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Abstract

Answering multi-hop reasoning questions re-
quires retrieving and synthesizing information
from diverse sources. Large Language Models
(LLMs) struggle to perform such reasoning con-
sistently. Here we propose an approach to pin-
point and rectify multi-hop reasoning failures
through targeted memory injections on LLM
attention heads. First, we analyze the per-layer
activations of GPT-2 models in response to sin-
gle and multi-hop prompts. We then propose a
mechanism that allows users to inject pertinent
prompt-specific information, which we refer to
as “memories,” at critical LLM locations dur-
ing inference. By thus enabling the LLM to
incorporate additional relevant information dur-
ing inference, we enhance the quality of multi-
hop prompt completions. We show empirically
that a simple, efficient, and targeted memory
injection into a key attention layer can often in-
crease the probability of the desired next token
in multi-hop tasks, by up to 424%.

1 Introduction

Transformer-based Large Language Models
(LLMs) (Vaswani et al., 2017; Brown et al.,
2020) have shown exceptional promise for basic
knowledge retrieval and language generation;
however, they often lack the ability to perform
basic reasoning tasks (Arkoudas, 2023; Guo et al.,
2023; Blair-Stanek et al., 2023). In this work, we
focus on the simple task of answering multi-hop
prompts (i.e., prompts in which the subject is not
stated explicitly), which humans handle easily but
with which LLMs often struggle (see Fig. 1).

Researchers have attempted to rectify multi-
hop reasoning failures by using various prompting
methods such as Chain-of-Thought (CoT), Tree-
of-Thought (ToT), and Graph-of-Thought (GoT)
reasoning (Wei et al., 2022; Wang et al., 2023;
Long, 2023; Xie et al., 2023; Yao et al., 2023; Besta
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Figure 1: A multi-hop prompt vs. two analogous single-
hop prompts. The outputs are from GPT2-Small.

et al., 2023). However, these approaches often put
the burden on users to know how to elicit desired
responses—and, in the hands of non-expert users,
can lead to unreliable prompt completions. Re-
searchers have also proposed model editing (Meng
et al., 2022a,b; Zhong et al., 2023; Li et al., 2023)
approaches that may hard-code distant relation-
ships directly into model weights, rather than en-
hancing the model’s abilities to recall and then link
simpler relationships. These approaches can be
computationally expensive and have unintended ef-
fects on other knowledge originally embedded in
the model’s weights (Cohen et al., 2023).

Our approach to this problem is based on the
hypothesis that LLMs often fail to recall relevant
memories when attempting to answer a prompt
that requires multiple “hops” of reasoning, rather
than lacking knowledge of the memories altogether.
For example, when attempting to complete the
multi-hop prompt, “The largest coral reef system
in the world is located off the coast of. . . ,” we hy-
pothesize that the model does not correctly recall
that “the largest coral reef system in the world”
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is “the Great Barrier Reef” before predicting the
next token in the sequence. Yet the model can
accurately complete both the corresponding single-
hop prompt “The Great Barrier Reef is located of
the coast of. . . ,” and, when prompted, “the largest
coral reef” as “the Great Barrier Reef.” Clearly,
this information was encoded in the model during
training but is not incorporated when answering
questions that reference the prompt’s subject indi-
rectly. In this case, therefore, we define the missing
memory to be “the Great Barrier Reef.”

To study our hypothesis, we first attempt
to reverse engineer a key mechanism by
which transformer-based LLMs conduct reasoning.
Specifically, we find that in transformer-based mod-
els it is attention heads, rather than multi-layer per-
ceptrons, that are responsible for retrieving mem-
ories critical to successful model predictions; our
finding is further substantiated by similar findings
by Li et al. (2023); Geva et al. (2023); Dar et al.
(2022). We then study instances in which this mech-
anism fails in multi-hop reasoning tasks and find
that this mechanism is likely the source of incor-
rect, insufficient, or irrelevant memory retrievals
(Contribution 1)—for an example, see Fig. 2.

We then propose a lightweight memory injection
method that can be employed to correct a multi-
hop reasoning failure during inference (Contribu-
tion 2). As an example: by employing our method
to inject the memory of “The Great Barrier Reef”
into the multi-hop prompt “The largest coral reef
system in the world is located off the coast of. . . ”
during inference, we increase the probability of the
next token “Australia” by 189%; refer to Fig. 3 for
details.

For our analyses, we hand-crafted a dataset
for interpretabilty purposes (Contribution 3) and
make use of a larger programmatically-generated
dataset—refer Table 1 for more information.

Finally we conduct additional experiments (Con-
tribution 4) to:

1. Identify the ideal layer and magnitude for the
memory injection.

2. Demonstrate the significance of curating
prompt-specific memories for injection.

3. Analyze if memories drawn from different
parts of speech—namely, nouns, adjectives,
adverbs, conjunctions, verbs—behave differ-
ently during memory injection.

2 Background & Notation

We define single- vs. multi-hop prompts and pro-
vide a formal definition of the transformer model.

2.1 Multi-hop vs. single-hop prompts
We refer to a prompt as single-hop if the subject of
the relation is stated explicitly in the prompt, and
multi-hop otherwise. Multi-hop prompts refer to
their subject in a way that requires an additional
“hop” or inference step. For example, consider the
single-hop prompt, “George Washington fought in
the. . . ” with a correct answer being “Revolutionary
War.” In the analogous multi-hop prompt, “The
first president of the United States fought in the. . . ,”
a preliminary inference step is needed to identity
of the first US president before predicting the next
token. For additional examples of single- and mutli-
hop prompts, see Table 3 in the appendix.

2.2 Transformer Architecture
We introduce a common notation for the compo-
nents of the transformer-based language model
architectures that are the focus of our analyses.
Specifically, we focus on auto-regressive, decoder-
only models. We adopt much of our notation from
Elhage et al. (2021) and Geva et al. (2023).

2.2.1 Embedding Inputs
An input text is parsed into N distinct tokens
t0, · · · , tN . Each token ti is then embedded as
x0i ∈ Rd via an embedding matrix WE ∈ R|V |×d,
where V is the vocabulary and d is the hidden di-
mension.

2.2.2 Residual Stream
Following the embedding layer, all tokenized em-
beddings x0i are passed through a series of residual
blocks. The outputs of each residual block are
added back into the model’s residual stream de-
noted by Rℓ (∀ℓ ∈ {1, · · · , L}) where L is the
number of layers in the LLM.

We define the residual stream at layer ℓ as:

Rℓ = [xℓ0, · · · , xℓN ], (1)

where xℓi is the representation of token i at layer ℓ.
The residual stream is updated by its respective
residual block rℓ:

Rℓ+1 = Rℓ + rℓ+1, (2)

and the output of a residual block rℓ is:

rℓ = aℓ +mℓ, (3)
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where aℓ is the output of the Multi-Headed Self
Attention (MHSA) layer and mℓ is the output of the
Multi-Layer Perceptron (MLP). We define MHSA
and MLP in the following sections.

2.2.3 Multi-Headed Self Attention (MHSA)
Each MHSA layer ℓ is defined via four parame-
ter matrices W ℓ

Q,W
ℓ
K ,W ℓ

V ,W
ℓ
O ∈ Rd×d (∀ℓ ∈

{1, · · · , L}) and the hyperparameter H denotes
the number of attention heads. Following Elhage
et al. (2021) and Geva et al. (2023), we can further
dissect our parameter matrices to better observe
the relationship between unique sets of parameters
and individual attention heads: W l,j

Q ,W ℓ,j
K ,W ℓ,j

V ∈
Rd× d

H and W ℓ,j
O ∈ R

d
H
×d for j ∈ [1, H]. Now, we

can define the output of each MHSA aℓ as the sum
of all attention head outputs,

aℓ =

H∑
j=1

hℓ,j , (4)

where hℓ,j is the output of the jth head in layer ℓ:

hℓ,j = Aℓ,j
(
Rℓ−1W ℓ,j

V

)
W ℓ,j

O . (5)

Aℓ,j = softmax

((
Rℓ−1W ℓ,j

Q

)(
Rℓ−1W ℓ,j

K

)T√
d/H

⊙M

)
(6)

where the softmax(·) is performed as a row-wise
operation, ⊙ is the Hadamard product, and M ∈
{0, 1}N×N is an auto-regressive attention mask
where masked token positions are set to 0.

2.2.4 Multi-Layer Perceptron (MLP)
Each MLP is defined via two parameter matrices
W ℓ

F ,W
ℓ
I ∈ Rd×dp with inner-dimension dp and a

nonlinear activation function, σ.

mℓ = W ℓ
F σ

(
W ℓ

I

(
aℓ +Rℓ−1

))
(7)

2.2.5 Unembedding Predictions into Logits
After the final residual block, all token positions
x−1
i will be projected back into the vocabulary do-

main via the unembedding matrix WU ∈ Rd×|V |.
The output of the last token position is the next
token prediction of the model.

3 Experimental Overview

Our central aim is to better understand how the
outputs of the attention heads affect model perfor-
mance with respect to predicting the correct next

token in prompts requiring single-hop reasoning
versus in prompts requiring multi-hop reasoning.

3.1 Dataset Descriptions

We employ three datasets in this work. Two, used
to assess model prompt completion accuracy, are
our own high-quality manually curated dataset of
single and multi-hop pairs and a programmatically
generated dataset of prompt pairs. The third com-
prises lists of words from common parts of speech,
which we use to study how the effectiveness of
our intervention varies with the part of speech of
injected tokens.

3.1.1 Programmatically Generated Dataset
The 2WikiMultiHop dataset (Ho et al.,
2020) contains pairs of knowledge triples
{(s1, r1, s2)1, (s2, r2, s3)2}, each with two
subjects s and a relationship r. We used these
knowledge triples, plus a set of predefined
templates, to generate a set of pairs of single-
and multiple-hop questions, 2WMH: see Tables 1
and 3.

For example, let s1 = “Lilli’s Marriage,” r1 =“di-
rector,” s2 = “Jaap Speyer,” r2 = “country of citi-
zenship,” s3 = “Dutch.” Then for single-hop, the
template: “The r2 of s2 is . . . s3”, the prompt yields
the prompt “The country of citizenship of Jaap
Speyer is . . . [Dutch]”; for multi-hop, the template
“The r2 of the r1 of s1 is . . . s3” yields then the
prompt: “The country of citizenship of the director
of Lilli’s Marriage is . . . [Dutch].”

3.1.2 Human-Generated Dataset
As evidenced by the example presented above,
the 2WMH dataset, while scalable, contains many
grammatical flaws. Therefore, we construct an
additional dataset for multi-hop reasoning with a
focus on grammatical and factual correctness pre-
sented below. We hand-crafted 106 (single-hop,
multiple-hop) prompt pairs, each in the same form
as those in 2WMH: e.g., single-hop: “St. Peter’s
Basilica is in the city of. . . [Rome]” and multi-
hop: “The biggest church in the world is in the
city of. . . [Rome]”. Each prompt pair was also eval-
uated by two external reviewers for factual and
grammatical accuracy. We hereafter refer to this
dataset as Hand; see Tables 1 and 3.

3.1.3 Part of Speech Dataset
We used a subset of the Corpus of Contemporary
American English (Davies, 2011) which compiles
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Single-hop Multi-hop

Data Size Model Answer prob. Surprisal Prompt len. Answer prob. Surprisal Prompt len.

Hand 106 GPT2-Small 0.157 4.21 9.66 0.087 4.91 12.99
Hand 106 GPT2-Large 0.28 2.90 9.66 0.157 3.97 12.99

2WMH 1000 GPT2-Small 0.0007 9.80 10.44 0.00086 9.64 14.00
2WMH 1000 GPT2-Large 0.0023 8.71 10.44 0.002 8.57 14.00

Table 1: Properties of the datasets used in our work. Size: Number of prompts. Answer prob.: Average model
probability model for expected next token. Surprisal: Average model surprisal value for expected next token
(surprisal ≜ − log(p) where p is a probability). Prompt len.: Average tokenized length of prompt.

word frequencies (Davies, 2010) to generate lists
of (i) the most common words from various parts
of speech: 824 adjectives, 331 adverbs, 40 con-
junctions, 2635 nouns, 969 verbs, and (ii) the 5050
most common words overall (“top 5050”).

3.2 Model Description

We work with two pretrained GPT2 models (Rad-
ford et al., 2019). GPT2-Small has 12 layers, 12
attention heads per attention layer, and ∼160M pa-
rameters. GPT2-Large has 36 layers, 20 attention
heads per attention layer, and ∼840M parameters.
Both have a vocabulary of ∼50K tokens.

3.3 Tools & System Setup

We use the Transformer Lens Python package
(Nanda and Bloom, 2022) to cache, inspect, and
construct interventions on model inference passes.
We ran experiments on a single A100 GPU with
40 GB RAM. Experimental code, dependency in-
formation, and datasets are available on GitHub.1

4 Proposed Methods

Recent work suggests that attention heads are
knowledge retrievers during a model’s inference
pass (Geva et al., 2023; Li et al., 2023). Extending
this result to multi-hop prompts, we hypothesize
that attention layers play an important role in re-
trieving memories relevant to the “hop” in a given
prompt. Therefore we define two algorithms below:
one for analyzing attention head outputs in embed-
ding space and the other for injecting a targeted
memory into a model’s hidden activations in order
to correct faulty/incomplete reasoning.

4.1 Interpreting Attention Heads

We want to further understand the outputs of indi-
vidual heads, and more specifically assess if any

1https://github.com/msakarvadia/memory_
injections

individual attention heads are exercised differently
by single-hop vs. multi-hop prompts.

Inspired by Logit Lens (nostalgebraist, 2021),
we leverage the model’s unembedding matrix to
study the internal mechanism of each attention
head. For attention head j in layer ℓ, hℓ,j , we ap-
ply the model’s unembedding matrix WU followed
by a softmax(·) operation and interpret the last
token position (out of N total tokens) as a set of
probabilities over tokens in the vocabulary space:

vocabℓ,j = softmax(hℓ,jWU )N−1 (8)

See in Fig. 2 an example of discrepancy in attention
head behavior, when using Eq. (8), for analogous
single vs. multi-hop prompts. See additional exam-
ples in Table 5.

A potential limitation of this approach is that it
may portray attention head behavior inaccurately
due to representational drift between model layers—
and, like (nostalgebraist, 2021), may not generalize
to other models. Nevertheless, we find it to be an ef-
fective preliminary tool for studying the function of
attention heads in updating the output distribution.
We leave the development of an interpretability tool
that considers these drawbacks to future work.

4.2 Memory Injections to Correct Failures

Fig. 2 shows how Eq. (8) can reveal discrepan-
cies between attention head behaviors for single-
vs. multi-hop prompts. We hypothesize that such
discrepancies arise because the model, when up-
dating the output distribution in each layer, fails to
incorporate information about the implicit entity
in the multi-hop prompt. This seems reasonable,
as to retrieve information about an implicit entity
one likely must first relate that entity to some ex-
plicit subject and then retrieve relevant information
(hence our notion that processing prompts with im-
plicit subjects requires an extra hop compared to
those with explicit subjects).

https://github.com/msakarvadia/memory_injections
https://github.com/msakarvadia/memory_injections
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Figure 2: Diagram of language model reasoning.
Highest ranked attention outputs of GPT2-Small at layer
ℓ = 9, head h = 8 when projected into vocabulary space
(via the GPT2-Small embedding matrix) for a single-
hop prompt (green) and its multi-hop counterpart (red).

Thus we design a method (see Fig. 3) for inject-
ing a missing hop directly into the output hidden
states of an attention head before those outputs are
added back into the transformer’s residual stream:

1. Let m be a memory (a phrase, for example:
“The Great Barrier Reef”) and let τ be the
magnitude of the memory injection.

2. Tokenize the memory m into t0, · · · , tq where
q is the number of tokens. We encode each to-
ken ti into a one-hot vector bi ∈ {0, 1}|V | and
sum all resulting one-hot vectors bi together
into a binary vector B ≜

∑
i bi.

3. Embed the binary vector, B, back into the
model’s latent space by applying the transpose
of the unembedding matrix:

B∗ = BW T
U (9)

4. Then, to inject a memory at the attention layer
of layer ℓ, add the embedded memory into
the outputs of the attention heads during the
inference pass:

aℓ =
H∑
j=1

hℓ,j + τB∗ (10)

See additional examples of memory injections in
Table 4.

tokens

logits

... h8 ...

MLP

"The largest coral reef system in
the world is located off the coast

of"

Multi-Hop Prompt

" coral"
" reef"
" reefs"
"Fiji"
...
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A
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residual stream

"The Great Barrier Reef"
(memory)

unembed ( )

embed ( )

injection

Next Token Pred. Prob. for " Australia"

Pre-Injection: 0.047

Post-Injection: 0.136 (189% increase)

Figure 3: Memory injection. Injecting memory “The
Great Barrier Reef” into GPT2-Small hidden activations
at layer ℓ = 9, head 8, τ = 4.

5 Results and Discussion

We report, in turn, on our curated memory, random
memory, and part-of-speech injection experiments.

5.1 Curated Memory Injections

We hypothesize that a model’s poor performance on
multi-hop prompts is due to its inability to resolve
the implicit subject (e.g., “The largest coral reef
system in the world”) to an explicit subject (e.g.,
“The Great Barrier Reef”). This failure limits the
later layers’ ability to retrieve relevant information
about this subject before predicting the next token.
Therefore, in this experiment, we curate sets of
tokens to inject into our model’s residual stream
such that it can resolve the explicit subject more
easily. We further study the effect that the injection
magnitude τ has on its success.

Experimental design: For every multi-hop
prompt in our datasets, we extract the explicitly
stated subject from the corresponding single-hop
prompt and inject those tokens as memories into
each attention layer as described in Section 4.2.
For example, given the single-hop prompt “The
Great Barrier Reef is located off the coast of. . . ”
and the multi-hop prompt “The largest coral reef
system in the world is located off the coast of. . . ,”
the memory is “The Great Barrier Reef.”

We assess the effects of injection layer ℓ and
magnitude τ ∈ [1, · · · , 15] by enumerating the re-
sulting change in accuracy for all combinations
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Figure 4: Curated memory injections. From left to right: GPT2-Small + Hand, GPT2-Large + Hand, GPT2-Small
+ 2WMH, GPT2-Large + 2WMH. Each cell in each heatmap is the average percent difference between the pre- and
post-injection next token predictions for multi-hop prompts. Green cells denote a positive percent difference (i.e.,
correct prediction is more likely), while red cells denote a negative percent difference (i.e., correct prediction is less
likely). When computing the averages for each (ℓ, τ ) pair we exclude outliers not within ±2 standard deviations
from the mean.

of these two parameters for both GPT2-Small and
GPT2-Large. We measure the success of a mem-
ory injection by calculating the percent increase
between the model’s predicted probability for the
expected next token from the multi-hop prompt
with and without the injection. A greater positive
difference indicates a more successful injection.

Discussion: Results are in Fig. 4. We observe
that each model/dataset combination has an optimal
layer ℓ and magnitude τ for memory injections: the
darkest green areas, which signify the highest aver-
age percent increase in probability of the expected
next token for the respective dataset. The best (ℓ,
τ ) pair injection results are in Table 2. Additional
examples of memory injections are in Table 4.

5.2 Random Memory Injections

In Section 5.1, we identify ideal (ℓ, τ ) pairs for
each model and dataset for a curated memory in-
jection. We now demonstrate that the results we
observe are not spurious: i.e., the information that
we inject at each head should be related to the ex-
plicit subject. We demonstrate the need for our
particular injection routine by assessing the effects
on model accuracy of randomly injecting tokens
from various parts of speech.

Experimental design: We conduct targeted in-
jections for the high-scoring (ℓ, τ ) pairs identified
via the experiment in Section 5.1, Table 2. Instead
of injecting curated subject tokens, we select as
candidate injections the 40 most common words
from each of the adjectives, adverbs, conjunctions,
nouns, verbs, and top 5050 subsets of our Part of

Speech dataset. We then apply each word as an
individual injection for every prompt in our multi-
hop dataset at the ideal (ℓ, τ ) pair. We term these
injections “random,” as they were not curated to be
relevant to our prompts.

Discussion: The results are in the right half of
Table 2. We observe that a random injection led, on
average, to a degradation in predictive performance
across most parts of speech considered, as indi-
cated by a negative percent difference (decrease in
correct answer probability) between the pre- and
post-injection expected next token probabilities for
multi-hop prompt completions. Additionally, no
random injection result exceeded the performance
of a curated injection. These findings suggest that
the choice of injected tokens is critical for improv-
ing multi-hop prompt completion success.

5.3 Memory Injections for Parts of Speech

We have tested curated vs. random memory injec-
tions at ideal (ℓ, τ ) pairs. Now we assess whether
memory injections from specific parts of speech
more broadly have positive impacts on prompt com-
pletions, not just at the ideal locations for curated
memories, but also at other (ℓ, τ ) pairs. Our hypoth-
esis is that if a transformer-based LLM has learned
a division of labor regarding which attention lay-
ers are responsible for retrieving specific concepts
(e.g., parts of speech) then this experiment might
highlight those learned roles.

Experimental design: This experiment is iden-
tical to that of Section 5.1, except that: (i) for each
part of speech pos ∈ [adjectives, adverbs, conjunc-
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Curated Random

Model Data ℓ τ Subject Adj. Adv. Conj. Noun Verb Top-5050

GPT2 Small Hand 7 3 45% -7.6% -6.0% -6.3% -6.5% -7.5% -6.0%
GPT2 Small 2wmh 6 5 424% -17.1% -15.1% -10.3% -1.1% -1.2% 1.6%
GPT2 Large Hand 14 10 68% -8.1% -4.4% -4.9% -9.8% -6.0% -4.7%
GPT2 Large 2wmh 8 9 204% 13.0% 11.6% 3.5% 11.8% 4.3% 17.6%

Table 2: Curated vs. random memory injections. Table shows the (ℓ, τ ) pairs for the best token injections, along
with the average percent difference (excluding outliers >±2 standard deviations from the mean) between pre- and
post-injection expected next token predictions for multi-hop prompts. Each random injection column indicates 40
random injections from [Adjectives, Adverbs, Conjunctions, Nouns, Verbs, Top 5050] at the ideal (ℓ, τ ).
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Figure 5: Part of speech memory injections. This figure shows the average effect of memory injections from
various parts of speech as a function of layer ℓ (top row) and magnitude τ (bottom row). The standard deviation
scaled by 10% is pictured across magnitudes (top row) and layers (bottom row).

tions, nouns, verbs, top 5050], we use a randomly
selected word: e.g., “apple” from “nouns”; and (ii)
when searching for the ideal (ℓ, τ ) pair for a given
part of speech and multi-hop prompt, we use a new
random word for each injection.

Discussion: The results are in Fig. 5. We note
that for no part of speech considered here does
the average performance of the studied memory
injections exceed that of the curated memory injec-
tions presented in Table 2. Additionally, memory
injections from adjectives, adverbs, nouns, verbs,
and top 5050 seemed to exhibit similar behavior.
Memory injections from conjunctions, however,
typically outperformed all other parts of speech.
We hypothesize that this is because conjunctions
often play a neutral role in prompt completions.

Thus, while a random noun (e.g., “apple”) might
distort prompt completion, a random conjunction
(e.g., “and,” “for”) is less likely to do so.

We note also that for each part of speech, perfor-
mance averaged over all injections for most (ℓ, τ )
pairs was reduced (< 0) for Hand (refer Fig. 5:
subplots c, d, g, h), but was sometimes improved
(> 0) for 2WMH (refer Fig. 5: subplots a, b, e, f ).
We attribute this result to the relative difficulties
of the two datasets. Hand has, on average, lower
surprisals than does 2WMH, as seen in Table 1,
suggesting that there is additional information that
the model could use successfully for 2WMH, but
not for Hand.

These results (see also the Appendix; Figs 6–9)
suggest that while curated memories are ideal for
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correcting multi-hop reasoning failures, language
models can also benefit from injections of different
parts of speech. This result suggests that different
parts of a language model (namely, early layers)
serve specialized roles, with some dealing with
processing related to specific parts of speech.

In future work we will curate relevant memories
from various parts of speech for each prompt, to
better understand the effects of curated memories.

6 Related Work

Much recent work has focused on the inner work-
ings of Transformers (Vaswani et al., 2017; De-
vlin et al., 2019; Brown et al., 2020; Radford
et al., 2019). Nanda et al. (2023) explore how the
emergent properties of LLMs form during train-
ing. Recent interpretability research has focused
on the mechanisms by which linear layers in LLMs
retrieve information, characterizing them as key-
value stores of information (Geva et al., 2021; Dai
et al., 2022a,b) and showing that tokens can be
characterized by their distribution in the output vo-
cabulary (Geva et al., 2022).

Others have also examined the intermediate ac-
tivations of LLMs in order to uncover underlying
reasoning mechanisms. nostalgebraist (2021) ap-
plied GPT-2’s unembedding matrix to intermediate
layers to interpret how the model arrives at its final
answer. Belrose et al. (2023) employed a learned
transformation to mitigate the effect of any bias
introduced by using the unembedding matrix.

There has been much recent interest in whether
LLMs are reliable stores of information for attempt-
ing to both identify where knowledge exists and
how to edit stored factual knowledge effectively
(Mitchell et al., 2022a,b; Elazar et al., 2021; Hase
et al., 2023). Recent approaches to knowledge
editing make use of learned hyper-models to edit
weights, additional trained parameters, or direct in-
terventions on model weights (De Cao et al., 2021;
Huang et al., 2023; Dhingra et al., 2022). How-
ever, these approaches raise another issue: deal-
ing with knowledge retention and preventing catas-
trophic forgetting (Jang et al., 2022; Hase et al.,
2021; Zhong et al., 2023). Additionally, it is not
clear that the mechanisms by which model predic-
tions are constructed is fully understood, limiting
our ability to improve model performance (Turpin
et al., 2023). Some approaches propose to use ex-
ternal knowledge stores such as knowledge graphs
to augment the factual capabilities of LLMs (Jiang

et al., 2023; Sun et al., 2018; Zhang et al., 2022).

7 Conclusions and Future Directions

We demonstrate that a key reason LLMs perform
worse on multi-hop prompts is because they fail to
recall intermediary information that is relevant to a
hop. We find that attention heads play an important
role in this factual recall process, and that in the
case of multi-hop reasoning, certain attention lay-
ers fail to recall relevant information. To rectify this
shortcoming, we establish an algorithm for inject-
ing “memories” directly into the model’s hidden
activations during inference. Through experimenta-
tion, we find that injecting relevant memories into
the hidden activations of the attention heads dur-
ing inference is an efficient way to boost model
performance on multi-hop prompts.

We anticipate that our memory injection scheme
can extend a model’s longevity by enabling less
frequent retraining/fine-tuning. We also hope in
future work to demonstrate the use of memory in-
jections to correct stale or incorrect information,
remove private or harmful information, and combat
bias during LLM inference.

There is also a tremendous opportunity to scale
online-memory injections to enhance the quality of
thousands/millions of model inferences, if we can
automate the process of memory selection via un-
supervised algorithms, for instance by connecting
LLMs with knowledge bases.

Limitations

Internal biases of the question writers as well as
the rigid structure that had to be imposed on the
prompt structure mean that our human-generated
dataset is representative only of a small fraction
of the many types of multi-hop questions. Fur-
thermore, our hand-generated dataset is relatively
small compared to our programmatically generated
dataset. Additionally, our analyses were limited
to GPT2-Small and GPT2-Large; further work is
needed to determine whether, as we expect, other
language models sharing a transformer-based ar-
chitecture and a similar unsupervised causal lan-
guage modeling training objective display similar
behavior. Lastly, we rely on the model’s unembed-
ding matrix WU to interpret model hidden states
and embed memories for injection. While for our
work, results indicate that this transformation was
sufficient, we acknowledge that this unembedding
matrix is not tuned to interpret intermediate layers;
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we aim to address this shortcoming in future work
by instead using layer-specific learned projections
to transform between hidden states and vocabulary.

Ethics

Our attention head inspection mechanism uncov-
ered several sources of bias (such as racism); refer
Table 5 for examples. We expect a more detailed
study of the attention heads of GPT2-Small and
GPT2-Large, as well as other LLMs, to reveal ad-
ditional undesirable behaviors. We aim in future
work to use our inspection method to uncover (and
hopefully address) these biases.
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A Part-of-Speech Memory Injection Appendix
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Figure 6: GPT2-Large, 2WMH dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.
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Figure 7: GPT2-Large, Hand dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.
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Figure 8: GPT2-Small, 2WMH dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.
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Figure 9: GPT2-Small, Hand dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.
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B Dataset Example Appendix

Dataset Single-Hop Prompt Multi-Hop Prompt

Hand

George Washington fought in the . . . [Revolutionary
War]

The first president of the United States fought in the
. . . [Revolutionary War]

Burj Khalifa is located in the city of . . . [Dubai] The tallest building in the world is located in the city of
. . . [Dubai]

Nelson Mandela brought an end to . . . [Apartheid] The first president of South Africa brought an end to
. . . [Apartheid]

John F Kennedy was assassinated by a person
named . . . [Lee Harvey Oswald]

The 35th president of the United States was assassinated
by a person named . . . [Lee Harvey Oswald]

The father of Hermes is . . . [Zeus] The father of the Greek messenger god is . . . [Zeus]

2WMH

The place of birth of Dušan Hanák is . . . [Bratislava] The place of birth of the director of I Love, You Love is
. . . [Bratislava]

The employer of Éric Rohmer is . . . [Cahiers du
cinéma]

The employer of the director of Triple Agent is . . . [Cahiers
du cinéma]

The employer of Chip Gubera is . . . [University of
Missouri]

The employer of the director of Academy of Doom is
. . . [University of Missouri]

Steve Vai received the . . . [Grammy] The performer of The Attitude Song received the
. . . [Grammy]

The place of death of Augustus II the Strong is
. . . [Warsaw]

The place of death of the spouse of Christiane Eberhardine
of Brandenburg-Bayreuth is . . . [Warsaw]

Table 3: Example prompts. Single/multi-hop prompt pairs from Hand and 2WMH datasets.

Multiple-Hop Prompt Memory Answer Pre-
injection
Answer
Prob.

Post-
injection
Answer
Prob.

The God of Thunder is the son of . . . Thor Odin 0.84% 3.37%

The first president to be assassinated succeeded
in abolishing . . .

Abraham Lincoln slavery 30.46% 63.09%

The founder of Microsoft was born in the city of
. . .

Bill Gates Seattle 1.55% 2.44%

The highest peak in the world is located in the . . . Mount Everest Himalayan 3.40% 22.58%

Table 4: Examples of memory injections. Injecting memories with τ = 4, ℓ = 9 into GPT2-Small.
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Prompt Type Prompt Layer ℓ Head h Output

Single-Hop

John F Kennedy was as-
sassinated by a person
named . . .

10 0 [‘ Kennedy’, ‘ JFK’, ‘ Assass’, ‘ assass’, ‘Kenn’, ‘ as-
sassination’, ‘ Cuba’, ‘ Oswald’, ‘ assassin’, ‘ Cuban’, ‘
Fidel’, ‘ Bobby’, ‘ Havana’, ‘ assassinated’, ‘ assassins’, ‘
Jackie’, ‘ Castro’, ‘ Jinn’, ‘ assassinate’, ‘Mu’, ‘ 1963’, ‘
Kahn’, ‘ drone’, ‘ Cah’, ‘ Mu’, ‘ Ghosts’, ‘ Soul’, ‘ Laos’,
‘ Cemetery’, ‘ CIA’]

Barack Obama was a
member of the . . .

9 8 [‘ Obama’, ‘Obama’, ‘ Maryland’, ‘ America’, ‘ JFK’, ‘
Biden’, ‘ Harlem’, ‘ Washington’, ‘ American’, ‘ Clinton’,
‘ White’, ‘ Americans’, ‘ Congressional’, ‘ Harvard’, ‘
Kennedy’, ‘ FBI’, ‘ Federal’, ‘ CDC’, ‘ DOJ’, ‘ President’,
‘ Georgetown’, ‘ HHS’, ‘ Barack’, ‘ US’, ‘ Trayvon’, ‘
Connecticut’, ‘ Holder’, ‘ New’, ‘ BLM’, ‘ Baltimore’]

Cain murdered a person
named . . .

2 1 [‘ police’, ‘,’, ‘ the’, ‘ a’, ‘\n’, ‘ and’, ‘ violence’, ‘.’, ‘
death’, ‘ in’, ‘ criminal’, ‘ of’, ‘ to’, ‘ victim’, ‘ "’, ‘-’, ‘
at’, ‘ victims’, ‘ crime’, ‘ from’, ‘ an’, ‘ that’, ‘ murder’, ‘
crimes’, ‘ is’, ‘ was’, ‘ he’, ‘ for’, ‘ (’, ‘ killed’]

Russia is mostly located
on the continent of . . .

9 8 [‘ Moscow’, ‘ Russian’, ‘Moscow’, ‘ Russia’, ‘ Kremlin’,
‘ Putin’, ‘Putin’, ‘Russia’, ‘ Russians’, ‘Russian’, ‘♦?’, ‘ ♦?’,
‘ Dmitry’, ‘ Mikhail’, ‘ Vladimir’, ‘ Sergei’, ‘ Siberia’, ‘
Soviet’, ‘ Siberian’, ‘ Ukraine’, ‘ Ukrainian’, ‘ Sochi’, ‘
Caucasus’, ‘ Nikol’, ‘Soviet’, ‘ KGB’, ‘ Dmit’, ‘ USSR’,
‘Ukraine’, ‘ Ukrainians’]

George Washington
fought in the . . .

9 8 [‘ Washington’, ‘Washington’, ‘ Virginia’, ‘Virginia’, ‘
Maryland’, ‘ Congressional’, ‘ Georgetown’, ‘ Dull’, ‘
Smithsonian’, ‘ Maine’, ‘ Burr’, ‘ Jefferson’, ‘ Navy’, ‘
Capitol’, ‘ congressional’, ‘ FDR’, ‘ Lexington’, ‘ Byrd’,
‘ Rhode’, ‘ Roosevelt’, ‘ Pike’, ‘ Everett’, ‘ Brookings’,
‘ Madison’, ‘apeake’, ‘ Randolph’, ‘ VA’, ‘ Arlington’, ‘
Americans’, ‘ Lafayette’]

Multi-Hop

The 35th president of the
United States was assassi-
nated by a person named
. . .

10 0 [‘ assass’, ‘ Assass’, ‘ assassination’, ‘ assassin’, ‘ as-
sassins’, ‘ assassinate’, ‘ Malik’, ‘ bullets’, ‘ gunmen’, ‘
assassinated’, ‘Mu’, ‘ Pakistani’, ‘ sniper’, ‘ killings’, ‘
JFK’, ‘ Pakistan’, ‘ homicides’, ‘ Alger’, ‘ lethal’, ‘ Islam-
abad’, ‘ Karachi’, ‘ shooting’, ‘ gun’, ‘ gunshot’, ‘ Mu’, ‘
murder’, ‘ killing’, ‘ pistols’, ‘ murders’, ‘ gunned’]

The first black president
of the United States was a
member of the . . .

9 8 [‘ Negro’, ‘ NAACP’, ‘ blacks’, ‘ black’, ‘ Baltimore’, ‘
White’, ‘ negro’, ‘ Washington’, ‘ BLM’, ‘ white’, ‘ FBI’,
‘ America’, ‘ Maryland’, ‘ African’, ‘ Trump’, ‘ Nixon’, ‘
Charleston’, ‘ Americ’, ‘ KKK’, ‘Washington’, ‘ Virginia’,
‘ racial’, ‘ Blacks’, ‘white’, ‘White’, ‘ nig’, ‘ Black’, ‘
Obama’, ‘ Louisiana’, ‘ whites’]

Adam and Eve’s eldest
son murdered a person
named . . .

2 1 [‘,’, ‘ the’, ‘ and’, ‘ a’, ‘ "’, ‘ in’, ‘\n’, ‘.’, ‘ to’, ‘ of’, ‘ at’, ‘
is’, ‘ he’, ‘-’, ‘ that’, ‘ was’, ‘ for’, ‘ police’, ‘ from’, ‘ on’,
" ‘", ‘ as’, ‘ death’, ‘ had’, "’", ‘ an’, ‘ his’, "’s", ‘ said’, ‘
told’]

The largest country in the
world is mostly located
on the continent of . . .

9 8 [‘,’, ‘\n’, ‘ the’, ‘ and’, ‘.’, ‘ in’, ‘ a’, ‘ to’, ‘ of’, ‘ (’, ‘-’,
‘ for’, ‘ that’, ‘ "’, ‘:’, ‘ is’, ‘ or’, ‘ at’, ‘ as’, ‘ I’, ‘ on’, ‘
with’, ‘ it’, ‘ an’, ‘ from’, ‘ all’, ‘ by’, ‘ not’, "’s", ‘ more’]

The first president of the
United States fought in
the . . .

9 8 [‘ Trump’, ‘ Washington’, ‘ America’, ‘Washington’, ‘
American’, ‘Trump’, ‘America’, ‘ Obama’, ‘ Donald’,
‘ FBI’, ‘ Congressional’, ‘ Americans’, ‘American’, ‘
Nixon’, ‘ Congress’, ‘ congressional’, ‘ White’, ‘ Roo-
sevelt’, ‘ Republican’, ‘ Negro’, ‘ Clinton’, ‘ JFK’, ‘
Reagan’, ‘ Virginia’, ‘ FDR’, ‘Obama’, ‘Americans’, ‘
Americ’, ‘FBI’, ‘Congress’]

Table 5: Example of attention head outputs from GPT2-Small for Hand.


