
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 65–75
December 7, 2023. ©2023 Association for Computational Linguistics

65

Disentangling the Linguistic Competence of Privacy-Preserving BERT

Stefan Arnold, Nils Kemmerzell and Annika Schreiner
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lange Gasse 20, 90403 Nürnberg, Germany
(stefan.st.arnold, nils.kemmerzell, annika.schreiner)@fau.de

Abstract
Differential Privacy (DP) has been tailored to
address the unique challenges of text-to-text pri-
vatization. However, text-to-text privatization
is known for degrading the performance of lan-
guage models when trained on perturbed text.
Employing a series of interpretation techniques
on the internal representations extracted from
BERT trained on perturbed pre-text, we intend to
disentangle at the linguistic level the distortion
induced by differential privacy. Experimental
results from a representational similarity analy-
sis indicate that the overall similarity of internal
representations is substantially reduced. Using
probing tasks to unpack this dissimilarity, we
find evidence that text-to-text privatization af-
fects the linguistic competence across several
formalisms, encoding localized properties of
words while falling short at encoding the con-
textual relationships between spans of words.

1 Introduction

Language Models (LM) (Devlin et al., 2018; Rad-
ford et al., 2018) are among the most successful
applications of machine learning and applied in a
diverse range of tasks such as classification, trans-
lation, summarization, and question answering.

However, concerns were raised that LMs (Carlini
et al., 2019; Pan et al., 2020) in general and their
embedding layers (Song and Raghunathan, 2020;
Thomas et al., 2020) in particular memorize and
disclose personally identifiable information.

To mitigate the risk of information leakage due
to unintended memorization, Differential Privacy
(DP) (Dwork et al., 2006) has been integrated into
machine learning (Abadi et al., 2016) and LMs
(McCann et al., 2017; Shi et al., 2022). DP formal-
izes privacy through a notion of indistinguishability
which is accomplished by injecting additive noise.

While early adaptations of DP into LMs were
applied to gradient updates (McMahan et al., 2017),
there is a shift towards applying DP on raw text
(Fernandes et al., 2019; Feyisetan et al., 2020; Qu

et al., 2021) in the form of text-to-text privatization.
This technique aims to provide plausible deniability
(Bindschaedler et al., 2017) by perturbing words in
a way that conceals authors and content.

Qu et al. (2021) applied text-to-text privatization
to BERT (Devlin et al., 2018) and explored tech-
niques for privacy-adaptive pre-training (e.g., pre-
dicting a set of perturbed tokens for each masked
position) and privacy-constrained fine-tuning. We
complement this research direction by borrowing
from range of techniques for model introspection
to identify and localize the layer-wise alterations
caused by perturbed text on internal representations
and associate these with the retention and destruc-
tion of linguistic competence.

Drawing on a representational similarity analysis
(Kriegeskorte et al., 2008), we measure a substan-
tial dissimilarity between internal representations
obtained from different privacy modalities. To con-
nect this dissimilarity with linguistic formalisms,
we conduct a series of probing tasks (Adi et al.,
2016; Tenney et al., 2019b; Hewitt and Manning,
2019). By contrasting the probing accuracies for
recovering a range of twelve linguistic formalisms,
we uncover that linguistic formalisms relying on
localized properties endure the perturbations intro-
duced by text-to-text privatization while properties
that require context information are less resilient.

Since internal representations of LMs are formed
by an attention mechanism (Vaswani et al., 2017),
we further investigate the distribution of attention
patterns. By clustering the attention maps (Clark
et al., 2019), we uncover that text-to-text privatiza-
tion amplifies redundancy (Kovaleva et al., 2019).

2 Preliminaries

2.1 Language Models

Language Models (LMs) convert sentences com-
posed of variable-length sequences of discrete to-
kens, such as characters, subwords, or words, into
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fixed-length continuous embeddings.
The introduction of the Transformer architecture

(Vaswani et al., 2017) and variants based solely on
a encoder (Devlin et al., 2018) or decoder (Radford
et al., 2019) rapidly replaced recurrent architec-
tures (Peters et al., 2018a). By relying entirely on
a self-attention mechanism, transformers excel at
modeling long-range interactions within text.

We focus on BERT (Devlin et al., 2018) with an
uncased vocabulary, which exemplifies a family of
transformers that produce bidirectional represen-
tations solely from the encoder block (Lan et al.,
2019; Sanh et al., 2019; Liu et al., 2019b).

The conventional workflow for BERT consists of
two stages: pre-training and fine-tuning. During
pre-training, BERT is trained on a pre-text corpus
using masked language modeling (prediction of
randomly masked words) and next sentence pre-
diction (binarized prediction whether text pairs
are adjacent). Fine-tuning involves adding a fully-
connected layer trained end-to-end on labeled data,
allowing BERT to adapt to various task related to
language understanding (Wang et al., 2018).

The internals of BERT comprise an embedding
layer and multiple transformer layers. Once a text
is tokenized into wordpieces (Wu et al., 2016), the
embedding layer serves as a lookup table that con-
tains a lexical representation for each token. Since
BERT processes all token representations in parallel,
the lexical representations need to be integrated
with position and segment information. The trans-
former layers build on an attention mechanism that
computes a scalar attention weight between each or-
dered pair of tokens and uses this weight to control
the contextualization from every token regardless
of its position or segment. Contextual representa-
tions together with attention maps provide the start-
ing point for interpreting linguistic properties cap-
tured during pre-training (Tenney et al., 2019a) and
retained after fine-tuning (Merchant et al., 2020).

2.2 Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006) tran-
sitioned from the field of statistical databases into
machine learning (Song et al., 2013; Bassily et al.,
2014; Abadi et al., 2016; Shi et al., 2022). DP oper-
ates on the principle of injecting additive noise so
that model outputs are indistinguishable within the
bounds of a privacy budget ε > 0, where ε → ∞
represents no bound on the information leakage.

Equipped with a discrete vocabulary set W , an

Table 1: Example chunk (truncated) from Wikipedia
privatized with different privacy budgets. Highlighted
words represent a mismatch between the original word
and the surrogate word after privatization.

ε Example

∞ ’anarchism’, ’is’, ’a’, ’political’, ’phi-
losophy’, ’and’, ’movement’, ’that’,
’is’, ’skeptical’, ’of’, ’authority’, ’and’,
’rejects’, ’all’, ’involuntary’, ’,’, ’coer-
cive’, ’forms’, ’of’, ’hierarchy’, ’.’

10 ’syndicalism’, ’situated’, ’a’, ’politi-
cal’, ’pedagogy’, ’but’, ’movement’,
’that’, ’help’, ’signalled’, ’the’, ’rec-
ommendation’, ’18’, ’rejects’, ’four’,
’mobility’, ’,’, ’punitive’, ’forms’, ’on’,
’associations’, ’outset’

embedding function ϕ : W → R, and a distance
metric d : R×R → [0,∞), Feyisetan et al. (2020)
formulated a randomized mechanism for text-to-
text privatization grounded in metric differential
privacy (Chatzikokolakis et al., 2013). Specifically,
the randomized mechanism perturbs each word in
a text by adding noise to the representation of the
word derived from an embedding space (Mikolov
et al., 2013) and projecting the noisy representation
back to a discrete vocabulary using a nearest neigh-
bor search. Since metric differential privacy scales
the notion of indistinguishability by a distance d(·),
this technique offers several benefits: (1) It ensures
that the log-likelihood ratio of observing any sub-
stitution ŵ given two words w and w′ is bounded
by εd{ϕ(w), ϕ(w′)}, providing plausible deniabil-
ity (Bindschaedler et al., 2017) with respect to all
w ∈ W . (2) It produces similar substitutions ŵ for
any words w and w′ that are close in the embedding
space, alleviating the curse of dimensionality asso-
ciated with randomized response (Warner, 1965).

Table 1 illustrates an example output obtained
by querying the randomized mechanism for text-
to-text privatization. Notice that the fidelity to the
original text is proportional to the privacy budget.
However, the example also shows that text-to-text
privatization suffers from many constraints such as
grammatical errors (Mattern et al., 2022), which
spawned further developments aimed at improving
both utility (Yue et al., 2021; Arnold et al., 2023;
Chen et al., 2023) and privacy (Xu et al., 2020).
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2.3 Model Introspection

Aimed at understanding the internals of language
models, numerous interpretation techniques were
developed to uncover which properties of a text are
embedded in contextual representations. Prominent
techniques include stimuli and diagnostic models.

Stimuli-based Probes. Linzen et al. (2016) as-
sembled texts containing curated stimuli and eval-
uated the perplexity scores on masked stimuli as
evidence for the presence or absence of linguistic
knowledge. Using a fill-mask objective on stimuli
was adopted to examine a range of linguistic prop-
erties, in particular subject-verb agreement (Gulor-
dava et al., 2018; Marvin and Linzen, 2018; Lakretz
et al., 2019; Goldberg, 2019; Ettinger, 2020).

Classifier-based Probes. Adi et al. (2016) elim-
inated the need for curating stimuli by setting up
probing models. A probing model inputs internal
representations as features annotated by linguis-
tic properties of interest as labels and its accuracy
score is directly interpreted as the extent to which
linguistic properties are contained in the internal
representation. Since probing models require few
assumptions beyond the existence of model activa-
tions, they are widely used to assess the linguistic
competence of language models (Belinkov et al.,
2017; Conneau et al., 2018; Hupkes et al., 2018).

Considerable research is centered on the inspec-
tion of fixed-length sentence representations. Adi
et al. (2016) introduced a probing suite to extract
surface properties of sentences such as length, con-
tent, and order. Conneau et al. (2018) later recasted
and extend these probing tasks by a broader set of
linguistic properties, such as tense and depth.

Contrary to probing fixed-length sentence rep-
resentations, probing suits exist that are tailored
towards linguistic properties in word-level repre-
sentations (Blevins et al., 2018; Peters et al., 2018b;
Tenney et al., 2019b; Liu et al., 2019a). Tenney
et al. (2019b) present edge probing in which a di-
agnostic model is given access only to span repre-
sentations. From these span representations, the
probing model aims to extract high-level linguistic
properties which are expected to require complete
sentence context. The analysis of intermediate lay-
ers of language models indicates that linguistic
properties are captured in a hierarchical order (Pe-
ters et al., 2018b; Tenney et al., 2019a; Jawahar
et al., 2019). This hierarchy is composed of signals
ranging from surface abstractions in the lower lay-

ers, syntactic abstractions in the middle layers and
semantic abstractions in the higher layers.

While prior probes on detecting syntactic struc-
ture lacked an explanation of whether structure is
embedded as an entire parse tree (Conneau et al.,
2018) or how such parse trees are embedded (Pe-
ters et al., 2018b), Hewitt and Manning (2019) pro-
posed a structural probe to recover the topology
of an entire parse tree and derive its parse depth.
Using a linear transformation of the representation
space, the structural probe shows evidence of a ge-
ometric representation that implicitly embeds sen-
tence structure. The structural hypothesis formed
by the linear transformation has recently been re-
fined by a scaled isomorphic rotation (Limisiewicz
and Mareček, 2020), kernelization using a radial-
basis function (White et al., 2021), and projection
onto hyperbolic space (Chen et al., 2021).

To examine how contextual representations are
formed through the attention mechanism (Vaswani
et al., 2017), recent research extended their analy-
sis to role of attention in handling properties of text
(Lin et al., 2019; Jo and Myaeng, 2020). The visual-
ization of attention heatmaps and the calculation of
the distribution of attention revealed interpretable
positional patterns (Vig and Belinkov, 2019; Clark
et al., 2019; Kovaleva et al., 2019) and strong cor-
relations to linguistic properties (Clark et al., 2019;
Htut et al., 2019; Ravishankar et al., 2021).

Limitations. Despite its popularity for model in-
trospection, recent studies observed that linguistic
properties are incidentally captured even without
task relevance (Ravichander et al., 2020), casting
doubt on the interpretations derived from attention
maps (Jain and Wallace, 2019; Serrano and Smith,
2019; Brunner et al., 2019) and probing models
(Tamkin et al., 2020). This prompted the design of
control tasks (Hewitt and Liang, 2019; Ravichander
et al., 2020), amnesic probing (Elazar et al., 2021;
Jacovi et al., 2021), conditional probing (Hewitt
et al., 2021), and orthogonal techniques for correlat-
ing contextual representations (Saphra and Lopez,
2018; Voita et al., 2019; Abdou et al., 2019).

3 Methodology

We follow the convention of denoting words and
sentences using italic (wi , s), and refer to their
representations using bold (wi, s), where the index
i distinguishes words in a sentence. Let d be the
dimension of a l-layer LM. Given a sentence s as
a tokenized list of words w ∈ W , the LM inputs
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a lexical vector representation for each word and
computes a contextual vector representation wl

i ∈
Rd for the i-th word at the l-th layer.

We pre-train BERT models from-scratch follow-
ing Devlin et al. (2018) on a dump of Wikipedia
preprocessed with a privacy budget of ϵ ∈ {10,∞},
where 10 yields a privacy-preserving BERT and ∞
serves as our baseline for comparison. Apart from
the difference in the privacy modality, training is
identical to erase any confounding factors.

Equipped with BERT pre-trained on a corpus of
Wikipedia with different privacy modalities, we
intend to uncover how and where contextual rep-
resentations produced by the model trained with
differential privacy depart from those produced by
the model trained without differential privacy. Fol-
lowing the experimental setup of Merchant et al.
(2020), we address this question mainly through the
lens of (unsupervised) representational similarity
analysis and (supervised) probing models.

3.1 Similarity Analysis

We aim to compare the internals of language mod-
els that originate from pre-training under public and
private training environments. Due to the lack of
correspondence between activation patterns of mod-
els trained with different modalities, we need to ab-
stract away from direct comparison of model acti-
vations. We instead leverage Representational Sim-
ilarity Analysis (RSA) (Kriegeskorte et al., 2008)
to correlate the dissimilarity structure between con-
textual representations. Building on dissimilarity
structures rather than activation patterns, RSA is
indifferent to the representation space.

We base our similarity analysis on higher-order
comparisons introduced by Abdou et al. (2019).
Given a set of language models trained under dif-
ferent (privacy) modalities M and a common set
of sentences N , we extract representations as layer-
wise activations from each M . Using any kernel
that satisfies the axioms of a (dis)similarity metric,
we can convert the extracted representations into
pairwise dissimilarity matrices Rn×n. Each N×N
dissimilarity matrix corresponds to the dissimilar-
ity between the activation patterns associated with
sentences pairs ni, nj ∈ N . Since the dissimilarity
is intuitively zero when ni = nj , the dissimilar-
ity matrix is symmetric along a diagonal. Using
another kernel, we can now correlate the similar-
ity between the flattened upper triangulars of the
constructed dissimilarity matrices.

We adopt the Cosine distance as metric for the
intra-space dissimilarity and Spearman correlation
as metric for the cross-space similarity. The RSA is
performed on a random subset of 5, 000 sentences
drawn from WikiText (Merity et al., 2016).

3.2 Linguistic Probing
We aim to connect the dissimilarity between con-
textual representations with linguistic properties.
To discern and locate the extent to which linguistic
properties of texts are captured, we employ probing
tasks at word-level and sentence-level representa-
tions for a range of surface, syntactic, and semantic
formalisms. Note that BERT uses tokenization into
subwords. Since word-level probes require access
to word representations, we map subword repre-
sentations to word representations by element-wise
mean pooling over all subword components.

Surface Probe. We evaluate surface properties
using the setup for sentence-level probing assem-
bled by Adi et al. (2016). To form sentence rep-
resentations s ∈ Rd, we use element-wise mean
pooling. Without access to a sentence s and any of
its words w , the surface proprieties to extract are
length, content, and order. The length task mea-
sures to what extent a sentence representation s
encodes the length |s| of a sentence s . The length
task is formulated as a multi-class classification for
a balanced set of binned lengths in intervals [0, 35),
[35, 41), [41, 46), [46, 52), [52,∞). The content
task measures the extent to which a sentence repre-
sentation s encodes the identities of words w in a
sentence. The content task is formulated as a binary
classification in the form (s,w) ∈ {0, 1}, where 0
denotes w ̸∈ s and 1 denotes w ∈ s , respectively.
The order task measures the extent to which a sen-
tence representation s encodes the order of words
wi , wj . Given a sentence representation s and two
word representation wi, wj of words appearing in
a sentence, the content task is formulated as a bi-
nary classification in the form (s,wi,wj) ∈ {0, 1},
where 0 denotes wi ≺ wj and 1 denotes wi ≻ wj,
respectively. All surface probes are performed on
sentences from the training set reflecting their pre-
sumably most accurate representations.

Linguistic Probe. To evaluate linguistic proper-
ties , we employ edge probes (Tenney et al., 2019b)
and structural probes (Hewitt and Manning, 2019)
as two complementary probes at word-level.

The purpose of edge probing is to measure the
extent to which contextual representations cap-
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ture syntactic dependencies and semantic abstrac-
tions. Instead of supplying a probing model with
a pooled sentence representation s, edge probing
decomposes the probing task into a common for-
mat so that the probing model only receives labeled
spans [wl

i,w
l
j) and (optionally) [wl

u,w
l
v). With ac-

cess only to contextual representations within the
end-exclusive spans, the probing model must label
the relation between these spans and their role in
the sentence. Derived from evaluation on tagged
benchmark datasets, we report the micro-averaged
harmonic mean of the precision and recall for la-
beling part-of-speech tags, constituency phrases,
dependency relations as syntactic tasks, and entity
types, entity relations, semantic roles, and corefer-
ence mentions as semantic tasks.

The structural probe is designed to measure the
representation of syntactic structure. The probe
identifies whether the geometric space under linear
transformation B ∈ Rk×d, where k is the rank of
the transformation and d is the dimensionality of
the representation, captures the depth of words or
distances between words in a parse tree. We adjust
the rank to the dimensionality k = d. The depth
probe measures the distance from root ∀i in a parse
tree. It is defined by ∥wl

i∥B = (Bwl
i)
T (Bwl

i). The
depth probe is evaluated based on the accuracy
of the root word and the correlation between the
predicted order of words and ordering specified
by the depth in the parse tree. The distance probe
measures the pairwise distances ∀i, j within a parse
tree. It is defined by ∥wl

i − wl
j∥B = (B(wl

i −
wl
j)

T (B(wl
i−wl

j)). The distance probe is evaluated
by correlating the predicted distances between pairs
of words with distances metrics specified by the
parse tree and by converting the predicted distances
between pairs of words into a minimum spanning
tree and scoring it against the parse tree using the
Undirected Unlabeled Attachment Score (UUAS).

4 Experiments

We initiate our model introspection by examining
the performance in terms of perplexity scores. Fig-
ure 1 reveals that BERT trained on a corpus of text
subjected to text-to-text privatization converges to
a notably (but reasonably) worse perplexity score
at 61.45 (compared to 6.82). Since perplexity is a
measure for assessing the proficiency of language
models in predicting the next word in a sentence,
the elevated value in this context connotes a dimin-
ished ability for language modeling. To elucidate
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Figure 1: Interval-wise learning progress of BERT from
26, 903, 298 chunks generated from Wikipedia.
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Figure 2: Layer-wise representational similarity of BERT
for 5, 000 samples randomly drawn from WikiText.

the linguistic alterations that lead to the degradation
of the perplexity score, we pursue a layer-wise abla-
tion of linguistic properties captured in the internal
representations of privacy-preserving BERT.

4.1 Similarity Results
In line with correlation coefficients, RSA scores
have value range of [−1,+1], where +1 indicates
that the models produce a similar internal repre-
sentation and −1 indicates that the models diamet-
rically opposed in latent space. Since these theo-
retical bounds are unlikely in practice, we estab-
lish an empirical bound on RSA by correlating the
dissimilarity structures of BERT models with identi-
cal architecture but different initialization. We ob-
serve that the average similarity bounds at 0.9051.
By correlating the dissimilarity structures between
BERT and BERT trained on perturbed text, we find a
remarkable drop to 0.7601, signifying a substantial
departure between their internal representations.

To locate the variations in the internal represen-
tations on different layers of the BERT architecture,
we present the layer-wise RSA results in Figure 2.
Note that BERT models typically maintain consis-
tently high RSA values across all layers, whereas
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Figure 3: Layer-wise probing results for BERT under public (blue circles) and private (orange squares) training
modalities. Surface properties according to Adi et al. (2016) are depicted in Figures 3(a), 3(b), and 3(c). Syntactic
properties according to Tenney et al. (2019b) are depicted in Figures 3(d), 3(e), and 3(f). Semantic properties
according to Tenney et al. (2019b) are depicted in Figures 3(g), 3(h), 3(i), and 3(j). Structural properties according
to Hewitt and Manning (2019) are depicted in Figures 3(k) and 3(l).

our BERT model trained on perturbed text starts
with relatively high RSA values at the lexical repre-
sentation layer at 0.9007 and declines with contex-
tual representations layers to 0.6784, indicating a
sharper deviation in the representation space. This
pattern carries significant implications for our un-
derstanding of the impact of text-to-text privatiza-
tion. Since the lexical representation corresponds
to occurrence characteristics, this indicates that pri-
vate BERT fails to capture context information.

4.2 Probing Results

Assuming that the substantial divergence arises
from the fact that privacy-preserving BERT forms its
contextual representation based on different linguis-
tic properties than BERT, we are interested in dis-

covering which linguistic properties are captured
despite being trained on perturbed text.

Figure 3 depicts the probing results. The layer-
wise probing results are shaped similarly but the
consistently lower scores across all properties indi-
cate that the linguistic competence is compromised
when text-to-text privatization is are applied.

Surface. Starting from the sentence-level probes,
we notice distinct patterns in the details captured
about surface properties. With a deficit of −0.2770,
there is a marked difference related to the encoded
text length. Contrasting this deficiency, details con-
cerning content and order show a higher degree of
consistency, reflecting deviations of +0.0230 and
−0.0410, respectively. To grasp the implications
of surface properties, we recall the argumentation
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of Adi et al. (2016) that representations containing
information about length and order are more suited
for syntactic tasks while representations that excel
at content are more suited for semantic tasks.

Linguistic. We continue with linguistic proper-
ties at word-level. From syntactic probes, we ob-
serve that a significant portion of information about
grammatical tags and constituency chunks are re-
tained at −0.0246 and −0.0187, while less empha-
sis is placed on capturing dependency relations,
resulting in a reduction of −0.0751. From seman-
tic probes, we notice that information about en-
tity types is missing by only −0.0229, while en-
tity relations and semantic roles experience a more
substantial drop of −0.1209 and −0.0798. From
structural probes, which test whether a represen-
tation encodes topology, we consolidate the find-
ings from the syntactic probe on dependency re-
lations. Scored against a discrete solution in the
form of the root word or minimum spanning tree,
the representations contain information about the
root word with a score of 0.5866 and the parse tree
with a score of 0.6843, representing decrements of
−0.1244 and −0.0703, respectively.

Considering the nature of the linguistic proper-
ties and the degree to which they decline under
privacy constraints, it is noticeable that formalisms
closely related to basic characteristics of words dis-
play a considerable degree of preservation, whereas
formalisms tied to complex relationships within
spans of words undergo a substantial degree of de-
terioration. This intriguing pattern suggests that
while localized properties endure the perturbations
of text-to-text privatization, the ability of language
models to maintain contextual constructs can be
severely hindered by text-to-text privatization.

Since text-to-text privatization builds on word-
level differential privacy (Mattern et al., 2022), a
plausible explanation for this phenomenon could be
rooted in the nature of its randomized mechanism,
which has been observed to disproportionately af-
fect linguistic properties (Arnold et al., 2023). This
insight underscores the interplay between pertur-
bation strategies and the necessity of accurately
conveying different types of linguistic formalisms.

Attention. Since contextual representations are
mainly formed by the mechanism of self-attention
(Vaswani et al., 2017), we could attribute the al-
terations in the representations to the fact that the
attention mechanism (somehow) fails to discrim-
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Figure 4: Divergence-based clustering of attention maps
extracted from 1, 000 random samples of WikiText.

inate certain linguistic properties. We attempt to
answer this hypothesis by analyzing the distribu-
tional patterns of attention maps.

Once for each training modality, we obtain atten-
tion maps for 1, 000 randomly selected sentences
and rearrange the attention maps from their sub-
words in line with Vig and Belinkov (2019). For
attentions drawn to a split-up word, we sum up
the attention weights over its subwords. For atten-
tions stemming from a split-up word, we average
all weights from its subwords. Following Clark
et al. (2019), we calculate the distance between all
pairs of attention maps using the Janson-Shannon
divergence and visualize the distances grouped by
layer using multidimensional scaling in Figure 4.

Assuming that attention heads that are clustered
closely together perform similar linguistic roles in
forming the internal representation, we conclude
from the distributional patterns that text-to-text pri-
vatization amplifies the redundancy that is already
present in attention heads as revealed by Kovaleva
et al. (2019). This is most evident by comparing
the overlap of the attention maps in rear layers.

Considering that Li et al. (2018) showed that en-
couraging the attention mechanism to have diverse
behaviors can improve performance, we find an-
other possible explanation for the lack of linguistic
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competence in privacy-preserving language models
and their deteriorated level of perplexity.

5 Conclusion

Assuming that the performance loss of language
models caused by text-to-text privatization can be
attributed to the destruction of linguistic compe-
tence (Merendi et al., 2022), we set to disentangle
the layer-wise alterations of perturbations to the
internal representations of a language model.

By employing a series of techniques for model
introspection (Adi et al., 2016; Hewitt and Man-
ning, 2019; Tenney et al., 2019b), we tested the in-
ternal representations formed by language models
for linguistics properties across several formalisms.

From the perspective of linguistic competence,
experimental results from our layer-wise model
introspection indicate that privacy preservation
can considered conservative as language models
subjected to text-to-text privatization retain a hi-
erarchical order of linguistic formalisms (Peters
et al., 2018b; Tenney et al., 2019a; Jawahar et al.,
2019). However, text-to-text privatization shows to
have a cumulative impact on the linguistic compe-
tence of language models, affecting aspects rang-
ing from surface-level properties to linguistic con-
structs across syntactic, semantic, and structural
formalisms. We further notice that basic properties
of words are less disrupted than complex relations
between words that require context information.

Limitations. Most assumptions and findings of
this study are grounded in probing. Although prob-
ing enjoys much support as a technique for inter-
preting the internals of language models (Abadi
et al., 2016; Conneau et al., 2018; Tenney et al.,
2019b; Hewitt and Manning, 2019), recent stud-
ies dispute with conclusion derived from probing
due to the fact that probing may not entail task rel-
evance (Ravichander et al., 2020). We side with
those viewing probing as a tool for model intro-
spection, but nonetheless caution that our probing
results may not be the appropriate technique for
discerning the differences of private training modal-
ities. Given the wide range of probing tasks and
the fact that our probing results show a consistent
pattern of competencies, we are convinced that this
study contributes novel privacy implications.
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