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Abstract

In the light of recent developments in NLP,
the problem of understanding and interpreting
large language models has gained a lot of ur-
gency. Methods developed to study this area
are subject to considerable scrutiny. In this
work, we take a closer look at one such method,
the structural probe introduced by Hewitt and
Manning (2019). We run a series of experi-
ments involving multiple languages, focusing
principally on the group of Slavic languages.
We show that probing results can be seen as a
reflection of linguistic classification, and con-
clude that multilingual BERT learns facts about
languages and their groups.

1 Introduction

Transformers (Vaswani et al., 2017) have revolu-
tionised the area of natural language processing.
State-of-the-art solutions for virtually all NLP prob-
lems – including machine translation, text summa-
rization and generation – are nowadays transformer-
based. In recent years models such as BERT (De-
vlin et al., 2019) and Generative Pre-trained Trans-
formers (Radford et al., 2018) have shifted the
public view of artificial intelligence. This is also
true for Slavic languages – for example, the Pol-
ish language understanding benchmark KLEJ (Ry-
bak et al., 2020) is dominated by models such as
HerBERT (Mroczkowski et al., 2021) or Polish
RoBERTa (Dadas et al., 2020).

This success has led to a significant interest in
studying the interpretability of such models. Mul-
tiple probing techniques have been developed to
assess the extent of linguistic knowledge learned in
masked language modelling, especially by models
based on BERT. Those methods typically feature a
set of secondary tasks that are learned by a smaller
model (the probe), using BERT’s embeddings as
inputs.

Using probing with multiple tasks, Tenney et al.
(2019) and Jawahar et al. (2019) have found a sur-

prisingly regular structure encoded in BERT’s lay-
ers. Their results are supported by Hewitt and
Manning (2019), where the authors use the task
of dependency tree prediction in a method they call
the structural probe. They use it to find evidence
of syntax learning, especially exhibited by BERT’s
middle layers. Going a step further, authors of Chi
et al. (2020) apply structural probing to a multilin-
gual version of BERT (Devlin et al., 2019), and
find a degree of universality in how the syntactic
relations are encoded in a single embedding space
for multiple languages.

On the other hand, the interpretability of probing
results is the subject of much discussion. Although
authors typically use a baseline to quantify what
the probe actually learned, those results are still
called into question. A parameter-free method of
probing is introduced by Wu et al. (2020), although
the results prove to be much more conservative.

The problem of whether probes extract knowl-
edge from embeddings or learn new tasks is dis-
cussed in depth by Hewitt and Liang (2019), where
they are shown to be able to learn randomly gener-
ated control tasks. In Niu et al. (2022), the authors
find a strong argument against interpreting accu-
racy as a measure of information contained. They
show that performance drops when more layers be-
come accessible to the probe, which theoretically
should provide it with more information.

In this work, we aim to investigate the usability
of probing techniques – specifically the structural
probe of Hewitt and Manning (2019) – by relating
them to real-life ideas developed by theoretical
linguists, such as the classification of languages
into families and word order types. We take a
closer look at the group of Slavic languages and
the claim that they constitute a separate word order
class, as proposed by Haider and Szucsich (2022).
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1.1 Main Contributions
Inspired by Chi et al. (2020), we investigate prob-
ing in a multilingual context, focusing our attention
on relations between syntax encoding for a group
of Slavic languages. We show that probing results
can be related to pre-existing linguistic knowledge,
which suggests that, in spite of interpretability prob-
lems, this methodology can be used to discover
quantitative relations between languages.

To highlight the role of mBERT pre-training in
recovering grammatical relations differentiating be-
tween language families, we contrast our findings
with the results of a randomised baseline. In Table
2, we show that an identical architecture with ran-
dom parameters does not uncover similar patterns.
This suggests that the pre-training task of masked
language modeling constructs the embedding space
in a way that allows meaningful investigation of
relations between languages.

2 Methodology

Our methodology is based on the structural probing
method introduced in Hewitt and Manning (2019)
and applied to a multilingual setting in Chi et al.
(2020).

In this method, the most important data form
is the dependency tree, which is a formal way of
representing a sentence’s syntax. Each word in a
sentence is represented by a node, with (directed
and labeled) edges indicating syntactical relations
between words they connect.

The authors’ idea is to find the structure of
dependency trees in BERT’s embedding space. To
recover the structure of a tree, they aim to find a
metric in the embedding space that approximates
the distance between words in dependency trees
(expressed as the number of edges). They search
for an appropriate geometry in the family of linear
transformations of the embeddings. Our loss
function (L) thus becomes
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We can thus see that the real probe here is the
matrix B, which is found by minimizing the loss
using gradient descent.

Evaluation We assess the probes based on their
ability to predict the structures of unseen depen-
dency trees. For that, we utilise two metrics defined
in Hewitt and Manning (2019).

The first metric is Spearman’s rank correlation
coefficient between predicted and gold standard
distances (originally named distance Spearman, or
”DSpr.”). The coefficient is designed to measure
monotonicity of a relation between two variables.
Here, it is calculated separately for each sentence,
averaged across all sentences of a given length, and
then over lengths between 5 and 50. The coefficient
is expressed as

ρ(X,Y ) =
cov(R(X),R(Y ))

σR(X)σR(Y )

where R is a ranking function, cov is a standard
covariance, and σ is standard deviation.

The second metric is the UUAS – undirected, un-
labeled attachment score. It requires construction
of predicted undirected trees, which is done in an
iterative process, based on a ranking of predicted
distances. In each step, two words for which the
embeddings are predicted to be the closest are con-
nected, unless that would violate the tree property
(that is, only if a path between them does not yet
exist). This procedure is conducted until a span-
ning tree of the sentence is constructed. It is then
evaluated by calculating the percentage of correctly
placed edges, which gives us a value from range
[0, 100].

To give a sense of scale here, in Hewitt and Man-
ning (2019) a non-contextualised baseline reaches
a score of 26.8, and a randomly contextualised one
– 59.8, while the highest value reached on BERT
is 82.5, indicating over 82% of correctly predicted
edges.
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We collected values of both UUAS and DSpr.
Since we found that both metrics are highly cor-
related (Pearson’s r > 0.97) and lead to identical
qualitative conclusions, our reporting focuses on
the UUAS, which is easily interpretable as a per-
centage of successses.

Datasets In our work, we selected two groups of
languages: train and test languages, listed in Table
1. The test set is a subset of the group of Slavic lan-
guages, with some additional non-Slavic languages
added in the train set. For each of the languages, we
source our data – manually annotated dependency
trees – from the Universal Dependencies project
(Nivre et al., 2017).

Language Size Train Test Slavic
Belarusian 22852

Chinese 3996
Croatian 6913
Czech 68494

English 12542
Finnish 12216
French 14448
German 13813

Indonesian 4481
Latvian 12520

Lithuanian 2340
Polish 17721

Russian 69629
Slovak 8482
Slovene 10902
Spanish 14286

Ukrainian 5495

Table 1: All considered languages, with dataset sizes in
number of sentences. Note that the set of test languages
is a subset of the train set.

Experimental setup We conduct all experiments
at layer 7 (out of 1 - 12) of mBERT base, with a
fixed probe rank of 128. Since our goal is not to
investigate the properties of mBERT itself, but the
properties of probing methodology and relations
between languages, we do not consider the whole
set of hyperparameters used in Hewitt and Man-
ning (2019). We choose hyperparameters that were
found to be optimal in Chi et al. (2020).

To balance the differences in dataset sizes – see
Table 1 – and investigate the impact of those differ-
ences, we introduce an additional hyperparameter
of dataset size. We consider subsets of 100, 1k,
2.5k, 5k, 7.5k and 10k sentences (where available).

Baseline To differentiate between the impact of
probe training and mBERT pre-training, we utilise

the mBERTRand baseline as described in Chi et al.
(2020). In this setup, we run experiments on an
mBERT-like architecture with randomly initialized
parameters and no pre-training. As such, this base-
line should not carry any linguistic information,
other than what is learned by the probe itself.

In our setup of the baseline, we only consider
a single test language - Polish - since the results
were deemed to prove satisfactorily that pretraining
enhances linguistic knowlege – see Section 4. The
list of train languages remains the same.

3 Experimental results

3.1 Dataset size study

In Figures 1 and 2, we present averaged UUAS
scores for probes trained on several dataset sizes
and languages, all tested on Polish. In both cases,
we can see a saturation of the score for datasets of
10k sentences – the score curves flatten out.

We can also see that the ranking of languages sta-
bilizes, with minor changes between size 7.5k and
10k. For both mBERT and the baseline, it becomes
well established that the best train language for Pol-
ish is Polish – which is not the case for smaller
sizes, especially for 1k sentences and less. In the
case of Belarusian, the maximum considered size is
necessary to separate it from non-Slavic languages.

Non-baseline results for other test languages
were similar, so the plots were omitted here. All
numerical results can be found in Table 2 and Ap-
pendix A.

Figure 1: Plot of UUAS scores for probes trained on
various languages and dataset sizes, tested on Polish,
averaged across 3 independent runs. Higher values indi-
cate better syntax recall.
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Figure 2: Plot of baseline UUAS scores for probes
trained on various languages and dataset sizes, tested
on Polish, averaged across 3 independent runs. Word
embeddings here are randomly initialised, so the probe
cannot access BERT’s knowledge. Higher values indi-
cate better syntax recall.

3.2 Relations between Slavic languages

Numerical results (averaged UUAS values) for
training datasets of size 10k (the maximal consid-
ered) are shown in Table 2. The columns represent
all test languages, with 2 additional columns for
baseline results and an average across all test lan-
guages. The rows represent train languages, they
are sorted by the Average column. Only the train
languages with at least 10k sentences are shown.
For additional languages with smaller sizes see Ap-
pendix A.

In non-baseline results, we can see a naturally
emerging separation between Slavic and non-Slavic
languages. There are significant (> 1 UUAS point
in this context) score gaps in a couple of positions
in the ranking: between Belarusian and other Slavic
languages, between German and Belarusian, be-
tween German and other non-Slavic languages, and
at the bottom of the ranking, between Finnish and
other languages.

The baseline results are not statistically signifi-
cantly correlated with non-baseline results tested
on Polish, except for the visible dominance of
Polish as the best train language. Excluding Pol-
ish from both rankings, we get p = 0.38, with
p = 0.04 without the exclusion. We can see that
the ranking here would be vastly different, with the
top train languages being Polish, French, Spanish,
and Czech. The bottom language is Belarusian,
with a significantly worse result than any other lan-
guage.

The experiments were executed using two RTX
2080 Ti GPU units (or equivalent). 2816 experi-
ments were carried out in total, with an average
experiment with 10k train sentences taking 16 min-
utes.

4 Discussion

The results for pre-trained mBERT described in
the previous section and shown in Table 2 can be
related to the following linguistic facts:

• For each test language, the set of top 5 train
languages is exactly the same – it is the set of
all Slavic languages present in train data for
the given dataset size. The group of Slavic
languages is recognised as inter-related.

• For each test language, the top-scoring non-
Slavic train language is German. This can
be related to a matter of discussion raised by
Haider and Szucsich (2022) and referred to in
Fuß (2022). Haider and Szucsich (2022) pro-
pose a new class of word order in languages,
to which they postulate that all Slavic lan-
guages should belong. They also mention the
fact that Germanic languages evolved from a
grammar of the same type, which might ex-
plain the high scores of German as a predictor
of Slavic languages’ sentence structure.

• The Finnish language is the worst-scoring
train language for all test languages. This
can be related to the fact that it is the only
language present in the train set that does not
belong to the Indo-European family.

There is no such interpretation to be found for
baseline results. As noted in the previous section,
those results are not correlated with non-baseline
results for Polish. In Figure 2 and Table 2, we can
see Slavic languages mixed with non-Slavic lan-
guages, with no visible separation even for large
dataset sizes. Except for the fact that Polish is
the highest-scored train language, there is no clear
relation between linguistic classification and the re-
sults of the baseline. We conclude that pre-training
of mBERT plays a vital role in the ability of the
probe to reproduce the well-known classification
of Slavic languages.

Additionally, we can note that for main results,
the scores achieved using the same train and test
language differ between languages, ranging from
78.82 (Belarusian) to 83.19 (Polish). Although in
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Baseline Slovene Russian Polish Czech Belarusian Croatian Slovak Ukrainian Average
Slavic languages

Slovene 48.39 81.43 76.16 78.52 77.10 75.19 77.60 82.26 77.08 78.17
Russian 48.95 75.35 81.32 78.77 76.75 76.88 76.08 80.54 79.41 78.14
Polish 53.87 75.64 76.84 83.19 77.07 75.91 75.03 81.20 77.74 77.83
Czech 48.96 76.02 76.37 78.20 80.47 74.96 75.90 83.24 77.45 77.83

Belarusian 44.44 72.88 75.54 76.38 73.94 78.82 73.36 77.97 76.99 75.73
Non-Slavic languages

German 48.56 73.17 74.62 76.15 74.23 73.08 73.17 78.17 75.20 74.72
English 48.86 70.34 73.08 73.75 71.42 70.40 72.03 75.79 73.36 72.52
French 50.14 70.20 72.22 75.07 71.10 70.93 71.84 74.57 73.01 72.37
Latvian 45.88 70.84 70.97 72.39 70.69 70.59 69.99 75.41 72.01 71.61
Spanish 49.86 69.64 71.12 73.99 70.20 69.70 70.57 72.55 71.66 71.18
Finnish 46.40 68.09 68.33 69.22 68.07 67.97 67.43 72.14 68.87 68.77

Table 2: Average UUAS scores for probes trained using 10k sentences. The test languages are in columns, and
the train languages in rows. Higher values indicate better syntax recall and suggest syntactic similarity, with top
results highlighted in each column. The results are averaged over three independent runs with different random
seeds. Standard deviations of results are not reported, since values are below 1 UUAS point.

each case, the test language is also the best train
language, the score values differ. This can be inter-
preted as a reflection of the fact that mBERT learns
certain languages’ representations more clearly, es-
pecially when coupled with results from Chi et al.
(2020) and Alves et al. (2022). However, this could
also be an artefact of dataset differences between
languages – their quality, diversity and representa-
tiveness – which brings our attention back to the
fact that interpretability remains an issue in prob-
ing.

5 Conclusions

Using Slavic languages as an example, we have
shown that the method of structural probing can
be used to achieve results that are clearly related
to pre-existing linguistic knowledge. In spite of in-
terpretability problems, we conclude that probing
can be used to extract linguistic knowledge from
transformer models. This can be used both to en-
hance our knowledge about language models, and
about languages themselves. In this case, we show
that mBERT implicitly learns facts about language
groups during its simple pre-training tasks. We
also conclude that the implication of Haider and
Szucsich (2022) that German has a similar word
order heritage as Slavic languages can be related to
empirical data.

Limitations

The main limitation of this work is that it is con-
cerned with a limited subset of languages. The
only languages that have been investigated here
are Slavic languages, and even then, some of them
were omitted from experiments and results analysis

– for example Slovak, Bulgarian or Ukrainian.
Another limitation explicitly stated in the work

is the number of train sentences. In Subsection
3.1, we show that in order to draw meaningful
conclusions, at least 5000 annotated sentences per
language are needed. Coupled with the typical
sizes of multilingual transfomer models, this leads
to high computational and memory capacity being
required to run experiments for multiple language
groups.
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7 with other tables.

As concluded in Subsection 3.1 and Section 4,
smaller dataset sizes seem to provide less meaning-
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nate the scores for all Slavic test languages – this
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Baseline Slovene Russian Polish Czech Belarusian Croatian Slovak Ukrainian Average
Slavic languages

Russian 48.61 74.19 80.49 78.27 75.89 76.37 75.25 79.84 78.55 77.36
Slovene 47.42 80.08 75.06 77.54 76.36 74.07 76.73 81.01 76.20 77.13
Czech 48.24 75.37 75.47 77.72 79.69 74.06 74.87 82.92 76.64 77.09
Polish 52.30 74.39 76.09 82.11 75.97 75.30 74.33 79.90 76.76 76.86
Slovak 44.67 73.75 73.98 76.44 75.91 71.65 72.51 83.50 74.23 75.25

Belarusian 43.21 71.63 74.28 75.17 72.98 77.93 71.23 76.31 75.73 74.41
Non-Slavic languages

German 47.87 72.62 74.01 75.32 73.70 72.92 72.36 77.41 74.62 74.12
French 49.60 69.51 71.51 74.34 70.22 70.54 71.12 73.18 72.49 71.61
English 48.14 69.15 72.43 72.98 70.59 69.81 71.53 73.87 72.41 71.60
Latvian 44.93 69.17 69.95 71.11 69.31 68.80 67.53 74.04 70.02 69.99
Spanish 49.64 68.25 69.72 72.96 68.66 68.50 69.30 71.13 70.35 69.86
Finnish 45.49 66.51 66.83 67.77 66.55 67.14 66.05 69.92 67.52 67.29

Table 3: Average UUAS scores for probes trained using 7.5k sentences. The test languages are in columns, and the
train languages in rows. Higher values indicate better syntax recally. The results are averaged over three independent
runs with different random seeds. Standard deviations of results are not reported, since values are below 1 UUAS
point.

Baseline Slovene Russian Polish Czech Belarusian Croatian Slovak Ukrainian Average
Croatian 47.29 75.71 73.64 75.84 75.30 73.12 78.84 79.02 75.81 75.91

Ukrainian 46.14 72.90 76.22 77.23 74.06 75.65 73.89 78.37 78.68 75.88
Czech 47.31 74.60 73.79 76.14 78.25 72.45 73.82 81.48 74.71 75.65

Russian 47.23 72.69 79.09 76.98 74.23 74.35 72.69 78.13 76.93 75.64
Slovene 46.64 78.97 73.19 75.66 74.42 72.21 74.50 79.09 74.40 75.30
Polish 49.20 71.87 73.59 80.17 73.03 72.35 71.31 78.13 74.08 74.32
Slovak 44.05 72.20 72.51 74.81 74.45 71.38 70.91 82.39 72.98 73.95
German 46.82 71.92 73.09 74.41 72.37 71.68 70.87 76.66 73.21 73.03

Belarusian 41.32 69.03 71.73 72.76 70.62 75.88 69.67 74.66 73.56 72.24
French 49.12 67.46 70.55 73.03 68.91 69.14 70.05 71.97 71.29 70.30
English 47.58 66.54 69.90 70.82 68.38 67.37 68.63 71.37 70.07 69.14
Spanish 48.96 67.57 69.04 71.88 68.14 67.54 68.45 70.81 69.48 69.11
Latvian 43.52 66.76 66.94 68.94 66.99 67.05 65.03 70.99 68.26 67.62
Finnish 44.25 64.52 65.04 65.84 63.78 64.44 63.69 67.95 65.22 65.06

Table 4: Average UUAS scores for probes trained using 5k sentences. The test languages are in columns, and the
train languages in rows. Higher values indicate better syntax recally. The results are averaged over three independent
runs with different random seeds. Standard deviations of results are not reported, since values are below 1 UUAS
point.

Baseline Slovene Russian Polish Czech Belarusian Croatian Slovak Ukrainian Average
Slovene 44.17 75.27 70.12 72.23 71.36 69.30 70.82 75.73 70.80 71.95
Czech 44.26 71.81 69.14 73.01 74.40 70.47 70.24 76.66 69.79 71.94

Croatian 44.43 71.33 69.80 72.31 71.24 69.13 74.41 75.04 71.38 71.83
Russian 44.97 68.66 75.30 73.22 69.98 71.30 68.06 73.40 73.02 71.62

Ukrainian 43.18 68.37 72.11 72.80 69.55 71.23 68.51 73.57 73.40 71.19
Slovak 41.51 68.39 68.85 71.15 70.90 68.71 67.50 78.71 68.86 70.38
German 42.45 67.01 68.83 70.82 68.67 67.86 66.83 72.91 69.01 68.99
Polish 43.66 65.63 67.75 74.18 67.33 67.28 65.64 70.45 68.03 68.29
French 47.11 65.67 67.21 70.77 66.70 66.93 67.44 69.93 68.24 67.86

Belarusian 38.58 64.68 67.03 69.01 66.81 71.27 64.61 70.37 67.78 67.70
English 46.32 65.47 67.59 67.95 65.65 65.41 66.51 69.20 67.61 66.92
Spanish 47.52 64.25 66.79 70.20 65.51 65.33 65.17 68.63 67.26 66.64
Latvian 39.38 61.39 62.08 63.54 61.35 63.03 59.50 66.51 61.87 62.41

Indonesian 46.29 59.10 61.05 64.36 60.26 62.94 60.07 63.79 63.21 61.85
Finnish 41.09 60.94 60.31 61.70 59.68 60.08 59.41 64.04 60.49 60.83
Chinese 42.12 54.52 56.12 55.68 55.89 58.69 54.42 58.25 57.96 56.44

Table 5: Average UUAS scores for probes trained using 2.5k sentences. The test languages are in columns, and the
train languages in rows. Higher values indicate better syntax recally. The results are averaged over three independent
runs with different random seeds. Standard deviations of results are not reported, since values are below 1 UUAS
point.
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Baseline Slovene Russian Polish Czech Belarusian Croatian Slovak Ukrainian Average
Croatian 39.33 64.04 63.10 65.33 63.81 63.89 67.59 66.99 62.84 64.70
Slovene 39.90 66.04 62.39 64.69 63.48 63.52 62.17 67.53 63.96 64.22
Czech 38.46 59.71 60.39 63.56 64.71 61.49 60.12 66.76 62.84 62.45
Slovak 37.13 59.54 60.48 64.46 63.14 62.45 58.02 69.25 62.16 62.44
French 44.07 57.97 61.72 64.24 60.41 62.09 60.71 64.58 63.13 61.86

Ukrainian 36.96 59.42 61.24 63.38 59.82 63.01 57.96 63.81 64.16 61.60
Spanish 44.47 57.91 60.61 63.64 59.91 60.58 58.88 62.42 61.38 60.67
English 42.55 57.12 61.74 62.92 58.57 61.54 57.57 62.82 61.93 60.53

Belarusian 34.80 57.21 58.46 60.61 58.80 63.32 55.61 62.50 61.07 59.70
Russian 37.71 56.84 62.07 60.86 57.79 60.48 54.82 62.04 61.17 59.51
German 34.16 58.12 58.09 60.08 58.54 59.31 56.69 61.44 59.71 59.00

Indonesian 42.60 54.93 57.59 60.51 56.42 59.11 53.83 60.07 59.24 57.71
Lithuanian 36.82 53.85 54.51 57.00 54.05 57.00 52.85 59.97 55.96 55.65

Latvian 35.44 54.00 54.17 56.10 54.28 55.39 51.15 59.48 54.37 54.87
Finnish 35.24 52.42 53.47 54.76 52.48 54.64 50.86 55.99 53.49 53.51
Polish 35.38 49.85 52.59 57.84 50.06 55.03 49.22 54.27 52.77 52.70

Chinese 37.82 50.69 52.65 53.10 51.21 53.86 50.34 54.19 52.59 52.33

Table 6: Average UUAS scores for probes trained using 1k sentences. The test languages are in columns, and the
train languages in rows. Higher values indicate better syntax recally. The results are averaged over three independent
runs with different random seeds. Standard deviations of results are not reported, since values are below 1 UUAS
point.

Baseline Slovene Russian Polish Czech Belarusian Croatian Slovak Ukrainian Average
Spanish 26.62 37.49 42.61 43.93 41.23 43.83 37.26 44.33 42.11 41.60
French 23.12 35.94 40.93 41.96 38.84 42.43 36.95 42.45 40.96 40.06
Slovene 22.10 34.23 38.29 40.61 38.13 41.03 35.81 42.88 38.19 38.65
Czech 20.20 35.26 38.26 39.94 36.60 41.19 35.41 41.89 38.61 38.39

Indonesian 22.66 33.74 37.95 39.79 37.05 41.07 34.60 41.10 38.48 37.97
Croatian 20.02 34.94 37.48 39.04 37.18 40.60 33.59 41.11 37.49 37.68

Ukrainian 22.31 34.03 37.02 39.45 36.91 40.34 33.73 40.79 36.83 37.39
Lithuanian 21.08 33.89 36.59 38.79 35.82 40.28 33.45 40.83 36.96 37.08

English 22.68 32.87 37.92 39.17 35.67 39.71 33.48 39.49 37.31 36.95
Polish 20.97 32.49 37.35 38.60 35.97 40.17 32.99 40.32 37.18 36.88

Chinese 23.30 33.48 36.68 37.88 36.17 40.11 33.99 40.41 35.90 36.83
Belarusian 21.82 33.30 36.12 37.92 36.15 40.24 32.26 39.63 36.19 36.48

German 19.89 32.68 36.73 38.22 35.49 39.57 33.07 39.49 36.41 36.46
Slovak 18.01 34.21 36.28 37.90 35.03 39.37 33.34 38.89 35.41 36.30
Latvian 22.21 33.59 35.78 37.58 35.60 39.35 32.48 39.79 35.86 36.25
Russian 20.71 32.35 35.06 37.24 35.60 38.33 32.33 39.55 35.58 35.76
Finnish 20.28 31.32 34.74 36.05 33.71 37.49 31.37 37.95 34.17 34.60

Table 7: Average UUAS scores for probes trained using 100 sentences. The test languages are in columns, and the
train languages in rows. Higher values indicate better syntax recally. The results are averaged over three independent
runs with different random seeds. Standard deviations of results are not reported, since values are below 1 UUAS
point.

93


