@inproceedings{esackimuthu-balasundaram-2023-verbavisor,
title = "{V}erba{V}isor@Multimodal Hate Speech Event Detection 2023: Hate Speech Detection using Transformer Model",
author = "Esackimuthu, Sarika and
Balasundaram, Prabavathy",
editor = {H{\"u}rriyeto{\u{g}}lu, Ali and
Tanev, Hristo and
Zavarella, Vanni and
Yeniterzi, Reyyan and
Y{\"o}r{\"u}k, Erdem and
Slavcheva, Milena},
booktitle = "Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.case-1.11",
pages = "79--83",
abstract = "Hate speech detection has emerged as a critical research area in recent years due to the rise of online social platforms and the proliferation of harmful content targeting individuals or specific groups.This task highlights the importance of detecting hate speech in text-embedded images.By leveraging deep learning models,this research aims to uncover the connection between hate speech and the entities it targets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="esackimuthu-balasundaram-2023-verbavisor">
<titleInfo>
<title>VerbaVisor@Multimodal Hate Speech Event Detection 2023: Hate Speech Detection using Transformer Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarika</namePart>
<namePart type="family">Esackimuthu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prabavathy</namePart>
<namePart type="family">Balasundaram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vanni</namePart>
<namePart type="family">Zavarella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reyyan</namePart>
<namePart type="family">Yeniterzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erdem</namePart>
<namePart type="family">Yörük</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milena</namePart>
<namePart type="family">Slavcheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hate speech detection has emerged as a critical research area in recent years due to the rise of online social platforms and the proliferation of harmful content targeting individuals or specific groups.This task highlights the importance of detecting hate speech in text-embedded images.By leveraging deep learning models,this research aims to uncover the connection between hate speech and the entities it targets.</abstract>
<identifier type="citekey">esackimuthu-balasundaram-2023-verbavisor</identifier>
<location>
<url>https://aclanthology.org/2023.case-1.11</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>79</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VerbaVisor@Multimodal Hate Speech Event Detection 2023: Hate Speech Detection using Transformer Model
%A Esackimuthu, Sarika
%A Balasundaram, Prabavathy
%Y Hürriyetoğlu, Ali
%Y Tanev, Hristo
%Y Zavarella, Vanni
%Y Yeniterzi, Reyyan
%Y Yörük, Erdem
%Y Slavcheva, Milena
%S Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F esackimuthu-balasundaram-2023-verbavisor
%X Hate speech detection has emerged as a critical research area in recent years due to the rise of online social platforms and the proliferation of harmful content targeting individuals or specific groups.This task highlights the importance of detecting hate speech in text-embedded images.By leveraging deep learning models,this research aims to uncover the connection between hate speech and the entities it targets.
%U https://aclanthology.org/2023.case-1.11
%P 79-83
Markdown (Informal)
[VerbaVisor@Multimodal Hate Speech Event Detection 2023: Hate Speech Detection using Transformer Model](https://aclanthology.org/2023.case-1.11) (Esackimuthu & Balasundaram, CASE-WS 2023)
ACL