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Abstract
Contrast set consistency is a robustness mea-
surement that evaluates the rate at which a
model correctly responds to all instances in a
bundle of minimally different examples relying
on the same knowledge. To draw additional in-
sights, we propose to complement consistency
with relative consistency — the probability that
an equally accurate model would surpass the
consistency of the proposed model, given a dis-
tribution over possible consistencies. Models
with 100% relative consistency have reached a
consistency peak for their accuracy. We reflect
on prior work that reports consistency in con-
trast sets and observe that relative consistency
can alter the assessment of a model’s consis-
tency compared to another. We anticipate that
our proposed measurement and insights will
influence future studies aiming to promote con-
sistent behavior in models.

1 Introduction

Annotators introduce data shortcuts that allow mod-
els to solve tasks in unintended ways (Gururangan
et al., 2018). In response, it has been proposed
to measure whether a model correctly responds to
a bundle (or a contrast set) of slightly modified
instances that rely on the same knowledge (Gard-
ner et al., 2020; Kaushik et al., 2020). The rate at
which a model accomplishes this is termed consis-
tency. We propose an additional measurement —
relative consistency — that facilitates discussion
about achievable consistency scores, enabling a
more nuanced comparison.

To demonstrate why this is desired, consider sit-
uations that are illustrated in Table 1. Both 1a–1b
correctly solve two bundles, i.e., have the same con-
sistency. 1b solves three additional instances but in
a way that does not promote consistency; 1c shows
that a higher consistency can be gained with the
same accuracy. In contrast, although 1a is less ac-
curate, everything it handled was done consistently,
and higher consistency cannot be achieved with

(a) Accuracy=4/10, Consistency=2/5, RelConsistency=100%

(b) Accuracy=7/10, Consistency=2/5, RelConsistency=66.7%

(c) Accuracy=7/10, Consistency=3/5, RelConsistency=100%

(d) Accuracy=8/10, Consistency=3/5, RelConsistency=88.9%

(e) Accuracy=8/10, Consistency=4/5, RelConsistency=100%

Table 1: Tables depict a dataset of 10 examples, where
each column showcases a bundle of an original instance
paired with its perturbed version. denotes that the
instance is correctly predicted by a model. The relative
consistency is the measurement we propose to comple-
ment the standard consistency.

the same accuracy. This analysis sheds light on an
upside of 1a and a limitation of 1b that might go un-
noticed if we solely compare accuracy/consistency.
Let us turn to examples 1d. Although it represents
a model with an improved consistency relative to
1a, we could have achieved better consistency for
the same accuracy (see 1e).1

Relative consistency (§2) measures whether the
consistency of our model would likely be outper-

1Because this is a toy example, relative consistency is high,
though not perfect, even in less-than-ideal cases 1b and 1d.
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formed by an equally accurate model, relative to the
distribution of possible consistencies; see Eq. (5).
Specifically, it is the probability that our model’s
consistency is (in most cases) higher or equal to
the consistency scores that are achievable with the
same accuracy. If relative consistency is 100%
then our model is the most consistent it can be
given its accuracy, as a more consistent, equally
accurate model exists only with near-zero probabil-
ity. In practice, the goal should be to increase the
“standard consistency” while also achieving 100%
relative consistency.

In light of this additional consistency metric,
in §4 we revisit the findings of three publications
that report consistency as a metric for their evalu-
ations and point out some additional conclusions
we might draw from these reported consistencies.
Our code is available at https://github.com/
jacobkj314/relative-consistency.

2 Relative Consistency

We first introduce background terminology (§2.1),
then derive elements we need for defining relative
consistency: (i) achievable consistency scores for
a given accuracy (§2.2) and (ii) a distribution over
achievable consistency scores (2.3).

2.1 Background

A contrast set or bundle is a set of minimally dif-
ferent instances that might admit different answers,
thus testing a model across/near its decision bound-
ary.2 For example, these two HotpotQA instances
(Yang et al., 2018) represent a contrast set:

• Q: Is the Marsilea or the Brabejum the genus
of more individual species of plants? A: Mar-
silea

• Q: Is the Marsilea or the Brabejum the genus
of less individual species of plants? A:
Brabejum

The model is required to answer both of them cor-
rectly to be considered consistent in that bundle.
Evaluation with contrast sets makes it harder for
simple and inadequate models to perform highly
(e.g, a model that has just learned a spurious corre-
lation between the word “Marsilea” and “more”).
Related studies construct bundles of paraphrases
that have the same, not contrastive, labels (Elazar
et al., 2021).

2Sometimes “contrast set” is used to refer to contrastive
instances only (without the original ones).

The term consistency is overloaded in NLP and
refers to different concepts (Li et al., 2019; Jang
et al., 2022; Wang et al., 2023). In this work, we
study contrast set consistency defined as the pro-
portion of bundles where a model accurately labels
every instance in a bundle:

consistency =
|B ∈ B : ∀x ∈ B, yp(x) = y(x)|

|B|
,

(1)
where B is a set of all bundles of related instances
in a given dataset, x is an example, yp(x) is the
predicted label for x, and y(x) is its gold label.

2.2 Achievable Consistency Scores
Consider a contrastive test set formed from n orig-
inal instances, plus a contrastive instance derived
from each original instance by varying along some
pertinent dimension. There are 2n + 1 possible
accuracies a that a model could achieve on this test
set, namely A = {0, 1, . . . , 2n−1, 2n}.3 Similarly,
there are n+1 possible consistencies c that a model
could achieve, namely C = {0, 1, . . . , n− 1, n}.

Furthermore, for a given accuracy a ∈ A, only
a subset Ca ⊆ C of consistencies is achievable.
Trivially, for a = 0, Ca = {0} (because a model
cannot consistently respond to a bundle without
correctly responding to at least the instances within
that bundle) and for a = 2n, Ca = {n} (because a
model that correctly responds to all instances has
also consistently responded to all the bundles those
instances comprise). Ca can then be defined in
terms of n and a:

Ca = {c ∈ C : c
(a)
min ≤ c ≤ c(a)max} (2)

where c
(a)
min and c

(a)
max are defined as:

c
(a)
min =

{
0 if a ≤ n

a− n if a > n
(3)

c(a)max =
⌊a
2

⌋
(4)

Intuitively, if a ≤ n then it is possible that all
bundles have one of their constituent instances
incorrectly answered, in which case, c(a)min = 0.
However, if a > n, then at least a − n > 0 of
bundles must be fully correctly answered. Indeed,
for a bundle to be inconsistent at least one item

3While accuracy is typically denoted as a proportion of
correct instances, reporting absolute numbers simplifies our
notation. It is easy to translate a quantity a to a corresponding
proportion α via the identity a = 2nα, while a consistency
quantity c relates to the consistency proportion γ via c = nγ.

https://github.com/jacobkj314/relative-consistency
https://github.com/jacobkj314/relative-consistency
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(a) Distributions of consistency scores. (b) Relative consistency scores.

Figure 1: On the left is a heatmap of distributions of consistency at each accuracy for 100 bundles of 2 instances:
each vertical slice corresponds to a separate distribution of different consistencies. Fig. 2 (Appendix) shows the
log10 of this plot that better highlights the long tails of these distributions. On the right are relative consistency
scores given a model’s accuracy and consistency, i.e., the CDF of the figure on the left. Note that for a different
number of bundles, these plots would look slightly different.

must be incorrectly answered, so for a given a,
the number of incorrect items is 2n − a. Thus,
at most 2n − a bundles can be inconsistent, and
c
(a)
min = n− (2n− a) = n− 2n+ a = a− n.

The definition of c(a)max follows from the observa-
tion that a maximally consistent model will consis-
tently respond to the maximum number of bundles
for which it is possible that both instances are cor-
rectly answered, and that equals

⌊
a
2

⌋
.

2.3 Distribution of Achievable Consistencies
Given an accuracy a, we construct a distribution of
achievable consistencies c ∈ Ca with:

P(c|a) = m(c, a)

M(a)
(5)

where M(a) is the number of ways a model can
achieve accuracy a and is given by:

M(a) =

(
2n

a

)
(6)

because there are 2n total instances, of which any
a might be the ones to which a model correctly
responds.4 m(c, a) represents the number of ways
a model can achieve accuracy a and consistency c,
and is given by:

m(c, a) =

(
n

c

)(
n− c

a− 2c

)
2a−2c (7)

where:
4It is possible to consider consistency to be the more un-

derlying property of a model’s behavior and compute a distri-
bution over possible accuracies in the range [2c, 2n− n+ c].
The corresponding accuracy by consistency distributions could
then be computed given the above-defined consistency by ac-
curacy distributions.

•
(
n
c

)
corresponds to the number of ways that c

consistent bundles can be selected from n,
•
(
n−c
a−2c

)
corresponds to the number of ways the

remaining a − 2c accurate instances can be
distributed across the remaining n−c bundles,
giving each selected bundle only one correct
instance (to avoid creating an additional con-
sistent bundle),

• 2a−2c represents the number of ways that
these partially correct bundles could have ei-
ther instance correct.

Using this, we can calculate m(c, a) and M(a)
across all values of c and a for reasonable sizes of
n. These distributions can be extended for bundle
sizes above 2; see formulas in Appendix B. Figure
1a shows the distributions of consistency scores for
a dataset with 100 bundles of 2 instances.

Note that this distribution is not uniform for dif-
ferent consistencies at a given accuracy. There will
be some consistencies that have more ways to be
achieved for a given accuracy. This is why the
formula m(c, a) is crucial to the computation of
relative consistency that comes next.

This formulation assumes that all instances are
equally difficult which is known to not be the case
in practice (Swayamdipta et al., 2020). It also disre-
gards any inductive biases of models/datasets that
could skew the distribution.

Relative Consistency We measure the tendency
to be consistent exhibited by a model that achieved
accuracy a and consistency c on a contrastive set by
computing the cumulative probability distribution
over achievable consistencies in Ca up to c:
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RC(c, a) =
∑
ci∈Ca
ci≤c

P(ci|a) (8)

Intuitively, RC(c, a) indicates how likely the
model’s consistency is to outperform an equally
accurate model relative to the distribution of achiev-
able consistencies defined in (5). This allows us
to quantify whether model consistency is below,
at, or above chance, given its accuracy. In a good
case, RC is high, meaning that it is unlikely that
an equally accurate model will have higher consis-
tency. Alternatively, if RC is low, then it is likely
that an equally accurate model will have higher
consistency (which is unwanted).

Although other measurements which contextual-
ize consistency scores within a particular accuracy
can be constructed — such as simply scaling the
consistency between c

(a)
min and c

(a)
max, or reporting

the fraction of fully consistent of those that are
at least partly correct — these approaches lack the
probabilistic interpretation underlying RC. §3–4
highlight circumstances in which this probabilistic
interpretation is useful, and Appendix C compares
the score distributions obtained via these measure-
ments to the score distributions obtained via RC.

3 Analysis with Simulated Contrastive Set

Suppose you evaluate a model on a contrastive test
set containing 100 bundles of 2 instances. The dis-
tribution of consistencies for this dataset is shown
in Figure 1a, with the CDF of that distribution (cor-
responding to the RC score) in Figure 1b.

Note that the highest-density region of the dis-
tribution moves upward as accuracy increases, and
takes up only a very thin band. This means that,
for a given accuracy, there is generally little room
for improvement in consistency. This can be useful
when discussing results: if a particular training ap-
proach yields a 5% improvement in consistency for
an equally accurate model, that represents a sub-
stantial change in how the model tends to respond
to inputs.

It can still happen that improving accuracy and
consistency decreases relative consistency. As
an example, consider comparing a model M1,
which achieves a = 130, c = 45 (65% accu-
racy, 45% consistency) against a model M2 with
a = 150, c = 55 (75% accuracy, 55% consis-
tency). Clearly, model M2 is more desirable for
practical uses, if we are just comparing one model

Dataset #Bundles Acc Cons RC

UD Parsing 150 55.3 17.3 ∼0.0
PERSPECTRUM 217 88.0 78.8 97.6
ROPES 974 40.1 17.6 97.8
MC-TACO 646 26.0 8.0 95.2

Table 2: Relative consistency scores computed for re-
sults reported in Gardner et al. (2020). In the 3rd col-
umn, we report the average of “Original Test” (original
only) and “Contrast” (contrastive only) columns in their
Table 2. That is the accuracy, a, we use in calculations
in §2. Models with similar consistency (UD Parsing
and ROPES) have different tendencies to respond con-
sistently as revealed by their RC scores.

to another, but if we are comparing two different
training approaches, and want to know which in-
duces a stronger tendency for consistent responses,
then we would be interested to know that M1 has
RC = 93.0%, while M2 has RC = 37.1%. This
insight, that one model is below chance consistency,
while another is well above, is made possible by
the probabilistic interpretation of RC.

4 Meta-Analysis of Prior Work

In this section, we discuss results reported by prior
works that conduct evaluation with contrast sets
under the light of relative consistency.

4.1 Gardner et al. (2020)
They construct contrast sets for several common
test sets by modifying a sample of the test set in-
stances. They train a biaffine parser (Dozat and
Manning, 2017) with ELMo embeddings (Peters
et al., 2018) for UD parsing (Zeldes, 2017, Silveira
et al., 2014, Basili et al., 2015, Ahrenberg, 2007),
and RoBERTa (Liu et al., 2019) for reading com-
prehension tasks: ROPES (Lin et al., 2019), and
MC-TACO (Zhou et al., 2019) and stance predic-
tion: PERSPECTRUM (Chen et al., 2019). Table 2
shows the accuracy and consistency of these mod-
els for four of their contrast sets.5 In the rightmost
column, we report the relative consistency scores
that we introduce.

Analysis We observe that the UD parsing and
ROPES models have a similar consistency score

5We exclude contrast sets that do not have the bundle size
of 2. They report the accuracy of the original instances and
contrastive instances separately, so to obtain the accuracy in
the contrast set (that we need to calculate RC) we average
those. In doing so, we assume that the accuracy of the full
original test set is similar to the accuracy of the sample of
original test set instances.
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Loss Accuracy Consistency RC

MLE 65.7 52.1 100.0↰

+UL 68.3 55.6 100.0↰

+CE 76.6 64.7 100.0

Table 3: A comparison of relative consistency scores
computed from results report in Dua et al. (2021) (in
“Dev EM” and “Dev C” columns in their Table 3). The
number of bundles is 844. The unlikelihood (UL) and
contrastive estimation (CE) objectives improved the ac-
curacy and consistency over MLE, without decreasing
relative consistency. This is how consistency should be
improved in this case.

(17.3 and 17.6). However, the UD parsing model’s
consistency has a near-zero chance to outperform
an equally accurate model. On the other hand, the
ROPES model is quite likely to do so.

Additionally, relative consistency shows that
models with low consistency could nonetheless
have a large tendency to respond to bundles consis-
tently.6 We see this with the results for MC-TACO,
which, despite only achieving 8.0% consistency,
is more consistent than an equally accurate model
in 95.2% of cases. Intuitively, this means that the
above chance model has at least generalized well
within the few cases to which it correctly responds.

4.2 Dua et al. (2021)

They investigate whether training approaches that
consider a full bundle of related instances together,
instead of their constituent instances separately,
improve consistency. Table 3 shows their report
results obtained with T5 (Raffel et al., 2020) and
the relative consistency scores we compute from
their results, on the contrastive version of ROPES —
a reading comprehension dataset for evaluating a
model’s ability to reason about “effects of the rela-
tionships in the background passage in the context
of the situation”.

Analysis We observe that the baseline model
trained with the maximum likelihood estimation
(MLE) is already at ceiling performance in terms of
its tendency to produce consistent responses (i.e.,
its RC scores). Combining contrastive estimation
(CE; Smith and Eisner, 2005), or unlikelihood train-
ing (UL; Welleck et al., 2020), with MLE not only
improves the accuracy and consistency but also

6Note that high relative consistency does not guarantee that
such a model will continue to respond to bundles consistently
with improved accuracy.

does so in a way that does not lower the relative
consistency, which is desired. This emphasizes the
effectiveness of these objectives.

4.3 Ravichander et al. (2022)

They introduce CondaQA, a contrastive dataset for
studying reading comprehension models’ effective-
ness in reasoning about the implications of negation
expressed in a given text. Each CondaQA instance
comes with three minimally varied versions: one
paraphrases the negation, another modifies what
is negated (scope), and the last removes the nega-
tion. Ravichander et al. (2022) use UnifiedQA-v2
(Khashabi et al., 2022) as a backbone model. We
explore the factors that might influence the consis-
tency of the large and 3B versions of this model:

• The training objective: MLE, CE, or com-
bined λ1MLE+λ2CE.

• The choice of hyperparemeters λ1 and λ2

(with UnifiedQA-large).
Table 4 shows accuracy, consistency, and relative
consistency we obtain for bundles where the orig-
inal instance is paired with its: (i) scope-edited
version, and (ii) affirmative version (without nega-
tion). In Table 5 (Appendix), we also include the
results with paraphrase-edits.

Analysis An increase in consistency does not nec-
essarily indicate a heightened tendency to consis-
tently respond to bundles (unless the accuracy stays
the same). Compare CE with 1MLE+1CE (dou-
ble underlined, in the upper part of the table). In
this case, by training with MLE and CE, affirma-
tive consistency has gone up slightly, however, the
model’s chance of outperforming an equally accu-
rate model dropped down from 26% to 19%. This
is an example of a suboptimal way of improving
consistency, and MLE+CE is not necessarily supe-
rior to the standalone CE in this case. A similar, but
less pronounced, situation occurs when comparing
MLE against .33MLE+1CE for scope consistency
in the bottom part of the table (italicized).

Conversely, even if standard consistency has not
improved, a model’s tendency to consistently re-
spond to bundles may have. For example, compare
MLE with 1MLE+1CE for scope consistency in the
upper part of the table (wavy underlined). In this
case, scope accuracy lowered slightly but absolute
scope consistency remained the same, leading to a
large improvement in Scope-RC. This may suggest
that additional CE loss resulted in the model un-
learning a few individual instances without unlearn-
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Size Loss Scope-Acc Aff-Acc Scope-Cons Aff-Cons Scope-RC Aff-RC
L

ar
ge

MLE 66.84 67.09
:::::
42.86 42.35

:::::
17.10 10.06

CE 64.80 66.84 40.31 43.37 20.10 26.64
λ1MLE + λ2CE↰

λ1, λ2 = 1.0, 1.0 66.33 68.11
:::::
42.86 44.39

:::::
30.43 19.37↰

λ1, λ2 = 0.33, 1.0 66.58 68.37 43.37 44.90 42.44 16.01

3B

MLE 74.23 76.79 56.12 60.71 80.76 88.68
CE 74.23 77.55 56.12 61.73 80.76 92.03
λ1MLE + λ2CE↰

λ1, λ2 = 0.33, 1.0 74.23 77.04 56.12 60.71 80.76 88.68↰

λ1, λ2 = 0.33, 1.0 76.02 78.57 58.67 63.78 79.32 98.60

Table 4: Results of UnifiedQA-v2 (Khashabi et al., 2022) on the CondaQA contrastive dataset, with the expectation
that including the Contrastive Estimation (CE) objective would improve consistency, as in Dua et al. (2021). RC
scores are reported here only for some of the edit dimensions in CondaQA; see Table 5 for the rest.

ing any complete bundles it had learned. Similarly,
0.33MLE+1CE scope consistency in the upper part
of the table (underlined once) increased slightly
but the scope relative consistency has increased no-
tably. If we compared only consistency we would
conclude that the choice of hyperparameters λ1, λ2

is not vital, where actually they can affect model
consistency behavior as shown by relative consis-
tency.

5 Conclusion

We introduce relative consistency, which comple-
ments standard contrast consistency by allowing
an accuracy and consistency score pair to be ex-
amined to determine whether a higher consistency
was possible with that accuracy. This facilitates
the comparison of consistencies achieved by mod-
els that achieved different levels of accuracy. We
show that relative consistency enriches conclusions
we make about whether a model is more consis-
tent than another, and occasionally even leads us to
different takeaways.

6 Limitations

This mathematical model is based on a simplified
version of contrastive datasets. Contrastive datasets
may have more than two edits for each original in-
stance, which will result in a different distribution.
Although we provide formulas for distributions of
arbitrary bundle size in Appendix B, these distribu-
tions are less intuitive, more expensive to compute,
and additionally have the drawback that, if a model
achieves high pairwise RC on two of the elements
of the bundle, it is likely to achieve high bundle
RC, even if the other elements of the test set do

not achieve high pairwise RC. In general, we rec-
ommend formulating questions of consistency in
terms of bundles with one instance exhibiting a
feature and the other instance lacking that feature.
Moreover, contrastive datasets may include extra
data that is not contrastive; e.g., CondaQA has a
small number of bundles with a single instance be-
cause other instances in the bundle were filtered
because they did not pass quality checks.

In §2.3, we state the drawbacks of the distri-
bution (5). Namely, we do not consider that the
distribution might be skewed due to the varying
example difficulty and other inherent properties of
datasets and models.
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A Numerical Stability of Relative
Consistency

To avoid numerical instability, especially when
comparing RC scores for two models, (i.e. to de-
termine whether a training approach improves a
model’s tendency to produce consistent responses,
or determine which of two training approaches best
improves a model’s tendency towards consistent
responses), we define:

µ(c, a) =
∑
ci∈Ca
ci≤c

m(ci, a) (9)

(i.e., the cumulative combinatoric mass) and then
rephrase the definition of RC as:

RC(c, a) =
µ(c, a)

M(a)
(10)

which relies on only one division, so is less prone
to floating-point rounding errors.

This also allows us to compute:

µ(c1, a1)

M(a1)
− µ(c2, a2)

M(a2)
(11)

(i.e., the improvement in RC(c1, a1) over
RC(c2, a2) scores) as:

µ(c1, a1)M(a2)− µ(c2, a2)M(a1)

M(a1)M(a2)
(12)

which allows for comparisons between models that
are very close in their RC scores, (i.e., in the long
tail of consistency).

B Formulas for Bundle Sizes b > 2

Let us consider a contrastive test set containing
n bundles of b instances each. There are nb +
1 possible accuracies a, but still n + 1 possible
consistencies c.
Ca can then be defined in terms of n, b, and a as

follows:

Ca = {c ∈ C : c
(a)
min ≤ c ≤ c(a)max} (13)

where c
(a)
min and c

(a)
max are defined as:

c
(a)
min =

{
0 if a ≤ n(b− 1)

a− n(b− 1) if a > n(b− 1
(14)

c(a)max =
⌊a
b

⌋
(15)

Intuitively, if a ≤ n(b − 1) then it is possi-
ble that all bundles have at least one of their con-
stituent instances incorrectly answered, in which
case, c(a)min = 0. However, if a > n(b − 1), then
at least a− n(b− 1) > 0 of bundles must be fully
correctly answered. Indeed, for a bundle to be
inconsistent at least one item must be incorrectly
answered, so for a given a, the number of incorrect
items is nb − a. Thus, at most nb − a bundles
can be inconsistent, and c

(a)
min = n − (nb − a) =

n− nb+ a = a− n(b− 1).
The definition of c(a)max follows from the observa-

tion that a maximally consistent model will consis-
tently respond to the maximum number of bundles
for which it is possible that all b instances are cor-
rectly answered, and that equals

⌊
a
b

⌋
.

Now, M(a) (the number of ways a model can
achieve accuracy a) is given by:

M(a) =

(
nb

a

)
(16)

and m(c, a) (the number of ways a model can
achieve accuracy a and consistency c) is given by:

m(c, a) =

(
n

c

)
·G(n− c, b, a− cb) (17)

where the first factor in the product still intuitively
corresponds to the number of ways that c consistent
bundles can be selected out of n, but the second
refers to the number of ways the remaining cor-
rect instances could be distributed within responses
to the test set such that no additional consistent
bundles can be formed.

This second factor G(m, b, k) is defined as:

G(m, b, k) =
R∑

r=0

(−1)r
(
m

r

)(
(m− r)b

k − rb

)
(18)

where R = min(m,
⌊
k
b

⌋
). This can be understood

as the number of ways to select k elements of an
m× b matrix such that no row contains a complete
b elements selected. The first term (which simpli-
fies to

(
mb
k

)
) is the total number of ways these k

elements could be selected, ignoring the restriction
on complete rows, and the remaining terms apply
the principle of inclusion-exclusion to alternately
subtract and add the number of ways that at least
r rows could be filled (by multiplying the number
of ways that r out of m rows could be selected by
the number of ways the remaining m− r rows and
b columns could be filled by the remaining k − rb
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Figure 2: The log10 of the distributions of consistency
scores in Figure 1a.

items to select), up to the maximal number of rows
R that could be filled, whether that is determined
by the total number of rows available m or the
number of rows the items k could fill.

In general, we do not recommend using this mea-
surement for bundle sizes above 2 except for evalu-
ating consistency on three-valued features, as many
consistency questions can be formulated as bun-
dles with one instance exhibiting a feature and one
instance lacking that feature.

C Distributions of Alternative
Approaches

Figures 3 and 4 plot the distributions of consis-
tency scores (for a 100-bundle dataset) obtained via
simpler non-probabilistic alternatives and compare
them to the distributions obtained via RC. Both of
these characterizations lower the scores for consis-
tencies that are above chance and raise the scores
for consistencies that are below chance.
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Size Loss B-A P-A S-A A-A B-C P-C S-C A-C B-RC P-RC S-RC A-RC

L
ar

ge

MLE 67.22 66.33 66.84 67.09 27.04 58.16 42.86 42.35 99.92 100.00 17.10 10.06
CE 67.35 67.35 64.80 66.84 28.57 61.22 40.31 43.37 99.99 100.00 20.10 26.64
λ1MLE + λ2CE↰

λ1, λ2 = 1.0, 1.0 67.73 68.88 66.33 68.11 28.57 63.78 42.86 44.39 99.98 100.00 30.43 19.37↰

λ1, λ2 = 0.33, 1.0 68.24 68.37 66.58 68.37 30.10 63.27 43.37 44.90 100.00 100.00 42.44 16.01

3B

MLE 75.64 76.28 74.23 76.79 44.39 71.43 56.12 60.71 100.00 100.00 80.76 88.68
CE 75.38 75.51 74.23 77.55 43.88 70.41 56.12 61.73 100.00 100.00 80.76 92.03
λ1MLE + λ2CE↰

λ1, λ2 = 1.0, 1.0 75.51 75.77 74.23 77.04 44.90 70.92 56.12 60.71 100.00 100.00 80.76 88.68↰

λ1, λ2 = 0.33, 1.0 76.53 77.55 76.02 78.57 45.92 73.47 58.67 63.78 100.00 100.00 79.32 98.60

Table 5: The full results of UnifiedQA-v2 (Khashabi et al., 2022) on the CondaQA contrastive dataset, with the
expectation that including the Contrastive Estimation (CE) objective would improve consistency, as in Dua et al.
(2021).

Figure 3: In this figure, the interval
[
c
(a)
min, c

(a)
max

]
is simply scaled to cover [0, 1] and the score is scaled accordingly.

On the left is the score given a model’s accuracy and consistency, on the right is shown the change in score when
moving from RC to this formulation.

Figure 4: In this figure, of the bundles which are at least partially correct, the proportion of fully consistent bundles
is reported. On the left is the score given a model’s accuracy and consistency, on the right is shown the change in
score when moving from RC to this formulation.


