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Abstract
How do sequence models represent their
decision-making process? Prior work suggests
that Othello-playing neural network learned
nonlinear models of the board state (Li et al.,
2023a). In this work, we provide evidence
of a closely related linear representation of
the board. In particular, we show that prob-
ing for “my colour” vs. “opponent’s colour”
may be a simple yet powerful way to inter-
pret the model’s internal state. This precise
understanding of the internal representations
allows us to control the model’s behaviour
with simple vector arithmetic. Linear rep-
resentations enable significant interpretability
progress, which we demonstrate with further
exploration of how the world model is com-
puted.1

1 Introduction

How do sequence models represent their decision-
making process? Large language models are ca-
pable of unprecedented feats, yet largely remain
inscrutable black boxes. Yet evidence has accu-
mulated that models extract features – articulable
properties of the input2 – and represent them in its
internal activations (Geva et al., 2021; Bau et al.,
2020; Gurnee et al., 2023; Belinkov, 2022; Burns
et al., 2022; Goh et al., 2021; Elhage et al., 2022a).
A key first step for interpreting them is understand-
ing how these features are represented. Mikolov
et al. (2013c) introduce the linear representation
hypothesis: that features are represented linearly
as directions in activation space. This would be
highly consequential if true, yet this remains con-
troversial and without conclusive empirical justifi-
cation. In this work, we present novel evidence of

*Equal contribution. neelnanda27@gmail.com,
ajyl@umich.edu

1Code available at https://github.com/ajyl/mech_
int_othelloGPT

2Note that our use of the term refers to a higher-level notion
than its more common use in deep learning terminology, i.e.,
an individual neuron.
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Figure 1: The emergent world models of OthelloGPT
are linearly represented. We find that the board states
are encoded relative to the current player’s colour
(MINE vs. YOURS) as opposed to absolute colours
(BLACK vs. WHITE).

linear representations, and show that this hypothe-
sis has real predictive power.

We build on the work of Li et al. (2023a), who
demonstrate the emergence of a world model in
sequence models. Namely, the authors train Oth-
elloGPT, an autoregressive transformer model, to
predict legal moves in a game of Othello given
a sequence of prior moves (Section 2.2). They
show that the model spontaneously learns to track
the correct board state, recovered using non-linear
probes, despite never being told that the board ex-
ists. They further show a causal relationship be-
tween the model’s inner board state and its move
predictions using model edits. Namely, they show
that the edited network plays moves that are legal
in the edited board state even if illegal in the orig-
inal board, and even if the edited board state is
unreachable by legal play (i.e., out of distribution).

Critically, the original authors claim that Othel-
loGPT uses non-linear representations to encode
the board state, by achieving high accuracy with
non-linear probes, but failing to do so using linear

https://github.com/ajyl/mech_int_othelloGPT
https://github.com/ajyl/mech_int_othelloGPT
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probes. In our work, we demonstrate that a closely
related world model is actually linearly encoded.
Our key insight is that rather than encoding the
colours of the board (BLACK, WHITE, EMPTY),
the sequence model encodes the board relative to
the current player of each timestep (MINE, YOURS,
EMPTY). In other words, for odd timesteps, the
model considers BLACK tiles as MINE and WHITE

tiles as YOURS, and vice versa for even timesteps
(Section 3). Using this insight, we demonstrate that
a linear projection can be learned with near perfect
accuracy to derive the board state.

We further demonstrate that we can steer the se-
quence model’s predictions by simply conducting
vectoral arithmetics using our linear vectors (Sec-
tion 4). Put differently, by pushing the model’s
activations in the directions of MINE, YOURS, or
EMPTY, we can alter the model’s belief state of
the board, and change its predictions accordingly.
Our intervention method is much simpler and in-
terpretable than that of Li et al. (2023a), which
rely on gradients to update the model’s activations
(Section 4.1). Our results confirm that our inter-
pretation of each probe direction is correct, but
also demonstrates that a mechanistic understanding
of model representations can lead to better con-
trol. Our results do not contradict that of Li et al.
(2023a), but add to our understanding of emergent
world models.

We provide additional interpretations of the se-
quence model using linear operations. For example,
we provide empirical evidence of how the model
derives empty tiles of the board, and find additional
linear representations, such as tiles being FLIPPED

at each timestep.
Finally, we provide a short discussion of our

thoughts. How should we think of linear versus
non-linear representations? Perhaps most interest-
ingly, why do linear representations emerge?

2 Preliminaries

In this section we briefly describe Othello, Othel-
loGPT, and our notations.

2.1 Othello

Othello is a two player game played on a 8x8 grid.
Players take turns playing black or white discs on
the board, and the objective is to have the majority
of one’s coloured discs by the end of the game.

The board always starts with the middle 4 tiles
filled with black and white tiles. At each turn, when

a tile is played, all of the opponent’s discs that are
enclosed in a horizontal, vertical, or diagonal row
between two discs of the current player are flipped.
The game ends when there are no more valid moves
for both players.

2.2 OthelloGPT

OthelloGPT is a 8-layer GPT model (Radford et al.,
2019), each layer consisting of 8 attention heads
and a 512-dimensional hidden space. We use the
model weights provided by Li et al. (2023a), de-
noted there as the synthetic model. The vocabulary
space consists of 60 tokens,3 each one correspond-
ing to a playable move on the board (e.g., A4).

The model is trained in an autoregressive manner,
meaning for a given sequence of moves m<t, the
model must predict the next valid move mt.

Note that no a priori knowledge of the game
nor its rules are provided to the model. Rather,
the model is only given move sequences with a
training objective to predict next valid moves, by
randomly sampling sequences of games from a
game tree. This training objective differs from
that of models like AlphaZero (Silver et al., 2018),
which are trained to play strategic moves to win
games.

2.3 Notations

Transformers. Our transformer architecture
(Vaswani et al., 2017) consists of embedding and
unembedding layers Emb and Unemb with a se-
ries of L transformer layers in-between. Each trans-
former layer l consists of H multi-head attentions
and a multilayer perception (MLP) layer.

A forward pass in the model first embeds the
input token at timestep t using embedding layer
Emb into a high dimensional space x0t ∈ RD. We
refer to x0t∈T as the start of the residual stream.
Then each attention head Atthl , ∀h ∈ H and MLP
block at layer l add to the residual stream:

xl_midt = xlt +
∑
h∈H

Atthl (x
l
t)

xl+1
t = xl_midt +MLPl(x

l_mid
t )

Each attention head Atthl computes value vec-
tors by projecting the residual stream to a lower
dimension using Atthl .V , linearly combines value

3The game always starts with 4 tiles in the center of the
board already filled.
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x0 x1 x2 x3 x4 x5 x6 x7

Randomized 37 35.1 33.9 35.5 34.8 34.7 34.4 34.5
Probabilistic 61.8

Linear {BLACK, WHITE, EMPTY} 62.2 74.8 74.9 75.0 75.0 74.9 74.8 74.4
Non-Linear {BLACK, WHITE, EMPTY} 63.4 88.6 93.3 96.3 97.5 98.3 98.7 98.3

Linear {MINE, YOURS, EMPTY} 90.9 94.8 97.2 98.3 99 99.4 99.6 99.5

Table 1: Probing accuracy for board states. OthelloGPT linearly encodes the board state relative to the current
player at each timestep (MINE vs. YOURS, as opposed to colours BLACK or WHITE.

vectors using Atthl .A, and projects back to the
residual stream using Atthl .O:

h(x) = (Attnhl .A⊗Attnhl .O ·Attnhl .V ) · x

where ⊗ notates a tensor product. A final pre-
diction is made by applying Unemb on xL−1, fol-
lowed by a softmax.

Probe Models. We notate linear and non-linear
probes as pλ and pν . Our linear probes are sim-
ple linear projections from the residual stream:
pλ(xlt) = softmax(Wxlt),W ∈ RD×3. The di-
mension D × 3 comes from doing a 3-way classifi-
cation.4 Non-linear probes are 2-layer MLP mod-
els: pν(xlt) = softmax(W1ReLU(W2x

l
t)), W1 ∈

RH×3,W2 ∈ RD×H . Li et al. (2023a) classify
the colour at each tile (BLACK, WHITE, EMPTY).
Our insight is to classify the colours relative to the
current turn’s player (MINE, YOURS, EMPTY).

3 Linearly Encoded Board States

In this section we describe our experiments to find
linear board state representations.

3.1 Experiment Setup
Rather than encoding the colour of each tile
(BLACK, WHITE, EMPTY), OthelloGPT encodes
each tile relative to the player of each timestep
(MINE, YOURS, EMPTY) — for odd timesteps, we
consider BLACK to be MINE and WHITE to be
YOURS, and vice versa for even timesteps.

In order to learn the weights of our linear probe,
we train on random game sequences until a valida-
tion loss on a set of 512 games converges according
to a patience value of 10. In practice, our linear
probes converge after around 100,000 training sam-
ples. We test our probes on a held out set of 1,000
games.

4In practice, because we are predicting the state of all 64
tiles, the shape of our probe is D × 64× 3.
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Figure 2: Intervening methodology: we intervene by
adding either EMPTY, MINE, or YOURS directions into
each layer of the residual stream. Red squares in each
board indicate the tiles that have been intervened, teal
tiles indicate new legal moves post-intervention that the
model predicts.

We train a different probe for each layer l. Hy-
perparameters are provided in the Appendix.

3.2 Results

Table 1 shows the accuracy for various probes.
We include four baselines. The first is a linear

probe trained on a randomly initialized GPT model.
We also include a probabilistic baseline, in which
we always choose the most likely colour per tile at
each timestep, according to a set of 60,000 games
from training data. The next two baselines are
probe models used in Li et al. (2023a): a linear
and non-linear probe trained to classify amongst
{BLACK, WHITE, EMPTY}.

Our linear probes achieve high accuracy by layer
4. Unbeknownst previously, we show that the
emerged board state is linearly encoded.
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4 Intervening with Linear Directions

In this section we demonstrate how we intervene
on OthelloGPT’s board state using linear probes.

4.1 Method

An inherent issue with probing is that it is corre-
lational, not causal (Belinkov, 2022). To validate
that our probes have found a true world model, we
confirm that the model uses the encoded board state
for its predictions.

To verify this, we conduct the same intervention
experiment as Li et al. (2023a). Namely, given an
input game sequence (and its corresponding board
stateB), we intervene to make the model believe in
an altered board state B′. We then observe whether
the model’s prediction reflects the made-believe
board state B′ or the original board state B.

Our intervention approach is simple (Figure 2):
we add our linear vectors to the residual stream of
each layer:

x′ ← x+ αpλd(x)

where d indicates a direction amongst {MINE,
YOURS, EMPTY} and α is a scaling factor. In
other words, to flip a tile from YOURS to MINE,
we simply push the residual stream at every layer
in the MINE direction, or to “erase” a previously
played tile, we push in the EMPTY direction. 5 6

Note that this intervention is much simpler than
that of Li et al. (2023a). Namely, Li et al. (2023a)
edits the activation space (x) of OthelloGPT using
their non-linear probes. More specifically, they use
non-linear probes to predict board state B, then
compute gradients had the correct board state been
the target board state B′, and finally use the gradi-
ents to update the activation space of OthelloGPT
rather than the weights of the probe model. Instead,
we perform a single vector addition.

4.2 Experiment Setup

For our intervention experiment, we adopt the same
setup and metrics as Li et al. (2023a). We use
an evaluation benchmark consisting of 1,000 test
cases. Each test case consists of a partial game
sequence (B) and a targeted board state B′.

5We experiment with intervening on different layers. See
Appendix for more details.

6We use the TransformerLens library: https://github.
com/neelnanda-io/TransformerLens.

Flipping colours Avg. # Errors
Null Intervention Baseline 2.723
Non-Linear Intervention 0.12
Linear Probe Addition 0.10

Erasing Avg. # Errors
Null Intervention Baseline 2.73
Non-Linear Intervention 0.11
Linear Probe Addition 0.02

Table 2: Error rates from interventions. We measure
the number of false positives and false negatives in
the top-N predictions post-intervention, where N is the
number of legal moves in the target board state B′.

We measure the efficacy of our intervention by
treating the task as a multi-label classification prob-
lem. Namely, we compare the top-N predictions
post-intervention against the groundtruth set of le-
gal moves at state B′, where N is the number of
legal moves at B′. We then compute error rate, or
the number of false positives and false negatives.

Li et al. (2023a) only considers the scenario of
flipping the colour of a tile. To also validate our
EMPTY direction, we also experiment with “eras-
ing” a previously played tile by making it empty.

4.3 Results
Table 2 shows the average error rates after our inter-
ventions. A null intervention measures the number
of errors by comparing pre-intervention predictions
on post-intervention groundtruths. Our interven-
tions are equally effective as that of gradient-based
editing (Li et al., 2023a), and confirms that our in-
terpretation of each linear direction matches how
the model uses such directions.

5 Additional Linear Interpretations

The linear representation hypothesis is of interest
to the mechanistic interpretability community be-
cause it provides a foothold into understanding a
system. The internal state of the transformer, the
residual stream, is the sum of the outputs of all pre-
vious components (heads, layers, embeddings and
neurons) (Elhage et al., 2021). Albeit the residual
stream consisting of linear and non-linear trans-
formations, linear functions of the residual stream
allow us to identify where a computation of inter-
est takes place, or trace how a representation of
interest evolves over a forward pass.

In this section we leverage our newfound linear
representation of board state to provide additional

https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
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interpretations of OthelloGPT, as proof of concept
of how discovering linear representations unlocks
downstream interpretability applications.

5.1 Interpreting Empty Tiles

Here we interpret how OthelloGPT derives the sta-
tus of empty tiles.

The EMPTY Circuit. A key insight for EMPTY

is that input tokens each correspond to a tile on the
board (i.e., A4), and once played, the tile can only
change colour but remains non-empty.

We view OthelloGPT as using attention heads to
“broadcast” which moves have been played: given
a move at timestep t, attention heads write this
information into other residual streams. This infor-
mation (PLAYED) can be represented as following.
First, each move m (A4) is embedded: Emb[m].
Then the model writes this information to other
residual streams using linear projectionsAtt.V and
Att.O (Section 2.3):

PLAYEDh(m) = Emb[m]@Atth.V@Atth.O

For each attention head in the first layer,7 we
compute the cosine similarity between PLAYED

and the pλEMPTY direction:

max
h∈H

CosSim(PLAYEDh(m), pλEMPTY(m))

Since the two terms encode opposite information,
we expect a high negative cosine similarity.

We observe an average similarity score of -0.862
across all 60 squares,8, confirming that pEMPTY is
encoding NOT PLAYED. This tells us that pEMPTY

is a linear function of the token embeddings.
This also implies that OthelloGPT knows which

tiles are empty by x0_mid: after the first attention
heads but before the MLP layer. On a binary clas-
sification task of EMPTY vs. NOT-EMPTY from
1,000 games in our test split, our probe achieves
an accuracy of 76.8% and 98.9%, when project-
ing from the residual stream before and after the
attention heads from the first layer.

7Knowing which moves were PLAYED (i.e. show up in
the input sequence), should not depend on any other computa-
tion, and thus we expect this information to be written by the
attention heads in the first layer.

8The center 4 squares can never be empty.

Figure 3: Difference in probability of A4 being empty,
between our clean and corrupt sequences, measured in
each attention head.

Figure 4: Examples of attention heads from the first
layer attending to moves that are YOURS (left) or MINE
(right).

Logit Attribute for EMPTY. The previous anal-
ysis is based on the weights of the model. Here
we provide an alternative analysis by studying the
activations during inference.

First, we select a move m (A4) that we wish
to explain. We then construct a “clean” and “cor-
rupt” set of partial game sequences (N=4,569). Our
clean set always includes m, while our corrupt set
replaces all timesteps with m in the clean set with
an alternative move. We ensure that all games in
our corrupt set remain legal sequences. Finally, we
study the difference in probability that m is empty,
according to our probes, in our two sets. Namely,
we project the outputs from each attention head
onto the EMPTY direction and apply a softmax:

PEMPTY[m](σ) = Softmax(σ ∗ pλEMPTY[m])

where σ is the output from each attention head.
Figure 3 shows the difference in probability that

A4 is empty, between our clean and corrupt inputs,
measured in each attention head of the first layer.
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x0 x1 x2 x3 x4 x5 x6 x7

Linear {FLIPPED, NOT-FLIPPED} 74.76 85.75 91.62 94.82 96.44 97.13 96.82 96.3

Table 3: F1 score for probing on FLIPPED tiles. In addition to the board state, the model also linearly encodes
concepts such as flipped tiles per timestep.

The figure decomposes two scenarios: when A4
was originally played as MINE or YOURS. This is
because some attention heads only attend to moves
that are MINE (4, 7), while some only attend to
YOURS (1, 3, 8), which we show below.

5.2 Attending to MY & YOUR Timesteps
We find that some attention heads only attend to
either MY or YOUR moves. Figure 4 shows two
examples: at each timestep, each head alternates
between attending to even or odd timesteps. Such
behavior further indicates how the model computes
its world model based on MINE and YOURS as
opposed to BLACK and WHITE.

5.3 Additional Linear Concepts: FLIPPED

In addition to linearly representing the board state,
we find that OthelloGPT also encodes which tiles
are being flipped, or captured, at each timestep. To
test this, we modify our probing task to classify be-
tween FLIPPED vs. NOT-FLIPPED, with the same
training setup described above. Given the class im-
balance, for this experiment we report F1 scores.
Table 3 demonstrates high F1 scores by layer 3.

We also conduct a modified version of our inter-
vention experiment, in which we always randomly
select a flipped tile at the current timestep to in-
tervene on. Then, instead of adding either pλMINE,
pλYOURS, or pλEMPTY, we subtract pλFLIPPED. This tests
whether the FLIPPED feature is causally relevant
for computing the next move, by exploring whether
this is sufficient to cause the model to play valid
moves in the new board state. We get an average
error rate of 0.486, compared to a null intervention
baseline rate of 1.686.

One can consider FLIPPED tiles as the differ-
ence between the previous and current board state.
One might naturally think that a recurrent com-
putation could derive the current board state by
iteratively applying such differences. However,
transformer models do not make recursive com-
putations!9 Also, the derivative property of cap-
tured tiles being encoded in later layers might be

9Doing so would require our transformer model to have
the same number of layers as the maximum game sequence
length of 60.

analogous to observations from previous studies of
language models that show low-level lexical prop-
erties being encoded in lower layers and syntax and
semantics being mostly captured in higher layers
(Tenney et al., 2019).

5.4 Multiple Circuits Hypothesis

Although we find board state representations and
their causality on move predictions, we find that
they do not explain the entire model. Namely, if
our understanding is correct, we expect the model
to compute the board state before computing valid
moves. However, we find that in end games, this is
not the case.

To check for the correct board state, we apply our
linear probes on each layer, and check the earliest
layer in which all 64 tiles are correctly predicted.10

To check for correct move predictions, we project
from each layer using the unembedding layer, and
check the earliest layer in which the top-N move
predictions are all correct, where N is the number
of groundtruth legal moves.

Figure 5 plots the proportion of times the board
state is computed before (or after) valid moves
(first y-axis). We also overlay the average earliest
layer in which board or moves are correctly com-
puted (second y-axis, aqua and lime curves). To
our surprise, we find that in end games, the model
often computes legal moves before the board state
(black bars). We henceforth refer to this behavior
as MOVEFIRST, and share some thoughts.

End Game Circuits. First, MOVEFIRST starts
to occur around move 30, which is the mid-point of
the game. Second, MOVEFIRST occurs more fre-
quently as we near the end of the game (increasing
black bars). Interestingly, in Othello, starting from
the mid-point, there are progressively fewer empty
tiles than there are filled tiles as the board fills up.
Also note that as the game progresses, it becomes
more likely for every empty tile to be a legal move.

One possible explanation for this phenomenon
is that in the end game, it may be possible to pre-

10It might be the case that legal moves could be predicted
without 100% accuracy of the board state. We try variants (see
Appendix), but observe similar trends.
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Figure 5: Proportion of times the board state is computed before/after move predictions are made (First y-axis).
Light Grey: Boards are computed in an earlier layer than moves. Dark Grey, Black: Boards are computed in
the same or later layer than moves. Red: Model never computes the correct board state. Aqua, Lime (Curves):
Average earliest layer in which the board or moves are correctly computed (Second y-axis). Starting from the mid-
game, we start observing the model compute moves before boards (black bar), and this occurs more frequently as
the game progresses.

dict legal moves with simpler circuits that do not
require the entire board state. For instance, perhaps
it combines EMPTY with other features such as IS-
SURROUNDED-BY-MINE or IS-BORDER and so
on.

Multiple Circuits. Interestingly, the model still
uses the board state at end games. To demon-
strate this, we run our intervention experiment on
1,000 end games,11 and still achieve a low error
rate of 0.112.12 We thus hypothesize that Othel-
loGPT (and more broadly, sequence models) con-
sist of multiple circuits. Another hypothesis is that
residual networks make “iterative inferences” (Sec-
tion 5.5), and for end games, OthelloGPT uses
simpler circuits in the early layers and refines its
predictions at late layers using board state.

End Game Board Accuracy. We observe that
board state accuracy drops near end games. This
can be seen by the growing red bars, but also by
measuring per-timestep accuracy of our probes (see
Appendix). It is unclear whether 1) the model does
not bother to compute the perfect board state, as
alternative circuits allow the model to still correctly
predict legal moves, or 2) the model learns an alter-
native circuit because it struggles to compute the
correct board state at end games.

Memorization. Note that in the first few
timesteps, the board and legal moves are some-
times both computed in the same layer (dark grey
bars). This may be due to memorization: 1) these

11We intervene on a timestep > 30
12Non-intervention baseline: 1.988.

predictions both occur at the first layer, and 2) there
are only so many openings in an Othello game.

5.5 Iterative Feature Refinements
Figure 6 visualizes OthelloGPT’s “iterative infer-
ence” (Jastrzebski et al., 2018; Belrose et al., 2023;
Veit et al., 2016; nostalgebraist, 2020), or itera-
tive refinement of features. For each layer, we
plot the projected board states using our probes,
and projected next-move predictions using the un-
embedding layer. Multiple evidence of iterative
refinements are provided in the Appendix.

6 Discussions

6.1 On Linear vs. Non-Linear
Interpretations

One challenge with probing is knowing which
features to look for.13 For instance, classifying
{BLACK, WHITE} versus {MINE, YOURS} leads to
different takeaways, which illustrates the danger of
projecting our preconceptions. What might seem
“sensible” to a human interpreter (BLACK, WHITE)
may not be for a model. In hindsight, given the
symmetric game-play of Othello, encoding MINE,
YOURS is perfectly sensible for the model (For
more examples of non-obvious, sensible features,
see (McCoy et al., 2019; Nanda et al., 2023)).

More broadly, what is sensible, or alternatively,
how we choose to interpret linear or non-linear en-
codings, can be relative to how we see the world.
Suppose we had a perfect world model of our phys-
ical world. Further suppose that if and when it

13For a longer discussion on probing, see Appendix.
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Figure 6: Iterative refinements: the top row shows each layer projected using our linear probes. The bottom row
shows the model’s predictions for legal moves at each layer, by applying the unembedding layer on each layer.

computes a gravitational force between two ob-
jects (Newton’s law), we discover a neuron whose
square root was the distance between two objects.
Is this a non-linear representation of distance? Or,
given the form of Netwon’s law, is the square of
the distance a more natural way for the model to
represent the feature, and thus considered a linear
representation? As this example shows, what con-
stitutes a natural feature may be in the eye of the
beholder.

6.2 On the Emergence of Linear
Representations

Linear representations in sequence models have
been observed before: iGPT (Chen et al., 2020),
which was autoregressively trained to predict next
pixels of images, lead to robust linear image rep-
resentations. The question remains, why do linear
feature representations emerge? What linear repre-
sentations are currently encoded in large language
models? One reason might be simply that matrix
multiplication can easily extract a different subset
of linear features for each neuron. However, we
leave a complete explanation to future work.

7 Related Work

We discuss three broad related areas: understanding
internal representations, interventions, and mecha-
nistic interpretability.

7.1 Understanding Internal Representations
Multiple researchers have studied concept represen-
tations in sequence models. Li et al. (2021) train
sequence models on a synthetic task, and uncover
world models in their activations. Patel and Pavlick
(2022) demonstrate that language models can learn
to ground concepts (e.g., direction, colour) to real
world representations. Burns et al. (2022); Marks
and Tegmark (2023) find linear vectors that en-
code “truthfulness”. Probing techniques have also

been used to extract linguistic characteristics in sen-
tence embeddings (Conneau et al., 2018; Tenney
et al., 2019). Researchers have also used struc-
tural probes to uncover syntactic structures in word
embeddings (Hewitt and Manning, 2019) and lan-
guage models (Eisape et al., 2022). Prior to current
day language models, word embeddings (Mikolov
et al., 2013b,a) built vectoral word representations.

Linear representations are found outside of lan-
guage models as well. Merullo et al. (2022) demon-
strate that image representations from vision mod-
els can be linearly projected into the input space of
language models. McGrath et al. (2022) and Lover-
ing et al. (2022) find interpretable representations
of chess or Hex concepts in AlphaZero.

7.2 Intervening On Language Models
A growing body of work has intervened on lan-
guage models, by which we mean controlling their
behavior by altering their activations.

We consider two broad categories. Paramet-
ric approaches often use optimizations (i.e. gra-
dient descent) to locate and alter activations (Li
et al., 2023a; Meng et al., 2022a,b; Hernandez
et al., 2023; Hase et al., 2023). Meanwhile,
inference-time interventions typically apply linear
arithmetics, for instance by using “truthful” vec-
tors (Li et al., 2023b), “task vectors” (Ilharco et al.,
2022), or other “steering vectors” (Subramani et al.,
2022; Turner et al., 2023).

7.3 Mechanistic Interpretability
Mechanistic interpretability (MI) studies neural net-
works by reverse-engineering their behavior (Olah
et al., 2020; Elhage et al., 2021). The goal of MI
is to understand the underlying computations and
representations of a model, with a broader goal
of validating that their behavior aligns with what
researchers have intended. Such framework has
allowed researchers to better understand grokking
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(Nanda et al., 2023), superposition (Elhage et al.,
2022b; Scherlis et al., 2022; Arora et al., 2018), or
even individual neurons (Mu and Andreas, 2020;
Antverg and Belinkov, 2021; Gurnee et al., 2023).

8 Conclusion

In this work we demonstrated that the emergent
world model in Othello-playing sequence models
is full of linear representations. Previously unbe-
knownst, we demonstrated that the board state in
OthelloGPT is linearly represented by encoding
the colour of each tile relative to the player at each
timestep (MINE, YOURS, EMPTY) as opposed to
absolute colour (BLACK, WHITE, EMPTY). We
showed that we can accurately control the model’s
behaviour with simple vector arithmetic on the in-
ternal world model. Lastly, we mechanistically
interpreted multiple facets of the sequence model,
analysing how empty tiles are detected, and linear
representations of which pieces are flipped. We
find hints that multiple circuits might exist for pre-
dicting legal moves in the end game, as well as
further evidence that residual networks iteratively
refine their features across layers.
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Hyperparameter Value

Optimizer AdamW
Learning Rate 1e-2
Weight Decay 1e-2
Betas 0.9, 0.99
Validation Step 200
Validation Size 512
Validation Patience 10

Table 4: Hyperparameters used for our linear probes.
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Figure 7: Intervention results depending on layers in-
tervened.

A Hyperparameters for Linear Probes

Table 4 provides hyperparameters used for our lin-
ear probes.

B Intervening on Different Layers

In practice there are a lot of ways to intervene using
linear vectors. Figure 7 demonstrates different er-
ror rates depending on which layers are intervened.
From our experiments, we observe that either a
sufficient number of layers need to be intervened
for OthelloGPT to alter its predictions. We offer a
couple of hypotheses for this. First, we hypothesize
that this is because of the residual structure of trans-
former models, and while each layer may write
additional information into the residual streams,
there may still be information from earlier layers
that the model uses. A somewhat related hypothe-
sis is that OthelloGPT might be demonstrating the
Hydra effect (McGrath et al., 2023), in which lan-
guage models demonstrate the ability to self-repair
its computations after an intervention.

C Multiple Circuits

In Section 5.4, we find hints that OthelloGPT some-
times computes moves before boards at end games.

Namely, we check the earliest layers in which the
board is correctly predicted with 100% accuracy.
Could it be that at end games, legal moves can be
predicted without needing the entire board? To this
point, we experiment with variations of this exper-
iment. In Figure 8, we check the earliest layer in
which at least 90% of the board is first correctly
computed. In Figure 9, we check the earliest layer
in which the “minimum set” of tiles are correctly
computed, where the minimum set is set of tiles
that make each legal move playable (see Figure 10
for example). Despite a looser criteria for board
state, we still see OthelloGPT computing moves
before boards at end games.

Interestingly, our probes lose accuracy starts to
drop in the end game as well (Figure 11). It is
unclear whether 1) the model does not bother to
compute the perfect board state, as alternative cir-
cuits might exist at end games, or 2) the model
learns an alternative circuit because it struggles to
compute the correct board state at end games.

D Evidence of Iterative Feature
Refinements

As mentioned in Section 5.5, OthelloGPT demon-
strates multiple evidence of iterative feature re-
finements: 1) Board state accuracy (as well as
FLIPPED) improves from layer to layer (Table 1,
3). 2) Next-move predictions also improve from
layer to layer. Table 5 reports the top-1 error rate
when applying the unembedding layer on every
layer using our test set from Section 3. As a base-
line, we apply the same unembedding layer from
OthelloGPT to the residual streams of a randomly
initialized GPT model. 3) Linear probes across
layers share similar directions. Figure 12 plots
the cosine similarity between all linear probes, av-
eraged across all 64 tiles and directions (MINE,
YOURS, EMPTY).

E On Principled Ways of Probing

Probing has produced both excitement and skepti-
cism amongst researchers (Belinkov, 2022). Here
we provide our learnings regarding probing.

One criticism of probes is whether the discov-
ered features are actually used by the model, i.e.,
correlation vs. causation. Intervention is com-
monly used to study causality (Giulianelli et al.,
2018; Tucker et al., 2021), but have often reached
mixed conclusions (Belinkov, 2022). While both
linear and non-linear probes have demonstrated
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Figure 8: Percentage of times 90% of the board state is computed before/after move predictions are made.
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Figure 9: Percentage of times the “minimum set” of necessary board state is computed before/after move predic-
tions are made.
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Figure 10: Example of “minimum set” of tiles that
make move G2 legal.

successful interventions (Li et al., 2023b; Turner
et al., 2023), linear probes are much easier to inter-
pret, as they imply that features simply correspond
to vectoral directions.

Another challenge is knowing which features
to probe for, which can lead to pitfalls. Taking
OthelloGPT as an example, classifying {BLACK,
WHITE} versus {MINE, YOURS} leads to different

0 10 20 30 40 50

0.75

0.8

0.85

0.9

0.95

1 Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Timestep (Moves)

A
c
c
u
r
a
c
y

Figure 11: Accuracy per timestep for our linear probes.

takeaways, which illustrates the danger of project-
ing our preconceptions.

Speaking of incorrect takeaways, our last point
concerns the expressivity of probe models. With an
expressive-enough probe, there is a danger of the
probe computing or memorizing the desired fea-
ture that one is looking for, rather than extracting
(Pimentel et al., 2020a; Saphra and Lopez, 2019).
Still, some researchers view linear classification
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Baseline: Random x0 x1 x2 x3 x4 x5 x6 x7

0.856 0.215 0.152 0.112 0.079 0.049 0.015 0.004 0.001

Table 5: Top-1 error rates when applying the unembedding layer to earlier layers. As a baseline we apply Othel-
loGPT’s unembedding layer on a randomly initialized GPT model.

Figure 12: Cosine similarity scores between linear
probes across layers.

as inadequate (Pimentel et al., 2020b; Saphra and
Lopez, 2019). We view our work as evidence that
linear probes do have interpretable and controllable
power, and anticipate these findings to generalize
to larger language models.


