3.08 -8.11

SR/SemEval ELMo -0.15 -2.32 -3.35
DistilBERT -0.33 -1.69 -8.35

Table 4: Ablations in cross task/representation settings.
The numbers in the table are the difference of accuracy
against the full features (shown in Table 3). A full
ablation table can be found in Appendix E.

settings as examples to illustrate how geometry af-
fects task-classifiers’ decisions. In Appendix H,
we show the list of features with top 10 absolute
weights.
xcdis is a feature that quantifies the distance be-

tween a new example and the centroid of a cluster,
and is defined such that a closer distance means
a larger xcdis value. For example, in Figure 1
(left), the example represented by the ⋆ will have
a higher value for this feature for cluster Ci than
Cj . After training, we observe that xcdis has one of
the largest positive values, suggesting that a task-
classifier tends to predict the label of closer clusters
for the unseen example, which is intuitive.
xmhd
j is a set of features that quantify how much

of the max-margin hyperplane between current
cluster Ci and j-th closest cluster would change if
we merge the example withCi (see Figure 1). After
training, we see that xmhd

j has the smallest negative
value, suggesting that if merging the example to a
cluster Ci causes a large change to the layout, the
classifier tends to not make this decision even if
current unseen example is close to Ci. This is not
captured by the neighborhood-only baseline.
caverage is a feature to describe the properties of

the cluster under consideration. It is the average
pairwise distance inside the cluster. After training,
we find that caverage has a weight close to zero,
suggesting that this feature does not contribute to
the decisions of task-classifiers. It shows that the
properties of the cluster itself do not affect the pre-
dictions. Instead, the geometric relations between
the unseen example and clusters (e.g. xcdis and
xmhd
j ) have more impact on the decisions of task-

classifiers.

6 Conclusions

A long list of probing work involves examining
the predictiveness of linguistic properties, both
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syntax (e.g., Kassner and Schütze, 2020) and se-
mantic (e.g., Aghajanyan et al., 2021). To ease
the uncertainty of training classifiers, Hewitt and
Liang (2019); Senel et al. (2018) propose to use
controlled test sets to verify if the representations
encode meaningful linguistic information. Other
work (e.g. Marvin and Linzen, 2018; Wu et al.,
2020) proposed error analysis to reverse engineer
the information encoded in representations.

In this paper, we ask: Are there universal geomet-
ric patterns in contextualized representations that
can explain the decisions of task-classifiers? We
answer the question by developing METAPROBE, a
linear probe that predicts trained classifier’s predic-
tions using the geometric features of the represen-
tations. Via experiments, we verify the existence
of universal patterns in contextualized representa-
tions that models exploit. The patterns learned by
METAPROBE can be used to make predictions on
unseen tasks and representations. Finally, by ana-
lyzing the learned weights, we show how geometric
properties affect the decisions of task-classifiers.

7 Limitations

We rely on the off-the-shelf implementation of
DIRECTPROBE to extract features. However, DI-
RECTPROBE is limited in its scalability for large
datasets. For example, more than 20k training ex-
amples makes it extremely slow. (We expect that
tool itself may be made faster with engineering ef-
forts, but that was not our focus.) As a result, our
feature extraction strategy suffers from the same
problem.

Acknowledgements

This work is partially supported by NSF grants
#1801446, #1822877, #2007398 and #2129111.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies of
any government agency.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7319–7328,
Online. Association for Computational Linguistics.

Ehsan Aghazadeh, Mohsen Fayyaz, and Yadollah
Yaghoobzadeh. 2022. Metaphors in pre-trained lan-
guage models: Probing and generalization across
datasets and languages. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2037–
2050, Dublin, Ireland. Association for Computational
Linguistics.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

David Arps, Younes Samih, Laura Kallmeyer, and Has-
san Sajjad. 2022. Probing for constituency structure
in neural language models. CoRR, abs/2204.06201.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Comput. Linguistics,
48(1):207–219.

Tyler A Chang, Zhuowen Tu, and Benjamin K
Bergen. 2022. The Geometry of Multilingual
Language Model Representations. arXiv preprint
arXiv:2205.10964.

Shivani Choudhary, Niladri Chatterjee, and Subir Ku-
mar Saha. 2022. Interpretation of black box NLP
models: A survey. CoRR, abs/2203.17081.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (elus). In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://aclanthology.org/2022.acl-long.144
https://aclanthology.org/2022.acl-long.144
https://aclanthology.org/2022.acl-long.144
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.48550/arXiv.2204.06201
https://doi.org/10.48550/arXiv.2204.06201
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.48550/arXiv.2203.17081
https://doi.org/10.48550/arXiv.2203.17081
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006


242

Hong Kong, China. Association for Computational
Linguistics.

Utku Evci, Vincent Dumoulin, Hugo Larochelle, and
Michael C. Mozer. 2022. Head2toe: Utilizing inter-
mediate representations for better transfer learning.
CoRR, abs/2201.03529.

Hila Gonen, Shauli Ravfogel, and Yoav Goldberg. 2022.
Analyzing gender representation in multilingual mod-
els. In Proceedings of the 7th Workshop on Repre-
sentation Learning for NLP, pages 67–77, Dublin,
Ireland. Association for Computational Linguistics.

Emily Goodwin, Koustuv Sinha, and Timothy J.
O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1958–
1969, Online. Association for Computational Linguis-
tics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learned Representations (ICLR).

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 33–38, Up-
psala, Sweden. Association for Computational Lin-
guistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Dieuwke Hupkes and Willem H. Zuidema. 2018. Vi-
sualisation and ’diagnostic classifiers’ reveal how
recurrent and recursive neural networks process hi-
erarchical structure (extended abstract). In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, pages 5617–5621.
ijcai.org.

Alexander Immer, Lucas Torroba Hennigen, Vincent
Fortuin, and Ryan Cotterell. 2022. Probing as quanti-
fying inductive bias. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1839–
1851, Dublin, Ireland. Association for Computational
Linguistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. Asso-
ciation for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what differ-
ent NLP tasks teach machines about function word
comprehension. In Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics
(*SEM 2019), pages 235–249, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818–8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Julian Michael, Jan A. Botha, and Ian Tenney. 2020.
Asking without telling: Exploring latent ontologies

http://arxiv.org/abs/2201.03529
http://arxiv.org/abs/2201.03529
https://aclanthology.org/2022.repl4nlp-1.8
https://aclanthology.org/2022.repl4nlp-1.8
https://doi.org/10.18653/v1/2020.acl-main.177
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.24963/ijcai.2018/796
https://doi.org/10.24963/ijcai.2018/796
https://doi.org/10.24963/ijcai.2018/796
https://doi.org/10.24963/ijcai.2018/796
https://aclanthology.org/2022.acl-long.129
https://aclanthology.org/2022.acl-long.129
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://aclanthology.org/2022.acl-long.603
https://aclanthology.org/2022.acl-long.603
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/2020.emnlp-main.552


243

in contextual representations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6792–6812,
Online. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tiago Pimentel, Naomi Saphra, Adina Williams, and
Ryan Cotterell. 2020a. Pareto probing: Trading off
accuracy for complexity. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3138–3153, On-
line. Association for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020b. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B.
Viégas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
BERT. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
8592–8600.

Nils Reimers, Benjamin Schiller, Tilman Beck, Jo-
hannes Daxenberger, Christian Stab, and Iryna
Gurevych. 2019. Classification and clustering of
arguments with contextualized word embeddings. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 567–
578, Florence, Italy. Association for Computational
Linguistics.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learn-
ing (CoNLL-2004) at HLT-NAACL 2004, pages 1–8,
Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Naomi Saphra and Adam Lopez. 2019. Understanding
learning dynamics of language models with SVCCA.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3257–3267,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Nathan Schneider, Jena D Hwang, Archna Bhatia, Vivek
Srikumar, Na-Rae Han, Tim O’Gorman, Sarah R
Moeller, Omri Abend, Adi Shalev, Austin Blodgett,
et al. 2017. Adposition and case supersenses v2. 5:
Guidelines for english. arXiv e-prints, pages arXiv–
1704.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yücesoy, Aykut
Koç, and Tolga Çukur. 2018. Semantic structure and
interpretability of word embeddings. IEEE ACM
Trans. Audio Speech Lang. Process., 26(10):1769–
1779.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Mycal Tucker, Tiwalayo Eisape, Peng Qian, Roger Levy,
and Julie Shah. 2022. When does syntax mediate
neural language model performance? evidence from
dropout probes. CoRR, abs/2204.09722.

Gökhan Tür, Dilek Hakkani-Tür, and Larry P. Heck.
2010. What is left to be understood in atis? In 2010
IEEE Spoken Language Technology Workshop, SLT
2010, Berkeley, California, USA, December 12-15,
2010, pages 19–24. IEEE.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42,
Florence, Italy. Association for Computational Lin-
guistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

https://doi.org/10.18653/v1/2020.emnlp-main.552
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.emnlp-main.254
https://doi.org/10.18653/v1/2020.emnlp-main.254
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://proceedings.neurips.cc/paper/2019/hash/159c1ffe5b61b41b3c4d8f4c2150f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/159c1ffe5b61b41b3c4d8f4c2150f6c4-Abstract.html
https://doi.org/10.18653/v1/P19-1054
https://doi.org/10.18653/v1/P19-1054
https://aclanthology.org/W04-2401
https://aclanthology.org/W04-2401
https://aclanthology.org/W04-2401
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.1109/TASLP.2018.2837384
https://doi.org/10.1109/TASLP.2018.2837384
https://doi.org/10.1162/tacl_a_00342
https://doi.org/10.1162/tacl_a_00342
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.48550/arXiv.2204.09722
https://doi.org/10.48550/arXiv.2204.09722
https://doi.org/10.48550/arXiv.2204.09722
https://doi.org/10.1109/SLT.2010.5700816
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448


244

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong,
China. Association for Computational Linguistics.

Elena Voita and Ivan Titov. 2020. Information-theoretic
probing with minimum description length. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 183–196, Online. Association for Computa-
tional Linguistics.

Zi Wang, Alexander Ku, Jason Baldridge, Thomas L
Griffiths, and Been Kim. 2023. Gaussian process
probes (gpp) for uncertainty-aware probing. arXiv
preprint arXiv:2305.18213.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166–4176, Online. Asso-
ciation for Computational Linguistics.

Jiannan Xiang, Huayang Li, Defu Lian, Guoping Huang,
Taro Watanabe, and Lemao Liu. 2022. Visualiz-
ing the relationship between encoded linguistic in-
formation and task performance. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 410–422, Dublin, Ireland. Association
for Computational Linguistics.

Christos Xypolopoulos, Antoine Tixier, and Michalis
Vazirgiannis. 2021. Unsupervised word polysemy
quantification with multiresolution grids of contex-
tual embeddings. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
3391–3401, Online. Association for Computational
Linguistics.

Yichu Zhou and Vivek Srikumar. 2021. DirectProbe:
Studying representations without classifiers. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5070–5083, Online. Association for Computational
Linguistics.

Yichu Zhou and Vivek Srikumar. 2022. A closer look
at how fine-tuning changes BERT. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

Task/Dataset #Train #Test #Label Rep Type

Tr
ai

ni
ng

PS/Role 4282 457 47 Token
PS/Func 4282 457 40 Token
POS/ud-pud 16,860 4323 17 Token
TC/TREC-50 5452 500 50 Sentence
TC/TREC-6 5452 500 6 Sentence

Te
st

NER/SciERC 5598 1685 6 Span
SR/ConLL04 1283 422 5 Span-pair
SR/SciERC 3219 974 7 Span-pair
SR/SemEval 8000 2717 19 Span
TC/ATIS 4978 893 26 Sentence

Table 5: A summary of tasks and datasets in our experi-
ments.
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A Summary of Datasets

In this work, we conduct experiments on five tasks
using ten different English language datasets. Ta-
ble 5 shows the statistics of these tasks and datasets.

We obtain PS/Role and PS/Funcs datasets from
the annotation of Streusle v4.2 corpus (Schneider
et al., 2017), which can be downloaded from
https://github.com/nert-nlp/sterile. We
download the POS/ud-pud dataset from https:
//github.com/UniversalDependencies/UD_
English-PUD. TREC dataset is downloaded from
https://cogcomp.seas.upenn.edu/Data/QA/
QC/. TC/ATIS dataset is obtained from https:
//github.com/howl-anderson/ATIS_dataset/
blob/master/README.en-US.md. We obtain the
CoNLL04 and SciERC datasets using the scripts
from https://github.com/lavis-nlp/spert/.
The SemEval dataset is downloaded from
http://www.kozareva.com/downloads.html

For tasks that require sentence embeddings, we
use the first token (<s> or [CLS]) to represent sen-
tences for RoBERTabase, RoBERTalarge, and Dis-
tilBERT. For ELMo, we average the embeddings
of all tokens in the sentence. We use the average
embedding of the tokens within the span for the
phrases with more than one token.

B Summary of Representations

Table 6 shows the statistics of the representations
we used in this work. We use the original im-
plementation of ELMo and the HuggingFace li-
brary (Wolf et al., 2020) for the others.
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Grouping Rep #Param Pre-training Dim

Training RoBERTabase 125M MLM 768
RoBERTalarge 355M MLM 1024

Test DistilBERT 66M distillation 768
ELMo 94.6M LM 1024

Table 6: Statistics of the four representations in our
experiments.

Task/Dataset Rep Training Time
(in hours) Acc STD

PS/Role RoBERTabase 4.5 79.13 1.00
RoBERTalarge 5 75.19 1.48

PS/Func RoBERTabase 5 88.29 0.72
RoBERTalarge 5.5 86.39 0.86

POS/ud-pud RoBERTabase 29 94.40 0.26
RoBERTalarge 88 93.74 0.27

TC/TREC-50 RoBERTabase 22.5 92.19 1.44
RoBERTalarge 25 90.37 0.95

TC/TREC-6 RoBERTabase 31 83.07 2.19
RoBERTalarge 31.5 82.48 1.50

NER/SciERC ELMo 2.5 74.54 1.71
DistilBERT 3 77.81 1.03

SR/ConLL04 ELMo 0.5 96.65 0.56
DistilBERT 0.5 95.29 0.63

SR/SciERC ELMo 1 74.84 0.89
DistilBERT 1.5 77.23 1.31

SR/SemEval ELMo 2 76.36 0.68
DistilBERT 2 77.63 0.77

TC/ATIS ELMo 17.5 94.80 0.81
DistilBERT 13 92.80 1.86

Table 7: Statistics of the 1010 task-classifiers. The last
two columns shows the average and standard deviation
of the accuracy on the test set.

C Summary of Task Classifiers

In our experiments, we collect the predictions from
a large list of different classifiers. We use lin-
ear classifiers, one layer neural networks with hid-
den layer sizes of (128, 256, 512, 1024) and two-
layers neural networks with hidden layer sizes
of (128, 256, 512, 1024) × (128, 256, 512, 1024).
For the activations functions, we use Sigmoid,
Tanh, ReLU, LeakyReLU and ELU (Clevert et al.,
2016). All the neural networks are optimized by
AdamW (Loshchilov and Hutter, 2019) with a
learning rate of 0.001 and batch size of 128. We
set the maximum iterations to be 50 for each run.
We run ten classifiers using different initializations
for each architecture. We use cross-entropy loss
for all classifiers. In total, we have 1010 classifiers
for each dataset and representation. We run our
models on a single Titan GPU. Table 7 shows the
training statistics of the 1010 task-classifiers for
each dataset and representation.

D Optimization Details of METAPROBE

Since METAPROBE is a linear model, we optimize
it by min-batch gradient descent with batch size of
128 and leanring rate of 0.001 for all experiments.
We set the maximum iteration number to be 400.
We choose these hyperparameters by tuning on an
extra sampled dev set (described in §3.3). We run
our models on a single Titan GPU.

E Ablation Study

Dataset Rep W/o
Cluster-only Distance Merging

NER/SciERC ELMo +2.08 -8.55 -0.42
DistilBERT +2.02 -4.81 -3.03

SR/CoNLL04 ELMo 0.00 +0.47 +0.47
DistilBERT -0.24 +0.95 -6.16

SR/SciERC ELMo -5.65 -1.95 -2.87
DistilBERT -6.98 -3.08 -8.11

SR/SemEval ELMo -0.15 -2.32 -3.35
DistilBERT -0.33 -1.69 -8.35

TC/ATIS ELMo -0.90 -1.23 -5.71
DistilBERT -1.01 -2.13 -41.10

Table 8: Ablations in cross task/representation settings.
The numbers in the table are the difference of accuracy
against the full features (shown in Table 3).

One interesting observation of Table 8 is Dis-
tilBERT on TC/ATIS whose accuracy decreases
40% after removing merging features. After an-
alyzing the weights of ablated METAPROBE, we
found that: (i) METAPROBE penalizes the clusters
with large number of examples, i.e.METAPROBE

does not want to assign unseen examples to
large clusters; (ii) METAPROBE awards the small
distance between unseen examples and clusters,
i.e.METAPROBE prefers to assign unseen example
to their closest clusters. The first observation fol-
lows the intuition that we do not want be biased by
unbalanced labels. The second observation forms
the basis of the nearest neighbors.

Since ATIS is a highly unbalanced dataset, when
represented by DistilBERT, the majority unseen
examples are closest to the largest cluster but
not close enough to overrun the negative effect
of large cluster. Thus, without merging features,
METAPROBE chooses to merge these examples to
the second closest cluster instead of the closest one.
On the other hand, when represented by ELMo,
the distances between the unseen examples and the
closest clusters are close enough to overrun the
effect of the size of cluster.
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F Feature Template

Given a representation ϕ and a labeled dataset D,
let C = {Ci} be the set of clusters returned by
DIRECTPROBE. We use Ci(1 ≤ i ≤ k) to denote
the i-th closest cluster to the unseen example x
in the representation. For eac pair of (x,Ci), we
extract cluster-only feartures (shown in Table 9),
distance feartures (shown in Table 10) and merging
feartures (shown in Table 11).

G Correlations Between Weights

Table 12 shows the Pearson coefficient correlations
between weights learned from different tasks and
representations.

H Top-10 Weights

Table 13 shows the weights that have top 10 ab-
solute values. These weights are trained from the
cross-task-cross-representation setting.

I Robustness

Table 14 shows the average accuracy difference
between METAPROBE and a linear probe when
only using 1% to 10% of the training set. For each
percent, we repeat the sampling for 50 rounds and
apply a two-sided sample paired t-test. Except for
the 1% and 10% case, all other percentages are
statistically significant (with a p-value less than
.0001).
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Symbols Description #Features Range Notes

cnum The proportion of examples inside cluster Ci 1 [0, 1]

caverage The average distance inside each cluster normalized
by its maximum distance

1 [0, 1]

cstd The standard deviation of distances inside each clus-
ter normalized by its maximum distance.

1 [0, 1]

cdisj The distances between Ci and Cj normalized by the
maximum distance

k [0, 1] j ∈ [1..k]; When i =
j,cdisj = 0.

Table 9: Cluster-only features for the i-th closest cluster Ci of unseen example x. Ci is the current cluster we are
considering.

Symbols Description #Features Range Notes

inside If x is inside of Ci 1 {0, 1} This feature can be 1
only when i = 0

xdis The i-th element of a score vector noramlized by
softmaxing over the negative distances between
x and each cluster in C.

1 [0, 1]

xcdis The i-th elment of a score vector noramlized by
softmaxing over the negative distances between
x and the centroid of each cluster in C.

1 [0, 1]

xspanj The distance between x and the span of Ci and
Cj normalized by the maximum distance over
all pairs of clusters.

k [0, 1]

Table 10: Distance features for the example x and its i-th closest cluster Ci. This set of feature is used to describe
the relations between x and Ci based on the distances.
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Symbols Description #Features Range Notes

x_not_mergable If x can be merged by Ci with-
out breaking the linear separa-
blability condition.

1 {0, 1} x_not_mergable = 1 when x
cannot be merged by Ci

xmdis
j The distance between Ci and

Cj after merging x to Ci di-
vided by the original distance
beween Ci and Cj .

k [0, 1] xmdis
j = 0 for i = j; xmdis

j = 1
if Ci ∪ {x} overlaps Cj

xmcos
j The cosine distance bewtween

the weights of max-margin hy-
perplanes that separate Ci and
Cj before and after merging x
to Ci.

k [0, 1] xmcos
j = 0 for i = j, xmcos

j = 1
if Ci ∪ {x} overlaps Cj

xmhd
j The L1 distance between the

weights of max-margin hyper-
planes that separate Ci and Cj

before and after merging x to
Ci normalized by the sum of L1
norm of these two weights.

k [0, 1] xmhd
j = 0 for i = j, xmhd

j = 1
if Ci ∪ {x} overlaps Cj

xmdis
max The maximum value of xmdis

j

for j ∈ [1..k]
1 [0, 1]

xmcos
max The maximum value of xmcos

j

for j ∈ [1..k]
1 [0, 1]

xmhd
max The maximum value of xmhd

j

for j ∈ [1..k]
1 [0, 1]

Table 11: Merging features for example x and its i-th closest cluster Ci. These features are used to quantify how
much geometry will be changed if we merge x to Ci.

RoBERTabase RoBERTalarge
PS-role PS-func POS TREC-6 TREC-50 PS-role PS-func POS TREC-6 TREC-50

RoBERTabase

PS-role 1.00 0.97 0.91 0.95 0.80 0.73 0.63 0.64 0.79 0.88
PS-func 0.97 1.00 0.85 0.94 0.74 0.74 0.57 0.58 0.73 0.83

POS 0.91 0.85 1.00 0.93 0.87 0.72 0.62 0.64 0.79 0.86
TREC-6 0.95 0.94 0.93 1.00 0.75 0.68 0.58 0.59 0.68 0.81

TREC-50 0.80 0.74 0.87 0.75 1.00 0.83 0.74 0.76 0.90 0.84

RoBERTalarge

PS-role 0.73 0.74 0.72 0.68 0.83 1.00 0.69 0.76 0.80 0.76
PS-func 0.63 0.57 0.62 0.58 0.74 0.69 1.00 0.96 0.79 0.72

POS 0.64 0.58 0.64 0.59 0.76 0.76 0.96 1.00 0.76 0.73
TREC-6 0.79 0.73 0.79 0.68 0.90 0.80 0.79 0.76 1.00 0.89

TREC-50 0.88 0.83 0.86 0.81 0.84 0.76 0.72 0.73 0.89 1.00

Table 12: Pearson correlation coefficients between the weights learned from different datasets and representations.

Name xmhd
0 xmhd

1 xmhd
max xmhd

2 xmhd
3 x_not_mergable xcdis xmhd

4 xmhd
5 xdis

Value -12.19 -8.33 -8.17 -6.44 -6.31 5.77 5.72 -4.93 -3.97 3.86

Table 13: The weights with top 10 absolute values. Appendix F describes the explanations of these features.
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Percentages 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Acc Difference 0.2% 0.7% 0.7% 0.9% 0.8% 0.8% 0.6% 0.6% 0.6% 0.4%

Table 14: Average accuracy difference between METAPROBE and a linear probe. Bold numbers indicate a
statistically significant (p < .0001) improvement in favor of METAPROBE using the paired t-test.


