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Abstract

Constituents are groups of words that behave
as a syntactic unit. Many linguistic phenomena
(e.g., question formation, diathesis alternations)
require the manipulation and rearrangement of
constituents in a sentence. In this paper, we in-
vestigate how different finetuning setups affect
the ability of pretrained sequence-to-sequence
language models such as BART and T5 to repli-
cate constituency tests — transformations that
involve manipulating constituents in a sentence.
We design multiple evaluation settings by vary-
ing the combinations of constituency tests and
sentence types that a model is exposed to during
finetuning. We show that models can replicate
a linguistic transformation on a specific type
of sentence that they saw during finetuning,
but performance degrades substantially in other
settings, showing a lack of systematic gener-
alization. These results suggest that models
often learn to manipulate sentences at a surface
level unrelated to the constituent-level syntac-
tic structure, for example by copying the first
word of a sentence. These results may partially
explain the brittleness of pretrained language
models in downstream tasks 1.

1 Introduction

The study of syntax revolves around understand-
ing how words and phrases are combined to form
sentences. Certain groups of words, known as con-
stituents, behave as units in a sentence. In lin-
guistics, groups of words that form constituents
are often identified via constituency tests (see, e.g.,
Haegeman, 1994). The tests involve transforming
an input sentence using operations that substitute,
displace, or otherwise modify constituents. For
example, one well-known constituency test is pro-
form substitution whereby a constituent is replaced
by a corresponding pronominal form: John gave
the book about syntax to the student−→John gave

1Code is available at https://github.com/
aishikchakraborty/constituency

it to the student. The fact that the phrase the book
about syntax can be replaced by it as a single unit,
indicates that it is a constituent. Other examples of
constituency tests include clefting and wh-question
formation.

Previous work has shown that pretrained
transformer-based (Vaswani et al., 2017; Liu et al.,
2019b) language models (LMs), trained on large
amounts of text achieve unparalleled performance
on virtually every downstream task. Nevertheless,
these models suffer from robustness issues which
call into question their reliability and ability to re-
cover human-like linguistic generalizations. For
example, in natural language inference, it has been
shown that models rely on superficial cues such
as lexical overlap between the premise and the hy-
pothesis in order to make the correct predictions
(McCoy et al., 2019; Nie et al., 2019).

A line of work has thus attempted to probe pre-
trained LMs by training classifiers on top of frozen
LM weights in order to extract some desired lin-
guistic representation such as syntax trees (Hewitt
and Manning, 2019; Coenen et al., 2019). Work by
Prasad et al. (2019) also shows that LSTM based
LMs contain information about relative clauses in
an interpretable manner. However, such analyses
have several limitations. First, it is difficult to sepa-
rate the contributions of the pre-trained LM weights
from that of the probing classifier. In practice, it is
necessary to place some constraints on the classifier
(e.g., they must be linear) to ensure that extractive
performance can be attributed to the pre-trained
LMs. More fundamentally, understanding what
can be extracted from pre-trained representations
is a different issue from the NLP system designer’s
ultimate concern, which is whether a fine-tuned sys-
tem will perform well on new data which involves
novel combinations of the units it has seen during
pre-training and finetuning; that is, its ability to
generalize systematically (Tamkin et al., 2020).

In this paper, we propose analyzing the syntactic

https://github.com/aishikchakraborty/constituency
https://github.com/aishikchakraborty/constituency
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competence of pre-trained and fine-tuned LMs. We
focus on the phenomenon of constituency because
of its core role in supporting semantic understand-
ing and natural language inference, with applica-
tions to a wide variety of downstream tasks in NLU
and NLG.

We ask whether LMs after fine-tuning are able to
perform transformations on input sentences which
correspond to well-known constituency tests from
the literature. Performing these transformations
correctly requires that models represent the con-
stituency structure of sentences. In our experi-
ments, we systematically vary two dimensions of
generalization: i) whether input sentences repre-
sent novel syntactic constructions and ii) whether
the main verb of the sentence is novel. We also
pose as a control a version of the input sentence
where constituents of varying lengths are replaced
by their head word.

Our results show that models are able to cor-
rectly transform input sentences only when tested
on verbs and syntactic constructions that they were
trained on. These results indicate that it is unlikely
that these models have acquired a human-like rep-
resentation of constituent structure, instead suggest-
ing that they instead leverage surface-level cues.

2 Background

Constituency Tests. Constituency tests on sen-
tences are a well-known tool from linguistics (see,
e.g., Haegeman, 1994) for identifying groups of
words that behave as units in a sentence. The idea
of building grammar in terms of constituent struc-
ture is old (e.g., Wells, 1947) and has been at the
heart of formal models of generative grammar since
the 1950s (e.g., Chomsky, 1979). Constituents re-
main of interest as they are a fundamental building
block of most modern approaches to grammars
and are an important part of most theories of form-
meaning mapping.

Extractive Probing. A thread of research fo-
cuses on the construction of probes to study the rep-
resentations of pre-trained language models (Con-
neau et al., 2018). Extractive probes do so by at-
tempting to extract linguistically interpretable struc-
tures. Probing word representations like GloVe
(Pennington et al., 2014) for linguistic properties
have been proposed by Köhn (2015). These early
probing methods, that use linear functions as prob-
ing functions, have been further used to under-
stand intermediate representations of deep neural

networks (Shi et al., 2016; Ettinger et al., 2016;
Veldhoen et al., 2016). Since then, probing meth-
ods have been used to study questions such as
whether neural representations capture information
about linguistic structure such as verb tense, part-
of-speech, or syntactic dependency type (e.g., Liu
et al., 2019a; Hewitt and Manning, 2019).

As pointed out by Hewitt and Liang (2019), an
important limitation with existing probing tasks is
that they fail to distinguish between information
present in probed representations and information
that comes from the probe supervision signal. Thus,
distinguishing between decoding and learning the
probing task is essential.

Understanding Language Model Behavior
through Syntactic Tests. Mueller et al. (2022)
show that pretraining of language models can in-
duce some specific forms of hierarchical gener-
alization. The authors create linguistic tasks us-
ing different sentence transformations, such as,
question formation and passivisation. They show
that language models can exhibit syntactic gen-
eralization on pretraining. McCoy et al. (2020)
show that inducing syntactic structures in model
architectures is essential for exhibiting syntactic
generalization capabilities similar to human be-
ings. Lake and Baroni (2018) show the zero-shot
compositional generalization capabilities of sev-
eral sequence-to-sequence models on a specialized
dataset called SCAN. The authors demonstrate that
these sequence-to-sequence models posses very
limited capabilities to generalize compositionally
in the absence of surface-level cues that can be
exploited.

In our work, we use sequence-to-sequence mod-
els to probe for constituency in pretrained language
models.

3 Syntactic Constructions

Our interest in this work is to probe the behaviour
of a pre-trained language model M after it is fine-
tuned to transform input sentences according to a
number of constituency-sensitive transformations
(CST) which are inspired by constituent tests from
the literature. In this section, we describe the set of
syntactic constructions which we use to construct
our training and test datasets, as well as introduce
a notation which allows us to compactly specify
CSTs with respect to these constructions.

We start with the set of simple declarative base
sentences presented in Kann et al. (2018) (Dbase).
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Each of these sentences is constructed using a main
verb which is either an English dative or loca-
tive alternator (Levin and Rappaport Hovav, 2005;
Levin, 1993), which are well-understood syntac-
tic alterations in the literature. Each sentence S
can appear as one of four types, which we denote
using the feature A with the following notation
S[A] ∈ {DO, PO, LOC, IN}.

Dative Sentences using dative main verbs may
either be in the double-object (S[A] = DO) or the
prepositional object construction (S[A] = PO):

(1) Michael passed the people across the table
the salt. (S1[A] = DO)

(2) Michael passed the salt to the people across
the table. (S2[A] = PO)

Locative Sentences using locative main verbs
may be in the locative (S[A] = LOC) or instrumen-
tal form (S[A] = IN) constructions:

(3) John sprayed the paint onto the wall.
(S3[A] = LOC)

(4) John sprayed the wall with paint. (S4[A] =
IN)

Our corpus also includes more complex sen-
tences that result from modifying one of the argu-
ments of each verb using a transformation inspired
by a constituency test from the literature.

Pronominalization (P) Proform substitution in-
volves replacing one of the verbal arguments with
an appropriate proform (he, it, them, etc.). We will
use the feature P to indicate whether a sentence
contains a noun phrase that is pronominalized, and
if so, which syntactic position is pronominalized.2

For example, (2) has S2[P ] = NONE, in contrast
to:

(5) Michael passed it to the people across the
table. (S5[P ] = DOBJ)

Clefting (C) Clefting is a syntactic construction
that involves displacing a verb argument X... into
a copular structure "It was X that ...". We use the
feature C to indicate whether a constituent has been
clefted, and its original syntactic position. So, (2)
has S2[C] = NONE, whereas:

(6) It was Michael that passed the salt to the
people across the table. (S6[C] = SUBJ)

2In this work, we ignore the case where multiple arguments
are pronominalized. This case can be easily handled by an
extension of our notation to allow sets as features.

Wh-question (W) Wh-question formation in-
volves replacing a verb argument with a corre-
sponding wh-phrase, displacing it to the beginning
of the sentence, and adding appropriate do-support.
We use the feature W to indicate the formation
of a wh-question from a declarative sentence. For
example, (2) has S2[W ] = NONE, whereas:

(7) What did Michael pass to the people across
the table? (S7[W ] = DO)

Putting this all together, the syntactic form of any
sentence in our training or test sets can be described
by specifying values for our four features A, C,
P , and W . For example, the complete featural
description of (2) would be:

S2 = {A : PO, P : NONE,

C : NONE, W : NONE}

Informally, a constituency-sensitive transfor-
mation T can be can be thought of as function
Sout = T (Sin) such that T substitutes, displaces,
or otherwise modifies one or more constituents
in a grammatical input sentence Sin in such a
way that grammaticality is maintained. In terms
of the featural representation we have just intro-
duced, a CST T can be described by (re)assigning
a value VAL for feature F in the description of
some sentence. We will denote this (re)assignment
as tF←VAL. For example, a CST which pronom-
inalizes the direct object of a sentence would be
written tP←DO(S) : S[P ] ← DO. The sentence
that results from applying this transformation to
input S2 that is, tP←DO(S2), would then be (5).

4 Evaluation Framework

In this section, we describe the framework we use
to evaluate our fine-tuned models. Our goal is
to test the degree to which our fine-tuned models
have captured a notion of constituency. If a model
has represented CSTs in terms of the abstract con-
stituent structure of input and output sentences,
it should generalize easily to novel words, novel
combinations of words, and novel combinations of
CSTs. On the other hand, if it is instead relying
on low-level cues, it may successfully learn the
mappings involved in particular cases of a CST, but
not be able to generalize across these dimensions.
We test models’ constituent structure by system-
atically varying the amount of generalization we
demand in different test conditions. In this section,
we describe this evaluation framework.
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In our setting, a training or test item is a triple
(T, Sin, Sout) where T is a CST as described in the
preceding section and Sin and Sout are sentences
such that T (Sin) = Sout. Note that in our frame-
work, all three parts of the triple are observed dur-
ing training—the models observe which CST char-
acterizes the relationship between Sin and Sout.

Test and training datasets are disjoint sets of such
items. A model M will be finetuned on Dtrain and
tested according to its performance on Dtest.

Recall that all of the sentences in our dataset are
built using main verbs which are either dative or
locative alternators. Thus, for all sentences, the
value of the base argument structure feature A is
one of DO, PO, LOC, or IN.

The high-level idea of our experiments is to see
if the models can correct apply a target CST to
sentences which vary in terms of their similarity to
training sentences. In each evaluation we choose a
single CST called the target CST. In practice, we
only evaluate CSTs which correspond to dative or
locative alternations (i.e., we only test the following
CSTs A ← PO, A ← DO, A ← INS, A ←
LOC). For the sake of concreteness, our description
of training data construction below will use the
target A ← PO, but the other targets are handled
analogously.

For this target transformation, define the set of
base sentences

Sbase ={S|S[A] = DO,

S[P ] = S[C] = S[W ] = NONE};

These are simple declarative sentences in the dou-
ble object construction without any further pronom-
inalization, clefting, or wh-question formation ap-
plied.
Dtrain will consist of the union of following sets

of triples (T, sin, sout):

I. Non-base transformations applied to each S ∈
Sbase:

(TC←∗, S, TC←∗(S)),

(TP←∗, S, TP←∗(S)),

(TW←∗, S, TW←∗(S)),

where * denotes all possible non-null values for
that feature. That is, training includes all non-base
transformation applied to the double object base
sentences.

II. The target transformation applied to the base
sentences:

(TA←PO, S, TA←PO(S)).

Thus, training also includes the prepositional
object alternation applied to double object base
sentences.

III. The target verb alternation, applied in the
opposite direction (i.e., A ← DO), to a sentence
which is in one of the more complex construction
forms (pronominalized, clefted, wh-item). Let S′

be the base sentence S transformed to be in the PO
construction S′ = TA←PO(S).

(TA←DO, TC←∗(S
′), TA←DO(TC←∗(S

′))),

(TA←DO, TP←∗(S
′), TA←DO(TP←∗(S

′))),

(TA←DO, TW←∗(S
′), TA←DO(TW←∗(S

′)))

Test At test time, the model will be evaluated on
its performance on the set Dtest, which consists of
the target transformation applied to the output of
I.:

(TA←PO, TC←∗(S), TA←PO(TC←∗(S))),

(TA←PO, TP←∗(S), TA←PO(TP←∗(S))),

(TA←PO, TW←∗(S), TA←PO(TW←∗(S)))

Notably, the model is trained on each of the
transformations involved in generating the test set
(TA←PO, TC←∗, TP←∗, TW←∗), as well as on all
construction types. Our test sets vary (i) whether
particular combinations of CST and input sen-
tence type are held out (ii) whether particular verbs
and arguments are held out and (iii) whether con-
stituents vary in length between test and train.

4.1 Evaluation Dimension 1: Novel
Combinations of CST and Input

As our first dimension of evaluation, we vary
whether the test items described in Section 4 are in-
cluded in the training set or not. We call these con-
ditions NOVEL-CST-INPUT and OBSERVED-CST-
INPUT. Note, that in NOVEL-CST-INPUT, the model
will have never seen the particular combination of
target CST and input item construction type in the
training data. A model which is able to generalize
in this condition must be able to correctly iden-
tify the arguments of the main verb despite the
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fact that these argument appear pronominalized,
clefted, or as what-items, and then apply the corre-
sponding target transformation. For instance, the
model might be presented with the sentence what
did the painter spray the wall with and have to cor-
rectly identify what as the instrumental argument
of this instrumental construction, and transform the
sentence to the locative construction what did the
painter spray onto the wall. This is a very challeng-
ing task.

4.2 Evaluation Dimension 2: Novel Verbs and
Arguments

As our second dimension of evaluation, we vary
whether the test items use completely novel verbs
and arguments (NOVEL-WORDS) or whether they
reuse verbs and arguments observed during test
(OBSERVED-WORDS). Note that the verbs and
argument constituents are novel with respect to
the fine-tuning task; they appear however in pre-
training.

As mentioned before, our base transformations
come from the dataset proposed by Kann et al.
(2018). In this dataset, the test set verbs are disjoint
from both the training and development set verbs.
This helps us test for novel verbs and arguments.

The tests for the case where the test set verbs are
non-novel are done by creating the non-novel verb
test set. We describe this in Section 6.2.

4.3 Evaluation Dimension 3: Generalization
across Constituent Lengths

A critical property of constituents is that they are
sets of words of varying size that behave as sin-
gle units. Thus, as our third dimension of eval-
uation, we introduce a baseline condition where
all constituents are replaced by their head word
HEAD-WORD-ORACLE (HWO) resulting in a cor-
pus where constituents can always be identified
with single words.

5 Model

5.1 Model Architecture
We evaluate two pretrained sequence-to-sequence
transformer models BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020). We utilize the BART-base
checkpoint to initialize the BART model. For T5,
we utilize the t5-base checkpoint for initialization.

Input Embedding Details The inputs to the en-
coder are transformed into the embedding space
by using the input embeddings of pretrained BART

(or T5). Similar to the original implementation,
we use 0 as the decoder start token for BART and
the PAD token as the decoder start token for the
T5 model. To inform the model of what kind of
transformation we want to get, we append a special
token TRANSFORMATION: uid at the start of every
input. The uid is a unique identifier corresponding
to a transformation t ∈ T . We always use greedy
search for decoding purposes.

The model is trained using a standard next-word
cross-entropy loss function.

5.2 Building the Head Word Oracle

We introduce a head word oracle (HWO) model
that controls for the effect of the varying constituent
lengths. This HWO identifies the head of each
noun phrase constituent in our dataset using a de-
pendency parse of the sentences. We then replaced
each noun phrase in the dataset with its head word
piece as a pre-processing step. This procedure stan-
dardizes the lengths of constituents, and simplifies
the problem that the model must solve. The head
words are identified using a dependency parser on
the original sentence. After the model does the
necessary transformation task, we transform the
head words into their original constituents and eval-
uate the model using the original constituents. In
case such a transformation is not possible due to
incorrect outputs, we keep the head words as is.

6 Experimental Setup

6.1 Evaluation Metrics

We adopt the following three evaluation measures
of the similarity between the predicted output and
the reference sentence.

Edit Distance We make use of a standard (i.e.,
Levenshtein) edit distance between predicted and
gold standard output sentences.

BLEU BLEU is a widely used automatic evalua-
tion metric from machine translation that considers
N-gram overlap with a brevity penalty (Papineni
et al., 2002).

METEOR Meteor (Banerjee and Lavie, 2005)
is an automatic evaluation metric that measures
how well a system adds, deletes or preserves words.
This metric is a standard measure for evaluating
several language generation systems.
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6.2 Datasets

Base Sentences We adopt the dataset of Kann
et al. (2018) as the base upon which we build more
complex sentences. This subset of sentences con-
sists of simple declarative sentences using dative
and locative (spray/load) alternator verbs. The orig-
inal dataset provided by Kann et al. (2018) (Dbase)
contains both grammatical and ungrammatical sen-
tences, we remove the latter for the purposes of our
study.

Proform Substitution: All sentences in our base
dataset make use of dative or locative verbs and
thus have three verbal arguments: in the case of
dative verbs, a subject, object, and indirect object
or oblique; in the case of locative verbs a subject,
and two oblique arguments. Sentences with a pro-
form substitution set replace one of these three
arguments with an appropriate pronominal form
such as he, she, they, or it. Thus S[P] can take on
values DOBJ, INOBJ and SUBJ.

Clefting: We generate clefted sentences in a sim-
ilar way to the pro-form substitutions, targeting
one of the three arguments for extraction. Thus the
S[C] can take on values DOBJ, INOBJ and SUBJ.

wh-questions: We generate wh-questions by tar-
geting one of the three arguments in each base
sentence for extraction. Thus, S[W] can take on
values DOBJ, INOBJ and SUBJ.

Creating the NOVEL-WORDS test set and every
train, val split: We use the training, validation
and test sets from the base corpus Dbase. We apply
the relevant syntactic transformations to create the
experiments described in Section 4 by using the
clefting, proform and wh sentence generation strat-
egy discussed above. The final corpus statistics are
shown in Table 1.

Creating the OBSERVED-WORDS test set: This
test set is made by using the base transformation
dataset already available to us. The main property
of this new test set is that the main verb in the test
set is seen during training. We randomly chose 30
sentences from the training corpus. We create the
new test set the by replacing the direct object and
the prepositional objects of the randomly chosen
training sentences with new objects. These objects
can appear during training and must make the final
sentence a grammatical sentence.

Dataset Split Dative Locative
Train NOVEL-CST-INPUT 4,268 5,668

Train OBSERVED-CST-INPUT 8,208 8,208
Validation 153 612

Test NOVEL-WORDS 225 585
Test OBSERVED-WORDS 90 -

Table 1: Final train, test and validation corpus statistics

6.3 Model Initializations and
Hyperparameters

Encoder and Decoder Initializations For all
BART models, the encoders and deocders are ini-
tialized with the bart-base checkpoint. Similarly,
for the T5 model, the encoder is initialized with
t5-base. Note that the BART and T5 models have
different number of trainable parameters. During
evaluation, we do not make any comparisons be-
tween the pretrained models. The outputs of the
encoder-decoder model are subwords. We use the
BART(T5) tokenizer to combine these subwords
into words. Finally, during generation, we always
use greedy decoding in all our experiments.

Optimization We use the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
3e − 5 to train all non-head word oracle models
and 3e − 6 for the training of HWO models. We
use a batch size of 32 and the model is trained for
a total of 5 epochs.

For all models, we save the model with the best
validation BLEU score and load the model corre-
sponding to the best validation performance during
test time.

7 Results

We evaluate the models proposed in Sec-
tion 5 using the tasks proposed in Sec-
tion 3. We apply the four base transformations
(TA←PO, TA←DO, TA←LOC , TA←IN ) to the three
separate non-base transformations (clefting, pronor-
malization and wh-question generation). We take
an average of the results corresponding to the four
base transformations.

7.1 Performance of PLMs on Constituency
Tasks

Generalization across sentence types and verbs:
We look at the effect of holding out the tar-
get linguistic composition (NOVEL-CST-INPUT

vs OBSERVED-CST-INPUT) on each of the con-
stituency task . In this setup, the verbs in the test set
are novel. Tables 2 and 3 shows that the Head Word
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Input transformation type Cleft Proform wh
Models ED BLEU METEOR ED BLEU METEOR ED BLEU METEOR

NOVEL-CST-INPUT and NOVEL-WORDS

BART HWO 6.27 82.33 80.13 6.00 84.72 87.64 6.00 86.89 86.65
BART 14.91 70.17 70.74 13.30 76.66 75.03 13.00 80.86 80.59

NOVEL-CST-INPUT and OBSERVED-WORDS

BART HWO 5.93 88.33 86.49 5.22 90.05 89.27 5.02 88.02 87.56
BART 14.82 72.82 72.91 15.72 72.62 72.87 15.98 72.02 72.22

OBSERVED-CST-INPUT and NOVEL-WORDS

BART HWO 3.54 89.36 88.73 3.11 85.78 84.49 3.62 92.25 92.03
BART 8.19 84.65 84.53 4.88 81.44 80.31 2.32 90.74 91.34

OBSERVED-CST-INPUT and OBSERVED-WORDS

BART HWO 0.31 98.32 96.53 0.38 98.54 96.09 0.32 98.10 96.73
BART 2.71 97.32 97.29 2.36 97.68 97.91 2.98 97.37 97.27

Table 2: Evaluating the BART models in the four different experimental settings. The results are an average of the
results obtained by composing four base transformations with our non-base input transformations (cleft, proform
and wh).

Input transformation type Cleft Proform wh
Models ED BLEU METEOR ED BLEU METEOR ED BLEU METEOR

NOVEL-CST-INPUT and NOVEL-WORDS

T5 HWO 6.32 86.23 86.97 6.04 86.98 86.39 6.98 86.09 86.80
T5 8.30 80.71 80.52 8.32 80.82 81.71 8.91 80.11 81.02

NOVEL-CST-INPUT and OBSERVED-WORDS

T5 HWO 5.32 89.11 89.72 5.27 89.88 89.80 5.08 89.25 89.07
T5 8.83 83.61 83.70 7.91 86.82 86.42 7.63 86.39 86.99

OBSERVED-CST-INPUT and NOVEL-WORDS

T5 HWO 3.01 97.82 97.37 3.02 97.79 97.34 3.91 96.92 97.05
T5 3.31 95.32 96.31 3.04 95.24 96.32 3.10 95.21 96.15

OBSERVED-CST-INPUT and OBSERVED-WORDS

T5 HWO 2.71 98.66 98.59 2.83 98.30 98.54 2.85 98.75 98.02
T5 2.99 96.98 97.16 2.90 96.04 96.81 2.95 96.69 96.91

Table 3: Evaluating the T5 models in the four different experimental settings. The results are an average of the
results obtained by composing four base transformations with our non-base input transformations (cleft, proform
and wh).

Source Sentence Target Sentence BART output T5 output
It was a plate of food that john
gave to the little boy.

It was a plate of food that John
gave the little boy.

It was a plate that John gave to
the little boy.

It was a plate that John gave to
the little boy to.

Michael gave a plate of food
to them

Michael gave them a plate of
food

Michael gave them them a
plate to

Michael gave them to plate

Table 4: Common BART and T5 error cases while dealing with quantitative constructions.

Oracle models have superior performances over the
BART and the T5 model in the NOVEL-CST-INPUT

setting. This shows that identifying constituency
boundaries is a difficult task for the non-oracle mod-
els. The Head Word Oracle models need to learn
which tokens need to be rearranged, substituted,
or deleted, but they do not have to learn to group
words into constituents. This is unlike the BART

and the T5 models that need to identify constituent
boundaries and do rearragements, substitutions and
deletions on those extracted constituents.

Similar trends are seen when the sentence types
corresponding to the target linguistic composition
are not withheld. Here, BART and T5 Oracle mod-
els, as well as the BART and the T5 models in the
non-held out setting outperform their counterparts
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in the held-out setting. This does indicate that the
models do not excel at extracting and utilizing the
constituency-level information even when the con-
stituents are reduced to single tokens.

Generalization across sentence types: In Ta-
bles 2 and 3, we observe that compositions involv-
ing the non-base transformations clefting genera-
tion results in worse performance than pronormal-
ization and wh question generation. We investi-
gated this issue and found this to be a side effect
of overfitting. During training, the model always
learns to copy the first token. Thus, it fails to learn
the fact that during clefting,it needs to generate new
tokens.

Generalization across verbs: The performance
of the BART and the T5 model is significantly bet-
ter when the target verbs and arguments are seen
during training in the OBSERVED-WORDS experi-
mental setting. This suggests that the PLMs do not
learn verbal subcategorization frames which are
important for deriving and manipulating sentential
argument structure. Instead, they seem to rely on
surface-level cues to make predictions, which is
why the models when tested on non-novel verbs
outperform the model tested on novel verbs.

7.2 Quantitative Constructions

We looked at the outputs of BART and T5 models
when the test set verbs are unseen and the target
transformation is held-out. A common error among
these models is that a lot of the time they end up
copying the inputs without the necessary transfor-
mations. We also noticed that both models make
errors consistently when the input sentence has a
quantitative construction (a.k.a. pseudopartitives,
e.g. a plate of food), as can be seen in Table 4. The
models correctly rearrange the order of the nominal
arguments. However, they have difficulty identify-
ing the precise constituent boundaries, resulting in
errors. This further illustrates why the Head Word
Oracle model ends up having superior performance.
In fact, on average, the BART Head Word Oracle
correctly transforms 90.7% of the sentences con-
taining quantitative constructions, as opposed to
the BART model, which never transforms any such
sentences correctly.

8 Conclusion

In this paper, we systematically vary the task setup
and the training signals to do a behavioral analysis

of pretrained sequence-to-sequence models. We
design several linguistic tests including verb argu-
ment structure alternations, proform substitution,
clefting and wh-question generation. We show that
the models fail to generalize well when the tar-
get transformation is held-out. We attribute this
to the failure of the pretrained language models in
utilizing constituency information and relying on
surface-level cues. We further show that simplify-
ing the constituent boundaries improves the gener-
alization capabilities of these models. Furthermore,
increasing the number of out-of-vocabulary tokens
in the test corpus decreases the generalization per-
formance of these models.

9 Limitations

Throughout this paper, we use specialized datasets
for analyzing the behavior of various pretrained
language models. The datasets we use for creat-
ing the constituency tests are in English which has
relatively fixed word order. One feature of the sen-
tences in the base constructions like dative is that
the first token is always a subject named entity
in the base sentences. This makes it easy for the
model we use to learn certain biases. For exam-
ple, the first token can be copied when we apply a
transformation to change the verb alteration. In lan-
guages with relatively free word order, this might
create an issue for these models to do some of the
basic transformations correctly as the syntactic pat-
terns might be too complex to learn. This could
make our current models including our oracle mod-
els not very effective for doing similar analyses. In
addition, the current suite of constituency tests we
use may not work on languages with different word
orders.
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