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Abstract
Language embeds information about social,
cultural, and political values people hold. Prior
work has explored potentially harmful social bi-
ases encoded in Pre-trained Language Models
(PLMs). However, there has been no system-
atic study investigating how values embedded
in these models vary across cultures. In this pa-
per, we introduce probes to study which cross-
cultural values are embedded in these models,
and whether they align with existing theories
and cross-cultural values surveys. We find that
PLMs capture differences in values across cul-
tures, but those only weakly align with estab-
lished values surveys. We discuss implications
of using mis-aligned models in cross-cultural
settings, as well as ways of aligning PLMs with
values surveys.

1 Introduction

A person’s identity, values and stances are often
reflected in the linguistic choices one makes (Jaffe,
2009; Norton, 1997). This is why, when lan-
guage models are trained on large text corpora,
they not only learn to understand language, but
also pick up on a variety of societal and cultural
biases (Stanczak et al., 2021). While biases picked
up by the PLMs have a potential to cause harm
when used in a downstream application, they may
also serve as tools which provide insights into un-
derstanding cultural phenomena. Further, while
studying ways of surfacing and mitigating poten-
tially harmful biases is an active area of research,
cultural biases and values picked up by PLMs re-
main understudied. Here, we investigate cultural
values and differences among them picked up by
PLMs through their pre-training on Web text.

In a wide range of social science research fields,
values are a crucial tool for understanding cross-
cultural differences. As defined by Rokeach (2008),
values are the “core conceptions of the desirable
within every individual and society”, i.e., the foun-
dation for the beliefs guiding a persons actions and

on a society level the base for the guiding prin-
ciples. We would like to highlight the difference
we make between values and morals. The former,
as conceptualised in this work, is concerned with
fundamental beliefs an individual or a group holds
towards socio-cultural topics, whereas the latter
entails making a judgement towards individual or
collective right or wrong. For a discussion around
the intersection of morality and PLMs, we point
the reader to Talat et al. (2021). In this paper, we
base our understanding of values across cultures
on two studies: Hofstede (2005), which defines 6
dimensions to describe cross-cultural differences
in values, and the World Values Survey (WVS)
(Haerpfer et al., 2022). Both surveys provide nu-
merical value scores for several categories on a pop-
ulation level across different countries and regions
and are widely used to understand cross-cultural
differences in values.

PLMs are trained on large amounts of text from
the Web and have shown to pick up on semantic,
syntactical, factual and other forms of knowledge
which allow them to perform well across several
Natural Language Processing (NLP) tasks. Since
multilingual PLMs are trained on text in many
languages, they have the potential to pick up cul-
tural values through word associations expressed
in those languages which are embedded in the pre-
training texts. We therefore measure whether cul-
tural values embedded in multilingual PLMs are
correlated with the ones provided by the surveys. In
Wikipedia, which is one of the primary sources of
training data for multilingual PLMs, cross-cultural
differences have been established (Miquel-Ribé
and Laniado, 2019), and analysed by Hara et al.
(2010) based on Hofstede’s theory.

In this paper, we explore the novel research ques-
tion of whether PLMs capture cultural differences
in terms of values across different language models.
We probe PLMs using questions from the values
surveys of both Hofstede’s cultural dimensions the-
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ory and the World Values Survey. We reformulate
the survey questions to probes and extract the an-
swers to evaluate whether language models can
capture cultural differences based on their training
data. We focus on 13 languages, each of which is
primarily geographically restricted to one country
or region, to compare the results of the language
models to the values surveys. The overall experi-
mental setting for the paper is outlined in Figure 1.

Our work makes the following contributions1:

• We present the first study measuring cultural
values embedded in large Pre-trained Lan-
guage Models

• We propose a methodology for probing for
values by converting survey questions to cloze
style questions

• We conduct experiments across 13 languages
with three multilingual language models
(mBERT, XLM, and XLM-R), showing value
alignment correlations with two large scale
values surveys

• We present a discussion around potential im-
plications of deploying these models in a
multi-cultural context

2 Related Work

Expression and Norms Analysis of expression
of identity and attitudes through language and
its change has a long history in sociolinguis-
tics (Labov, 1963; Trudgill, 2002). More recently,
studies have used NLP to computationally analyse
this change on social media data (Eisenstein et al.,
2014; Hovy et al., 2015) and link it to external fac-
tors like socioeconomic status (Abitbol et al., 2018)
and demographics (Jurgens et al., 2017). This has
also been done to analyse broader societal trends
like temporal change in attitudes towards sexu-
ality (CH-Wang and Jurgens, 2021) and gender
bias (Sap et al., 2017; Stanczak and Augenstein,
2021). Further, there has been work on creating
resources to analyse social norms and common-
sense reasoning around them (Forbes et al., 2020;
Emelin et al., 2021; Sap et al., 2020). Hoover et al.
(2020); Roy et al. (2021) present work on extract-
ing moral sentiment embedded in language using
the Moral Foundation Theory. To diversify visually
grounded reasoning across different cultures, Liu

1The code and data used for our experiments can be found
here.

et al. (2021) introduce a multimodal multilingual
dataset.

While there has been work on investigating and
embedding social and moral norms, understanding
values and their variation in a cross-cultural con-
text remains understudied in the literature. Kiesel
et al. (2022) provide a taxonomy of 54 values based
on Schwartz et al. (2012) and provide a dataset and
baselines for automatic value classification within
the context of argument mining. The closest setup
to ours would be one adopted by Johnson et al.
(2022). They qualitatively assess the text generated
by GPT-3, an autoregressive language model, by
prompting it with English texts with a clear em-
bedded value. They find that the embedded values
in the generated texts were altered to be more in
line with dominant values of US citizens, possibly
due to its training data. Our setup instead quantita-
tively measures whether cross-cultural differences
in these values are preserved in multilingual lan-
guage models when fed with the language spoken
predominantly by people belonging to that culture.

Probing Probing has been extensively used as
tool to study a variety of knowledge and biases
picked up by PLMs. This can be syntactic (Hewitt
and Manning, 2019), semantic (Vulić et al., 2020),
numerical (Wallace et al., 2019), relational (Petroni
et al., 2019) or factual knowledge (Jiang et al.,
2020) picked up by PLMs. Probes can be created
on both, at the word or sentence level (Mosbach
et al., 2020).

Following work (Caliskan et al., 2017; Garg
et al., 2018) on studying gender bias in word em-
beddings, a number of studies have built on it
to similarly probe for social biases embedded in
PLMs (May et al., 2019; Guo and Caliskan, 2021;
Stańczak et al., 2021; Ousidhoum et al., 2021;
de Vassimon Manela et al., 2021; Stanczak et al.,
2021). This can be done using cloze-style probing
for measuring at an intra-sentence level (Nadeem
et al., 2021) or using pseduo-log likelihood (Salazar
et al., 2020) based scoring (Nangia et al., 2020).
There are downsides to both approaches, the for-
mer potentially introduces unintended bias based
on the tokens in the input probe while the latter as-
sumes that all masked tokens are statistically inde-
pendent (Kaneko and Bollegala, 2022). We choose
the former since the probes in our case are carefully
worded by social scientists with the explicit aim to
extract bias towards a certain set of values.

To the best of our knowledge, there is no existing
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Figure 1: Figure outlining the experimental setting for the paper. We take the original survey questions (Section 4),
convert them into Question Probes and translate these into the target languages (Section 5) and run inference on the
mask probes (Section 6.2)

work on probing for values embedded in PLMs in
a comparative cultural context.

3 Value Probing

In this paper, we explore how PLMs capture differ-
ences in values across cultures, and whether those
differences reflect the ones found in values across
cultures at large. To compare the PLMs’ encodings
of values, we compare them with established sur-
veys capturing cross-cultual differences in values,
namely Hofstede’s cultural dimensions theory and
the World Values Survey (WVS) (Section 4). We
transform the survey questions introduced in those
surveys for compatibility with PLMs by reformulat-
ing them semi-automatically to convert them into
probes (Section 5). Then we translate these cre-
ated probes from English into 13 geographically
localised languages to conduct cultural value prob-
ing across 13 cultures (Section 5). Finally, we
assess the variance in cross-cultural values embed-
ded in PLMs and compare the probing results to
the established values surveys in Section 7.

We investigate the following research questions
as a first step to exploring this novel area of probing
cross-cultural differences in values:

RQ1 Do PLMs capture diversity across cultures for
the established values?

RQ2 Are there similarities in the embedded values

across different PLMs?
RQ3 Do values embedded in PLMs align with ex-

isting values surveys?

4 Values Surveys

We base our work on previous studies on how val-
ues differ across cultures. As these are central to
a number of research fields including political sci-
ence, psychology, sociology, behavioral economics,
cross-cultural research among others, there are a
large number of studies utilising the scores pro-
vided by these values surveys. Among the most
common ones are Hofstede’s cultural dimensions
theory and the World Values Survey. These studies
build on the body of work in different fields: Hof-
stede’s theory is derived from management studies
(Hofstede, 1984), while the WVS was developed
in the field of political science (Inglehart, 2006).
Both studies have since been widely used across
fields.

4.1 Hofstede’s Cultural Dimensions Theory

Hofstede started his surveys of cross-cultural differ-
ences in values in 1980. This first survey (Hofstede,
1984) included 116,000 participants from 40 coun-
tries (extended to 111 countries and regions in the
2015 version) working with IBM, and created 4
cultural dimensions, which were subsequently ex-
tended to 6 cultural dimensions that are also used in
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this paper. These 6 dimensions are: Power Distance
(pdi), Individualism (idv), Uncertainity Avoidance
(uai), Masculinity (mas), Long-term Orientation
(lto), Indulgence (ivr). The full survey contains 24
questions. Each dimension is calculated using a for-
mula defined by Hofstede using 4 of the questions
in the survey, see Appendix F. Hofstede shows
the influence that culture has on values by defin-
ing distinctly different numerical values in those 6
dimensions for the cultures observed. While crit-
ics of Hofstede’s cultural dimensions theory point
out, among others, the simplicity of the approach
of mapping cultures to countries and question the
timeliness of the approach (Nasif et al., 1991), this
model of representing values is now a foundation
for a large body of work on cross-cultural differ-
ences in values (Jones, 2007).

4.2 World Values Survey (WVS)

The World Values Survey (WVS, Haerpfer et al.
(2022)) collects data on peoples’ values across cul-
tures in a more detailed way than Hofstede’s cul-
tural dimensions theory. The survey started in 1981
and is conducted by a nonprofit organisation, which
includes a network of international researchers. It
is conducted in waves, to collect data on how val-
ues change over time. The latest wave, wave 7,
ran from 2017 to 2020. Compared to the European
Values Study2, WVS targets all countries and re-
gions, and includes 57 countries. While Hofstede’s
cultural dimensions theory aggregates the findings
of their survey into the 6 cultural dimensions, WVS
publishes the results of their survey per question.
Those are organised in 13 categories: (1) Social
Values, Attitudes and Stereotypes, (2) Happiness
and Well-being, (3) Social Capital, Trust and Or-
ganisational Membership, (4) Economic Values, (5)
Corruption, (6) Migration, (7) Security, (8) Post-
materialist Index, (9) Science and Technology, (10)
Religious Values, (11) Ethical Values and Norms,
(12) Political Interest and Political Participation,
(13) Political Culture and Regimes.

We exclude categories (4) and (8) for the experi-
ments in this study. This was done due to the nature
of questions asked in these categories, for which
it was not straightforward to design mask probes
without loss of information.

Inglehart (2006), who established WVS, further
defines the Inglehart–Welzel cultural map, which
processes the surveys and defines two dimensions

2https://europeanvaluesstudy.eu/

in relation to each other: traditional versus secular-
rational values and survival versus self-expression
values, and summarise values for countries on a
scatter plot describing these dimensions. In the
following, we only use the previously mentioned
11 categories and leave an analysis based on the
Inglehart–Welzel cultural map for future work.

5 Probe Generation

In order to make the surveys compatible with lan-
guage models, we reformulate the survey questions
to cloze-style question probes (Taylor, 1953; Her-
mann et al., 2015) that we can then perform masked
language modelling inference on. Since this is the
task PLMs were trained on, we argue it is a suitable
methodology to measure embedded cultural biases
in these models.

Hofstede’s Cultural Dimensions Based on the
English survey questions, the questions in the sur-
vey are manually reformulated to question probes
(QPs). This is done analogously to iterative cat-
egorisation, in which a set of possible labels
(y+i , y

−
i ) corresponding to either end of the re-

sponse options available in the survey are defined,
which are the words the language models are
probed for. The sentences are then reformulated
to probes, and the labels masked. Those labels are
based on the answers of the original survey, for
instance, the original question like have sufficient
time for personal or home life with answer options
consisting of different degrees of importance, the
probe is reformulated to Having sufficient time for
personal or home life is [MASK]., where [MASK]
should be replaced by important or unimportant.

QPs = {Wi, y
+
i , y

−
i }

where Wi is the masked probe and y+i and y−i are
the set of labels. There are a total of 24 questions
with repeating labels.

World Values Survey Analogous to the probes
created from the Hofstede survey, we create probes
from the English questionnaire of the WVS. As
there are more questions than for Hofstede (238 in
total), there are also a larger number of labels to
replace and a higher variety of question types.

Multilingual Probes To probe across several lan-
guages, we follow a semi-automatic methodology
for translating the created probes in English to the
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target language. We use a translation API3 that cov-
ers all target languages. We translate each QP from
English into the target language with the [MASK]
token replaced by the label words [y+i , y

−
i ] in or-

der to maintain grammatical structure and aid the
translation API. One challenge of cross-cultural
research is information loss when translating sur-
vey questions (Nasif et al., 1991; Hofstede, 1984).
Therefore we opted for this approach rather than
reformulating the translated survey questions by
Hofstede. However, we would like to highlight the
shortcomings of machine translation which have
poor performance on low resource languages and
has the potential to introduce additional biases. For
the purpose of these experiments however, since the
question probes are relatively simple sentences, we
found the machine translations to be of high quality.
We conducted an evaluation of our machine trans-
lated probes, the details for which can be found
in the Appendix B. The target labels [y+i , y

−
i ] for

each QP are then translated individually as single
words (e.g. important is translated from English
to the German wichtig), followed by lowercased
string matching to check if the translated label can
be found and replaced in the translated probe. If the
target label cannot be found directly in the trans-
lated probe due to differences in word choice, we
use a cross-lingual word aligner (Dou and Neubig,
2021) to align the English probe and its translated
version. With this approach, we identify the la-
bel word to be replaced with the mask token. If
both approaches yield no result, the token is man-
ually replaced in the target sentence based on the
authors’ language understanding and using online
translators.

Language Selection In total, we investigate 13
languages, mapped to one country each as outlined
in Table 1, according to criteria further detailed
below. One of the limitations of this one-to-one
mapping is that the languages are spoken in wider
regions and not specifically in one country (dis-
regarding also e.g. diaspora communities). This
allows for the closest match to the values theories
we work with, which operate on a country level.
The definition of culture by country has been criti-
cised by, e.g., Nasif et al. (1991).

We select the languages as follows: We first in-
clude the countries covered in both the surveys of
WVS and Hofstede. We limit to languages which
are official languages of the countries observed in

3https://cloud.google.com/translate

Country Language Wikipedia size

Romania Romanian (ro) 428,330
Greece Greek (el) 207,647
Pakistan Urdu (ur) 168,587
Iran Farsi (fa) 872,240
Philippines Tagalog (tl) 43,145
Indonesia Indonesian (id) 618,395
Germany German (de) 2,675,084
Malaysia Malay (ms) 356,937
Bangladesh Bengali (bn) 119,619
Serbia Serbian (sr) 656,627
Turkey Turkish (tr) 475,984
Vietnam Vietnamese (vi) 1,270,712
South Korea Korean (ko) 582,977

Table 1: Mapping of countries (cultures) to languages
used throughout this paper, including number of articles
per Wikipedia language as of March 2022.

the studies of both WVS and Hofstede. We fur-
ther select languages for which the distribution of
speakers is primarily localized to a country or rel-
atively narrow geographical region. To ensure the
language models will be able to have (potentially)
sufficient amount of training data, from the set of
languages, only those are selected which have at
least 10,000 articles on Wikipedia.

6 Methodology

6.1 Models

We conduct the probing experiments on three
widely used multilingual PLMs: the multi-lingual,
uncased version of BERT base (mBERT) (Devlin
et al., 2018), the 100 language, MLM version of
XLM (Conneau and Lample, 2019), and the base
version of XLM-RoBERTa (XLM-R) (Conneau
et al., 2020) available in the Transformers (Wolf
et al., 2020) library. mBERT was trained with a
Masked Language Modelling (MLM) and Next
Sentence Prediction objective, on Wikipedia ar-
ticles in 102 languages with the highest number
of articles on them. The XLM model builds on
top of mBERT, only using the MLM objective but
with modifications to the selection and truncation
of training text fed to the model at each training
step. It was also trained on Wikipedia texts, in-
cluding 100 languages. The XLM-R model uses
the RoBERTa architecture (Liu et al., 2019) and is
trained with an MLM objective on 2.5 TB of fil-
tered CommonCrawl corpus data in 100 languages.

118

https://cloud.google.com/translate


It shows strong multilingual performance across
a range of benchmarks and is commonly used for
extracting multilingual sentence encodings.

6.2 Mask Probing

For each model M , we run inference on the created
cloze-style question probes (QPs, described in Sec-
tion 5) using an MLM head producing the log prob-
abilities for the [MASK] tokens in the QPs over
the entire vocabulary V of the respective model:
logPM (wi, t|W \t

i ,ΘM ) ∈ R|V |, where t is the po-
sition of the [MASK] token in the text Wi ∈ QP ,
and ΘM are the parameters of the corresponding
Language Model M . Since the survey respondents
have to answer the questions with a choice between
a range of values, for instance 1-10 with 1 repre-
senting democratic and 10 representing effective,
in order to replicate a similar setting with PLMs,
we subtract the predicted logit for the response la-
bel with the highest score w+

i with the predicted
logit for the lowest score w−

i . This normalises the
predicted logits for the responses on opposing ends
of the survey question and is then used as a score
for that question.

logPM (wi) = logPM (w+
i )− logPM (w−

i )

Finally, in order to collapse the World Values
Survey responses per category, within which many
questions have different scales, we normalize the
aggregate survey responses per the corresponding
question scale, so that yi,c ∈ [0, 1], c ∈ C. We
then take the mean of the responses across all
the questions of the category to arrive at the ag-
gregated score of the category for each country:
yi =

1
|C|

∑
c∈C yi,c ∈ [0, 1].

6.3 Evaluation

We calculate Spearman’s ρ – a rank correlation
coefficient between the values predicted by the lan-
guage models and values calculated through the
surveys: ρ(logPM (wi, t|W \t

i ,ΘM ), yi). For the
World Values Survey, we do this per question, as
well as per category. For Hofstede, we limit this
calculation to value level correlations due to lack of
access to individual or aggregate survey response
data per question.4 We further calculate correla-
tions per country. Spearman’s ρ works on relative

4We calculate the scores for the values based on
the formula provided at https://www.laits.utexas.
edu/orkelm/kelmpub/VSM2013_Manual.pdf, see
Appendix F.

Figure 2: Heatmap of scores predicted per value for
XLM-R mask probing on Hofstede’s survey questions

predicted ranks to each variable, ignoring the indi-
vidual predicted values. Our choice of using a rank
correlation was motivated by the fact that we are
working with population level aggregate responses
and our aim of assessing whether language mod-
els pick up on relative differences in values across
cultures, rather than on exact values.

7 Results

7.1 RQ1: Model Predictions

We show the predicted scores for the XLM-R
model in Figure 2. As is clear from the figure, there
are substantial differences in the predicted scores
for the cultural dimensions across cultures. On
average, scores for power distance (pdi) are high,
whereas ones for masculinity (mas) and indulgence
(ivr) are relatively low. The predicted logits sug-
gest bias towards Greece and South Korea as places
with high power distance, Pakistan, Germany as
more masculine. Indulgence (ivr) has the lowest
scores across all values with only Phillippines and
Malaysia having positive values, indicating high
restraint in these cultures according to the model
predictions.

To understand whether LMs can preserve cross-
cultural differences in values, we plot the results
of the probing for Hofstede’s and WVS’ survey
in Figures 3 and 4 respectively. As is visible in
these plots, there is a variety in the values, i.e.,
the models seem to place different importance on
different values across cultures, displaying cross-
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Figure 3: Scatter plots with quartiles of predicted value scores on Hofstede’s survey questions for each of the three
models.

Figure 4: Scatter plots with quartiles of predicted value scores on WVS questions for each of the three models.

cultural differences in the values. We quantify these
differences among the prediction scores by test-
ing for statistical significance between the model’s
predictions by culture, seeing how they capture
cross-cultural differences. For XLM-R’s predic-
tions for the WVS, 42.31% of the country pairs
have a statistically significant difference, meaning
the model preserves cross-cultural differences. For
the other two models, the share of significantly dif-
ferent country pairs are 51.28% and 46.15% for
mBERT and XLM respectively. For XLM-R’s pre-
dictions of Hofstede’s survey, only 10.26% of cul-
tures have p <= 0.05. For the other two models,
the share of significantly different country pairs are
none and 6.41% for mBERT and XLM respectively.
We attribute these low percentages to the fact that
we conduct the test over the six value dimensions
only, while it is on over 200 questions for WVS.

7.2 RQ2: Model Agreement

To further study whether scores across values and
categories are consistent across the three models,
we check for correlation between the predicted
scores between the three models and outline them
in Tables 2 and 3. We can see that predictions are in-
consistent across the models, indicating differences
in the embedded cross-cultural values. mBERT
and XLM share the same architecture and are both
trained on Wikipedia, yet the correlations across
values are low, indicating the large effect that rel-
atively minor changes to the model training can
have on the cultural values picked up by the model.

7.3 RQ3: Alignment with Surveys

Finally, we investigate whether the models’ pre-
dictions for the values questionnaire are consistent
with existing values survey scores.
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XLM/ XLM/ mBERT/
mBERT XLM-R XLM-R

pdi 0.44 0.68* 0.48
idv -0.14 -0.22 0.55
mas -0.41 -0.14 0.43
uai 0.49 0.65* 0.42
lto -0.05 -0.12 -0.15
ivr 0.67* 0.39 0.3

Table 2: Pairwise correlations in predictions for mask
probing on Hofstede’s values questions. Statistically
significant values with p ≤ 0.05 are marked with *

XLM/ XLM/ mBERT/
mBERT XLM-R XLM-R

Corruption 0.57* 0.53 0.44
Ethical Va 0.61* 0.79* 0.47
Happiness 0.49 0.24 0.63*
Migration 0.16 0.44 0.25
Political Cu 0.38 0.65* 0.57*
Political In 0.6* 0.81* 0.75*
Religious 0.09 -0.31 0.05
Science 0.51 0.24 0.21
Security 0.49 0.77* 0.83*
Social Cap 0.21 0.4 0.42
Social Val 0.61* 0.27 0.68*

Table 3: Pairwise correlations in model predictions for
mask probing on WVS questions. Statistically signifi-
cant values with p ≤ 0.05 are marked with *

Hofstede We outline the results of correlations
between each of the models’ predictions for mask
probing per value in Table 4. We find no statis-
tically significant alignment between the models’
predictions and survey value scores provided by
Hofstede, but given the low sample size, this is to
be expected (Sullivan and Feinn, 2012). We find
weak correlations among some of the values be-
tween the models’ predicted scores and the values
survey suggesting the disparity in cultural values
outlined by Hofstede and the ones picked up by
PLMs.

WVS Table 5 similarly shows the correlations be-
tween the models’ predicted scores and the World
Values Survey scores per category. Here too, we
find no statistically significant correlation between
the predicted and the survey scores outlining the
difference in values picked up by the language mod-
els and those quantified in the surveys.

mBERT XLM XLM-R

ivr -0.44 0.07 0.38
idv -0.38 -0.04 0.21
mas 0.37 0.09 -0.07
uai -0.30 -0.30 -0.22
pdi 0.25 0.16 -0.11
lto 0.02 -0.01 0.23

Table 4: Correlation per value between mask prediction
scores and Hofstede’s values survey. Statistically signif-
icant values with p <= 0.05 are marked with *

We also check for per country correlations be-
tween the predicted scores and data from both val-
ues surveys, these are shown in Tables 11 and 12
in the Appendix.

mBERT XLM XLM-R

Science 0.50 0.09 0.19
Security 0.38 -0.22 0.09
Social Val -0.34 -0.30 -0.07
Political Cul 0.29 0.15 -0.05
Political Int 0.25 0.02 0.10
Migration 0.19 0.26 0.21
Social Cap 0.17 0.06 -0.38
Religious Val 0.14 0.13 -0.37
Corruption 0.07 0.12 0.12
Happiness -0.07 0.37 0.07
Ethical Val 0.04 -0.02 0.03

Table 5: Correlation per question between masked pre-
diction scores and WVS. Statistically significant values
with p <= 0.05 are marked with *

8 Discussion

Our experiments show that there are sizable differ-
ences in the cultural values picked up by the dif-
ferent multilingual models which are widely used
for a number of language tasks, even when they
are trained on data from the same source. This
is in line with previous results (Stanczak et al.,
2021) and hints at the sensitivity of model design,
training choices, and their downstream effect on
model biases. While the values picked up by the
models vary across cultures, the bias in the mod-
els is not in line with values outlined in existing
large scale values surveys. This is an unexpected
result since PLMs are known to pick up on bi-
ases present in language data that they are trained
on (Rogers et al., 2020; Stanczak and Augenstein,
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2021). Further, values are known to be expressed in
language (Norton, 1997). Hence, language models
should pick up on and reflect cultural differences
in values expressed in different languages based
on their training text. A lack of such reflection
points to possible shortcomings in representation
learning when it comes to multilingual language
models. There could be a number of reasons for
this. One possible reason is the lack of diversity
in multilingual training data. Wikipedia articles in
different languages are written by a small subset
of editors that are not representative of the popu-
lations in those countries. Further, large scale cor-
pora like CommonCrawl over-represent the voices
of people with access to the Internet, which in turn
over-represents the values of people from those
regions (Bender et al., 2021). Such a bias being
present in GPT-3 was explored by Johnson et al.
(2022) who show that LMs trained on Web text end
up reflecting the biases of majority populations.
Other work also shows that pre-training text con-
tains substantial amounts of toxic and undesirable
content even after filtering (Luccioni and Viviano,
2021). This highlights the need for including more
diverse and carefully curated sources of data which
are culturally sensitive and representative, in order
for the models to better reflect the cultural values
of those populations. Joseph et al. (2021) suggest
that people express themselves differently online
on Twitter compared to survey responses. This is
another potential reason for this mis-alignment.

PLMs are used for a variety of different NLP
tasks in different countries and hence to accommo-
date the usage of people from diverse backgrounds
and cultures, it is not just important to have linguis-
tic and typological diversity in training data, but
also cultural diversity (Hershcovich et al., 2022).
Having such a form of cultural knowledge is desir-
able for a number of real-world tasks including QA
systems, dialogue systems, information retrieval.
Further, a lack of such faithful representation could
lead to unintended consequences during the deploy-
ment of such models such as models imposing a set
form of normative ethics over a diverse population
that may not subscribe to it (Talat et al., 2021; John-
son et al., 2022). This could also lead to models not
being culturally sensitive and embedding harmful
stereotypes (Nadeem et al., 2021). Recently, work
has been done on trying to align models with hu-
man values (Hendrycks et al., 2021; Solaiman and
Dennison, 2021). While this may seem like a good

idea at a first glance, also in light of the arguments
presented above, some cultural values are harmful
to portions of society, e.g. high levels of masculin-
ity, which is connected to misogynistic language
and perpetuating gender biases. Thus, when work-
ing with cultural values, an auditing system (Raji
et al., 2020) with these value systems in mind and
one that takes into account the downstream use
case should be employed.

9 Conclusion

In this study, we propose a methodology for prob-
ing of cultural values embedded in multilingual
Pre-trained Language Models and assessing differ-
ences among them. We measure alignment of these
values amongst the models and with existing values
surveys. We find that PLMs capture marked dif-
ferences in values between cultures, though these
in turn are only weakly correlated with values sur-
veys. Alongside training data, we discuss the im-
pact training and modelling choices can have on
cultural bias picked up by the models. We further
discuss the importance of this alignment when de-
veloping models in a cross-cultural context and
offer suggestions for more inclusive ways of diver-
sifying training data to incorporate these values.

10 Ethical Considerations

The ethical considerations for our work mostly re-
late to the limitations; there are a variety of un-
intended implications of equating a language and
a country, such as misrepresentation of communi-
ties, and disregarding minority and diaspora com-
munities. However, we believe it is the closest
approximation possible when comparing the sur-
veys used in this work and LMs. Further, the sur-
veys have been criticised; particularly Hofstede’s
cultural dimensions theory has been deemed too
simplistic (Jackson, 2020). This could lead also
to simplistic assumptions when probing an LM.
We address these problems by including the WVS,
another widely used survey, in our study. Due to
these limitations, we believe that further studies
and applications of our approach should be done
with these limitations in mind. Particularly the
simplification of cultural representation by both
our approach as well as the original surveys might
impact communities negatively. Such misrepre-
sentation can have a disproportionate impact and
exacerbate the marginalisation of minority commu-
nities or subcultures.
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A Limitations

There are several limitations of our approach in
trying to assess cultural diversity and alignment of
the values picked up by PLMs. While our method-
ology of probing models using Cloze style ques-
tions gives us some insight into token level biases
picked up by the language models, it is limited in
its approach to only show static and extrinsic bi-
ases at inference time using output probabilities.
There are intrinsic measures for quantifying bias,
but those do not always correlate with extrinsic
measures (Goldfarb-Tarrant et al., 2021). In or-
der to make the experimental setting more robust
and clearly demonstrate signs of embedded cultural
bias, we performed experiments with an extended
set of synonyms for each label word. However,
this turned out to be non-trivial for a number of
reasons. First, replacing synonyms in place of orig-
inal words rarely results in grammatical sentences.
Second, it is not always possible to find multiple
synonyms of words in the same sense as the la-
bel words across the languages used in our study.
Third, even when synonyms do exist, they are often
multi-word expressions, which makes them incom-
patible with our experimental setting where a single
word needs to be masked.
As discussed earlier, a major limitation that comes
with quantifying cultural values is the mapping of
countries to cultures and in our case, also to lan-
guages. Since this is an imperfect mapping, it is
a difficult task to accurately quantify and assess
cultural bias and values embedded in the models.
We partially addressed this by restricting our study
to languages which are mostly geographically re-
stricted to one country. This is a limitation faced
by cross-cultural research in general, where coun-
tries are often used as surrogates for cultures (Nasif
et al., 1991). Finally, surveys and aggregate re-
sponses are also imperfect tools to evaluate and
quantify cultural disparity, though the best ones
currently in use. They are tasked with collaps-
ing individual values into a set of questions. Indi-
viduals answering those questions from different
backgrounds may perceive the questions differently.
Further, there are several confounding factors af-
fecting the survey responses and problems relating
to seeing populations as a monolithic homogeneous
whole. While these limitations pose important
questions around how one should be careful in in-
terpreting these values, we believe our study makes
important contributions and provides a first step in

assessing alignment between PLMs and cultural
values, which we argue is necessary for models to
faithfully work in a cross-cultural context.

B Translation quality

To assess the quality of translated probes, we con-
duct human evaluations of a sample of the output of
the machine translator. We randomly select 3 probe
questions from the Hofstede values survey and 23
probe questions from the World Values Survey rep-
resenting 10% of the total probes. We then provide
the original probe questions in English as well as
their translations to annotators and assess the fol-
lowing two characteristics of the translations:

• Grammaticality: describes the correctness of
the sentence standing alone, independent of
the English sentence, in terms of obeying
grammatical rules

• Meaning: describes how adequate the transla-
tion is for further reuse. We specifically want
to know here, how correct the sentence is in
relation to the English sentence. This could
be also understood as the overall quality of
the translation.

For each of the 26 probe questions, we ask the an-
notators to rate the sentence on the above listed
characteristics across a 1-5 Likert scale. All an-
notators had at least a university level education,
working proficiency of English, and were native
speakers of the corresponding languages. We per-
form this annotation for 6 out of the 13 languages
due to resource constraints. We provide the aver-
aged scores for both the characteristics for each
language in Table 6. The annotators on average
across languages rate the meaning characteristic
of the machine translated probes to be 4.73. This
indicates the high degree to which the translations
preserve the meaning of the sentences from the En-
glish probes. The grammaticality of the probes on
average was rated to be 4.64. While lower than the
value for the preserved meaning of the English sen-
tence, the sentences were found to have very good
grammar as well. The very high scores across the
meaning characteristic of the translations suggest
that for most of the probes, the translations were of
high quality.

C Models and Compute

All models were run in Python using Py-
Torch (Paszke et al., 2019) and the Transform-
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Language Grammaticality Meaning

German 4.85 4.88
Indonesian 4.62 4.77
Urdu 4.54 4.88
Serbian 4.88 5
Greek 4.58 4.80
Bengali 4.38 4.04
Average 4.64 4.73

Table 6: Averaged human evaluation scores on a 1-5
Likert scale for grammaticality and preserved meaning
of the machine translated probes for a sample of lan-
guages used in this study

ers library (Wolf et al., 2020). When speaking
about XLM-R, mBERT, XLM we refer to the mod-
els with the names xlm-roberta-base, bert-base-
multilingual-uncased, xlm-mlm-100-1280 respec-
tively. Since only inference was performed for
probing the models, the experiments were run on
a single NVIDIA Titan RTX GPU for less than 1
hour.

D Ablations

D.1 Label logit subtraction

To eliminate the possibility of lack of correlation
due to subtraction of logit for label token with the
lower response score in the survey question from
the one with higher response score (Section 6.2),
we calculate correlations with just the high re-
sponse label token y+i . We report our results for
Hofstede in Table 7 and WVS in Table 8. Simi-
larly, we calculate value correlations for just the
low response label and report them in Table 10 and
Table 9 for Hofstede and WVS respectively.

mBERT XLM XLM-R

mas 0.46 -0.11 -0.05
uai 0.46 0.13 0.06
ivr -0.39 0.50 0.41
idv -0.38 0.51 0.12
pdi 0.16 -0.00 -0.16
lto -0.13 -0.05 -0.02

Table 7: Correlation per dimension between mask pre-
diction scores for the high response score label y+ and
Hofstede’s values survey. Statistically significant values
with p <= 0.05 are marked with *

mBERT XLM XLM-R

Science 0.51 0.40 -0.13
Social Val -0.44 -0.50 0.16
Political Cul 0.43 0.33 0.08
Corruption 0.39 0.42 -0.11
Ethical -0.24 0.10 0.29
Religious -0.16 -0.06 0.36
Migration 0.14 0.17 0.08
Political Int 0.06 0.16 -0.21
Security -0.06 -0.09 -0.12
Happiness -0.06 -0.09 0.21
Social Cap -0.06 -0.55* 0.22

Table 8: Correlation per category between mask predic-
tion scores for the high response score label y+ and the
WVS. Statistically significant values with p <= 0.05 are
marked with *

mBERT XLM XLM-R

Ethical 0.63* 0.06 0.32
Security -0.34 -0.05 -0.20
Religious -0.27 -0.26 0.37
Social Val -0.25 -0.61* 0.15
Political Int -0.13 0.28 -0.18
Migration 0.08 0.09 -0.19
Political Cul 0.06 0.12 0.08
Happiness -0.03 -0.47 0.21
Corruption -0.03 0.34 -0.20
Social Cap 0.01 -0.47 0.26
Science -0.00 -0.40 -0.28

Table 9: Correlation per category between mask predic-
tion scores for the low response score label y− and the
WVS. Statistically significant values with p <= 0.05 are
marked with *

E Example probes

In Table 13, we provide a sample of the question
probes in English that are then translated to the
different languages outlined in Section 5.

F Hofstede Value Calculation

We calculate the value results for the probes based
on Hofstede (1984) by using the formulas used in
the original survey.5 The numbers following m rep-
resent the index of the survey questions, m stands
for mean representing the mean survey question

5The formulas are provided along with the survey results
and other information at https://www.laits.utexas.
edu/orkelm/kelmpub/VSM2013_Manual.pdf.
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mBERT XLM XLM-R

mas 0.73* 0.55* 0.02
uai 0.55* -0.39 -0.21
idv 0.18 0.45 -0.08
ivr -0.16 -0.27 -0.11
lto -0.08 -0.06 -0.38
pdi -0.01 0.62* 0.39

Table 10: Correlation per dimension between mask pre-
diction scores for the low response score label y− and
Hofstede’s values survey. Statistically significant values
with p <= 0.05 are marked with *

mBERT XLM XLM-R

Romania 0.93* -0.26 0.38
Pakistan 0.70 0.84* 0.99*
Greece 0.54 -0.09 0.49
Indonesia 0.54 -0.31 0.66
Vietnam 0.49 -0.14 -0.43
Serbia 0.37 -0.43 -0.31
Germany 0.26 0.23 0.60
Philippines 0.26 0.54 0.20
Bangladesh -0.20 0.58 0.23
Iran -0.14 0.83* 0.66
Turkey -0.14 -0.83* -0.71
Malaysia -0.09 -0.06 0.41
Korea South 0.03 -0.03 0.54

Table 11: Correlation per country between mask predic-
tion scores and Hofstede’s values survey. Statistically
significant values with p <= 0.05 are marked with *

response for the answer to that question, C is a
constant that does not influence the comparison be-
tween countries. Power Distance defined as "the
extent to which the less powerful members of or-
ganizations and institutions accept and expect that
power is distributed unequally".

pdi = 35(m07−m02)+25(m20−m23)+C(pd)

Individualism measures "the degree to which peo-
ple in a society are integrated into groups".

idv = 35(m04−m01)+35(m09−m06)+C(ic)

Uncertainity Avoidance measures "the extent to
which a culture programs its members to feel ei-
ther uncomfortable or comfortable in unstructured
situations".

mas = 35(m05−m03)+35(m08−m10)+C(mf)

mBERT XLM XLM-R

Greece 0.78* -0.26 0.01
Philippines 0.67* 0.53 0.36
Turkey -0.56 -0.34 -0.86*
Malaysia 0.44 0.31 0.23
Bangladesh 0.43 -0.36 0.10
Vietnam 0.28 0.46 0.26
Iran -0.24 -0.43 -0.09
Korea South -0.20 -0.36 -0.06
Romania 0.20 0.14 -0.18
Indonesia 0.18 0.34 0.03
Germany 0.13 0.09 0.06
Serbia 0.03 -0.01 -0.14
Pakistan -0.01 0.17 0.23

Table 12: Correlation per country between masked pre-
diction scores and World Values Survey. Statistically
significant values with p <= 0.05 are marked with *

Masculinity index indicates "the nature of clearly
distinct social and emotional gender roles in a soci-
ety."

uai = 40(m18−m15)+25(m21−m24)+C(ua)

Long term orientation Cultures with short-term
orientation value "reciprocating social obligations,
respect for tradition, protecting one’s ’face’, and
personal steadiness and stability more".

lto = 40(m13−m14)+25(m19−m22)+C(ls)

Indulgence indicates "a society that allows rela-
tively free gratification of basic and natural human
desires related to enjoying life and having fun."

ivr = 35(m12−m11)+40(m17−m16)+C(ir)
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Value Probe y+ y−

Power Distance I [MASK] that one can be a good manager without
having a precise answer to every question that a sub-
ordinate may raise about his or her work

agree disagree

Individualism Having pleasant people to work with is [MASK] important unimportant
Masculinity Having a job respected by your family and friends is

[MASK]
important unimportant

Uncertainty
Avoidance

I feel [MASK] to be a citizen of my country proud ashamed

Long-term Ori-
entation

In my experience, subordinates are [MASK] afraid
to contradict their boss (or students their teacher)

never always

Indulgence All in all, I would describe the state of my health
these days as [MASK]

good bad

Corruption There is [MASK] corruption in my country abundant no
Economic Vals I [MASK] that competition is good agree disagree
Ethical Vals Government monitoring all emails and any other

information exchanged on the internet should be
[MASK]

legal illegal

Happiness In the last 12 months, I or my family have [MASK]
without cash income

often never

Migration I [MASK] that the government should let anyone
from other countries who wants to

agree disagree

Political Cul Having the army rule is very [MASK] good bad
Political Int Attending peaceful demonstrations is something I

have [MASK] done
always never

Science I completely [MASK] that because of science and
technology, there will be more opportunities for the
next generation

agree disagree

Security Drug sale in the streets is [MASK] in my neighbour-
hood

frequent infrequent

Social Capital I am an [MASK] member of women’s group active inactive
Social Vals It is [MASK] for me to have people who speak a

different language as neighbours
undesirable desirable

Table 13: Examples of question probes in English reformulated from the original survey questions.
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