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Abstract

Event extraction from textual data is an NLP
research task relevant to a plethora of domains.
Most approaches aim to recognize events from
a predefined event schema, consisting of event
types and their corresponding arguments. For
domains such as disinformation, where new
topics frequently emerge, there is a need to
adapt such a fixed schema of events to accom-
modate new types of events. We present NEXT
(New Event eXTraction) - a resource-sparse
approach to extend a close-domain model to
novel event types, that requires a very small
number of annotated samples for fine-tuning
performed on a single GPU. Furthermore, our
results suggest that this approach is suitable not
only for the extraction of new event types but
also for the recognition of existing event types,
as the use of this approach on a new dataset
leads to improved recall for all existing events
while retaining precision.

1 Introduction

Event extraction from text is a research task with
applications in a wide range of domains (Liu et al.,
2021), including finance (Sheng et al., 2021a),
social (Ritter et al., 2012; Kunneman and Van
Den Bosch, 2016), biomedical (Wei et al., 2020)
and security (Tanev et al., 2008).

The goal of the event extraction task is to deter-
mine the event type, extract the trigger - the most
relevant word to the event, as well as any event
arguments - other words and phrases relevant to the
event (Liu et al., 2021). This is often approached
as a closed-domain problem where the model aims
to detect events from a predefined event schema
consisting of a fixed set of event types and their cor-
responding argument types (Sheng et al., 2021b).
In contrast, when the set of event types is not fixed
or is not completely known at the onset, an open-
domain approach is more suitable (Liu et al., 2019).

We explore the task of event extraction within
the field of fake news and disinformation as a

closed-domain problem. Nonetheless, the highly
dynamic nature of the field implies that a methodol-
ogy for easy extension of an existing closed domain
event extraction approach to new event types is nec-
essary. Ideally, such methodology would perform
well with a small number of annotated samples, as
producing a large annotated dataset for each newly
emerging event type would be a very long and ex-
pensive process.

In this paper, we present a work-in-progress
methodology which satisfies the requirements men-
tioned above. We select an existing model and ex-
tend it for a novel event type identified in fake news
debunks with minimal resources when it comes to
annotated data. We present how we define and an-
notate a new event, followed by how we fine-tune
an existing model. Next, we provide a detailed anal-
ysis of how well the model learns the new event
type, as well as how well it retains the ability to
predict the event types for which it was previously
trained.

2 Related Work

Event extraction is a widely studied topic and many
different approaches towards it exist. Li et al.
(2022) identify two main paradigms to solving
the event extraction task - the pipeline paradigm,
where event type, trigger and argument classifica-
tion are done in sequence (Zhao et al., 2018; Chen
et al., 2015; Li et al., 2020), and the joint paradigm,
where event and arguments are classified simulta-
neously (Sheng et al., 2021b; Wadden et al., 2019;
Yang et al., 2019). The latter paradigm prevents
error propagation from one classification sub-task
to the next. Other notable approaches to event
extraction are as a classification task (Zhao et al.,
2018; Chen et al., 2015), question answering task
(or machine reading comprehension task) (Li et al.,
2020; Zhou et al., 2021; Lu et al., 2023), sequence
labelling task (Sheng et al., 2021b; Wadden et al.,
2019) or sequence-to-structure generation task (Lu
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et al., 2021). Another interesting approach to the
event detection task is the presented in Peng et al.
(2023) reinforcement learning one.

Lu et al. (2021) point out that most event ex-
traction methods, among them pipeline and joint
paradigm approaches, apply a decomposition strat-
egy where event extraction sub-tasks are solved
independently and their results are then combined
to predict the whole event entity. This strategy
has some drawbacks, such as the need for annota-
tions for different sub-tasks and the difficulty of
composing an optimal architecture for different
sub-tasks. Lu et al. (2021) addresses both of these
by modelling all sub-tasks in a uniform sequence-
to-structure generative model called Text2Event,
which extracts events from a text in an end-to-end
manner. Another advantage of the model is being
able to easily transfer to new event types.

In our study we aim to find a transferable low-
resource solution to event extraction, such that it
adapts well to new corpora and new event types
with small amounts of annotated data and can be
run on a single GPU. While there are other ap-
proaches to event extraction with little annotated
data such as semi-supervised (Zhou et al., 2021;
Huang and Ji, 2020), few-shot (Lai et al., 2020;
Deng et al., 2020) and zero-shot (Huang et al.,
2018; Lyu et al., 2021; Yue et al., 2023) learning,
we chose the Text2Event model for its reported
high performance in both supervised and transfer
learning settings. For these purposes we extend the
Text2Event model (Lu et al., 2021) with a novel
event type by fine-tuning it on a small annotated
sample set and then evaluate how well the model
retains its performance on its original event types
on a novel dataset of fake news debunks.

3 Data

3.1 Exploratory data analysis

For the purposes of the present research we work
with a database of fake news debunks. We have
extracted a total of 78,246 short documents in dif-
ferent languages, where each document is a fact-
checked claim. Most claims are one to two sen-
tences in length but can go up to a few paragraphs.
We used SpaCy1 to filter claims in other languages,
resulting in 42,555 claims in English. Addition-
ally, we split these claims into 54,280 individual

1https://spacy.io/

Table 1: Results from running the Text2Event
dyiepp_ace2005_en_t_large pre-trained model on our
datasets of whole claims and individual sentences

Whole claims Sentences
No event 32,967 43,259
At least one event 9,588 11,021
Single event 6,509 8,602

Multiple events 3,079 2,419

All documents 42,555 54,280

sentences, using a sentence tokenizer from NLTK2.
As a first step, we want to know what event types

from widely used taxonomies can be recognized in
this data, as it has no labels regarding events. To
achieve this we ran the dyiepp_ace2005_en_t_large
version of Text2Event3 (which comes pre-trained
on the ACE 2005 dataset4) on our dataset of claims
and also on the dataset of individual sentences from
claims. We aim to find out what events from the
ACE 2005 taxonomy are present and in how many
documents5. The number of documents with rec-
ognized events is presented in Table 1. In both
settings in only around one-fifth of the documents,
there is at least one recognized event.

Figure 1 shows the numbers of documents con-
taining predictions for the top 10 most recognized
event types, using whole claims and sentences as
input respectively.

Figure 1: Number of documents containing predictions
for the top 10 most recognized event types

2https://www.nltk.org/api/nltk.
tokenize.html

3https://github.com/luyaojie/
Text2Event

4https://catalog.ldc.upenn.edu/
LDC2006T06

5When we write a document, we refer to an entity in the
dataset, i.e. either a whole claim or a sentence, depending on
the dataset.

https://spacy.io/
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://github.com/luyaojie/Text2Event
https://github.com/luyaojie/Text2Event
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
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3.2 New event type definition and annotated
dataset creation

As the domain of our dataset is fake news and dis-
information we define a new "Cure-Claim" event
type which is of relevance to this particular area. A
Cure-Claim event can be described as the act of stat-
ing whether something is a cure for a given medical
condition or disease. We extracted 637 Cure-Claim
candidate samples by selecting claims containing
likely triggers (e.g. "cure", "treat", "heal"). Next,
we defined the following seven arguments of the
Cure-Claim event (step "Define new event annota-
tion rules" on Figure 2):

• Source makes the claim;

• Cure is the remedy;

• Condition is what is treated by the cure;

• Patient is helped by the cure;

• CureCreator created the cure;

• CureAdministrator applies the cure.

An example of a document, mentioning the
Cure-Claim event, is the following:

"Multiple posts shared repeatedly on Face-
book claim that drinking tea made with pep-
per stems is effective in preventing or curing
Covid-19. The claim is false; the Association
of Korean Medicine said there is no scientific
evidence to support the claim."

Here, the first sentence is the event extent. Cur-
ing is the event trigger, and "Multiple posts shared
repeatedly on Facebook", "drinking tea made with
pepper stems" and "Covid-19" are event arguments,
respectively Source, Cure and Condition.

Due to the limited resources for annotation that
we had, we selected 65 of these claims (around
10%) for manual annotation. Based on the official
ACE event guidelines6, we developed extensive an-
notator guidelines specifically for annotating Cure-
Claim events. Following this, each document was
annotated by three independent annotators, where
the agreement between the majority was taken as
final annotations. The resulting dataset contains
65 documents, of which 54 (83%) contain a Cure-
Claim event. After performing sentence segmen-
tation we obtain 74 sentences, of which again 54
(73%) contain a Cure-Claim event.

6https://shorturl.at/DEFV4

ACE 2005 CCD
Documents 599 65
Sentences 16,372 74
Triggers 5,272 54
Arguments 9,612 147
Avg. no. triggers per event type 159.75 54
Med. no. triggers per event type <100 54
Avg. no. sentences per document 27.33 1.14

Table 2: Comparison between ACE 2005 and novel
Cure-Claim event dataset (CCD)

Comparison of statistics for the ACE 2005
dataset (as reported in Yang and Mitchell (2016))
and our annotated dataset for the Cure-Claim event
are presented in Table 2.

3.3 Finding k for k-shot learning

We are interested in whether fewer than 74 anno-
tated sentences would be sufficient to fine-tune the
model for a new event type. To explore this, we
use four different data splits of the type X/Y, where
X is the percentage of training documents and Y is
the percentage of test documents out of our anno-
tated dataset. The data splits in question are 20/80,
40/60, 60/40 and 80/20.

4 Model

4.1 Text2Event overview

Text2Event (Lu et al., 2021) is a sequence-to-
structure generative model that uses a transformer-
based encoder-decoder architecture (Vaswani et al.,
2017) to generate whole event structures from text
in an end-to-end manner. The model is trained
on the ACE 2005 and ERE datasets for English
documents.

Text2Event is shown to perform well in transfer
learning. The authors demonstrate fine-tuning on
new event types on a separate subset of the same
corpus. In contrast, we take the model pre-trained
for the existing 33 event types on the whole ACE
2005 English dataset and fine-tune it for a new
event type on a new corpus with different statistics
from ACE 2005 (such as document length).

Text2Event can be trained or fine-tuned using
substructure learning - the model learns separate
substructures such as “(type, trigger words)” and
“(role, argument words)”, full structure learning
- the whole event structure is learned at once, or
curriculum learning, which combines the two.

https://shorturl.at/DEFV4
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4.2 Fine-tuning approach
We fine-tune the dyiepp_ace2005_en_t_large
model which is pre-trained on the whole ACE 2005
English dataset on one NVIDIA RTX A5000 GPU.

We forgo substructure learning and use full struc-
ture learning only to fine-tune the model on the new
event type. We use a learning rate of 1e-4 and a
batch size of 16.

Given the small number of annotated training
samples we use 5-fold cross-validation and com-
pare the mean results of the models fine-tuned for
different numbers of epochs (30, 100, 300 and
500) and on different train/test dataset splits (20/80,
40/60, 60/40 and 80/20).

Figure 2 illustrates our approach to annotated
dataset creation and to using this dataset for fine-
tuning the model.

5 Evaluation

5.1 Cross-validation experiments
We compare the performance of the fine-tuned mod-
els using precision, recall and F1-score on three
subtasks: event type classification, trigger classifi-
cation and argument classification. Definitions of
true/false positives/negatives for trigger and argu-
ment classification are provided in the Appendix.

Table 3 contains the mean results from our cross-
validation experiments. We first fine-tuned a model
for 30 epochs which scored 0 on all metrics across
all data splits. We then increased the number of
fine-tuning epochs to 100 and more.

We first observe that when fine-tuned for larger
number of epochs both event and trigger classifi-
cation require as little as 12 samples to achieve
the same level of precision as with four times as
many samples. Recall, however, is poorer with
fewer samples and improves significantly as the
train set size increases. With 60 annotated sam-
ples the model learns to retrieve over 90% of the
annotated Cure-Claim events.

Next, we examine the results for argument clas-
sification. We report separately scores for the cases
when Cure-Claim events are predicted with the
correct trigger (Correct-Trig-Arg-C columns) and
when Cure-Claim events are predicted but with a
wrong trigger (Wrong-Trig-Arg-C columns). Over-
all, both precision and recall tend to improve as the
train set size increases, although drops in perfor-
mance for the larger train set sizes are observed.

Compared to event type and trigger classification
argument classification requires larger number of

annotated training to achieve high precision, recall
and F1 scores.

Standard deviations of the reported scores for
Event-C, Trig-C and Correct-Trig-Arg-C range
from 0.006 to 0.15 with only one outlier of 0.48.
For Wrong-Trig-Arg-C the standard deviations
range from 0.06 to 0.48, which could be due to
this group being fairly smaller than the rest.

In addition to these results, in Figures 3 and 4 we
also compare the number of additional argument
classification mistakes from either false negative
or false positive trigger classification cases. In the
former case an event is annotated but not predicted,
so all annotated arguments are counted as false
negatives (Figure 3). In the latter case no event
is annotated but one is predicted, so all predicted
arguments are counted as false positives (Figure
4). We observe that as the train set size increases
and the event classification precision and recall
improve, the number of false positive or negative
event predictions drops and so do consequently the
corresponding false positive or negative argument
predictions.

For all event classification subtasks the perfor-
mance of the fine-tuned models increases with in-
crease of the epoch count - the best results are
generally reported for models fine-tuned for 500
epochs. Also, in most cases a bigger train set leads
to better results. The biggest improvement in per-
formance with increasing the training set size is
observed for the models fine-tuned for 100 epochs.
The models fine-tuned for 30 epochs output no sig-
nificant results. All other models perform similarly
when fine-tuned on the largest training set.

5.2 Cure-Claim prediction precision on
broader dataset

We next fine-tuned the baseline model on the whole
annotated dataset for the Cure-Claim event for 100
and 500 epochs. We evaluate the performance of
the models on 2 broader datasets - the full dataset
and a filtered subset with Cure-Claim candidate
documents (10 times larger than our annotated
dataset). For each dataset we manually evaluate
60 samples per model - half predicted only by that
model and half predicted by both models. Compar-
ing the two models by precision on those samples
and by number of predictions made allows us to
estimate whether performance worsens with more
epochs (step "Estimate overfitting on new event
type" in Figure 2).
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Figure 2: Steps towards building an annotated dataset and using it to fine-tune model on new event type

Model Event-C Trig-C Correct-Trig-Arg-C Wrong-Trig-Arg-C
split P R F1 P R F1 P R F1 P R F1

10
0

ep
oc

hs 20/80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40/60 0.60 0.02 0.04 0.60 0.02 0.04 0.30 0.60 0.40 0.00 0.00 0.00
60/40 0.83 0.84 0.82 0.76 0.83 0.78 0.54 0.75 0.63 0.75 0.83 0.79
80/20 0.84 0.83 0.83 0.78 0.82 0.80 0.52 0.72 0.59 0.67 0.70 0.68

30
0

ep
oc

hs 20/80 0.87 0.65 0.73 0.75 0.62 0.66 0.38 0.50 0.43 0.24 0.44 0.31
40/60 0.80 0.78 0.79 0.71 0.76 0.73 0.60 0.74 0.64 0.43 0.76 0.55
60/40 0.86 0.75 0.80 0.80 0.74 0.76 0.53 0.70 0.60 0.83 0.88 0.85
80/20 0.84 0.83 0.84 0.80 0.82 0.81 0.53 0.73 0.61 0.60 0.60 0.60

50
0

ep
oc

hs 20/80 0.85 0.69 0.75 0.72 0.66 0.68 0.48 0.60 0.53 0.32 0.54 0.40
40/60 0.82 0.81 0.81 0.71 0.78 0.74 0.56 0.71 0.62 0.48 0.79 0.59
60/40 0.88 0.83 0.85 0.83 0.82 0.82 0.55 0.74 0.63 1.00 1.00 1.00
80/20 0.86 0.92 0.89 0.77 0.92 0.84 0.57 0.76 0.64 0.93 1.00 0.96

Table 3: Mean Precision (P), Recall (R) and F1-score for Cure-Claim event, trigger and argument classification
(Event-C, Trig-C, Arg-C) for various train/test splits and number of fine-tuning epochs. Results for model fine-tuned
for 30 epochs not shown as it scored 0 on all metrics across all train/test splits.

Figure 3: Number of false negative arguments for Cure-
Claim event type across dataset splits and fine-tuning
epochs

Figure 4: Number of false positive arguments for Cure-
Claim event type across dataset splits and fine-tuning
epochs
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Figure 5: Estimated precision of event type classifica-
tion on the filtered subset and the full dataset of fake
news debunks for input provided as sentences and as
claims.

Figure 5 shows the resulting estimates for preci-
sion of Cure-Claim event-type classification on the
filtered subset and the full dataset. Both NEXT100
and NEXT500 achieve over 0.9 precision for the
Cure-Claim event on the filtered subset samples,
both when the sample is a whole claim and an
individual sentence. These results surpass the mod-
els’ precision in the earlier cross-validation experi-
ments (Table 3) for all train/test splits on a larger
evaluation set (60 samples per model).

On the other hand, precision drops significantly
for both models on the samples from the whole
dataset. For these more diverse samples we see that
both fine-tuned models perform better when the
input is provided as individual sentences. However,
we also note that NEXT100 is more precise.

Figure 6 shows the fraction of predicted Cure-
Claim events made by each fine-tuned model. We
see that almost all predictions made on the filtered
subset are made by both fine-tuned models. On
the broader dataset, however, NEXT500 makes
about 50% more predictions for Cure-Claim events
than NEXT100. This, combined with the above-
mentioned drop in precision of NEXT500 shown
in Figure 5, suggests overfitting for NEXT500.

5.3 Overlap in original event types predictions
between baseline and fine-tuned models

An essential part of the model fine-tuning is to
assure that the model has not worsened its perfor-
mance on the event types it was previously trained
on. We don’t have access to the annotated dataset
with all event types that Text2Event was trained
on, so to examine whether the fine-tuned model
has retained the abilities of the original one, we
compared their performance on the whole dataset
of fake news debunks consisting of 42,555 claims

Figure 6: Fraction of predicted Cure-Claim events by
each model on the filtered subset and the full dataset of
fake news debunks for input provided as sentences and
as claims.

and 54,280 sentences respectively. We compare
the number of predictions per event type from the
baseline model and the fine-tuned models, as well
as the overlap of predicted events between any two
or all three models.

Figure 7 shows that for the top 10 most common
events the fine-tuned models predict many more
event occurrences compared to the baseline model.

Figure 7: Number of documents containing predictions
by baseline model, NEXT100 and NEXT500 (using
sentence as input)

Figure 8 shows that for all event types almost all
predictions by the baseline model are also predicted
by the fine-tuned models, with NEXT100 having a
higher overlap compared to NEXT500.

Another way to explore these overlaps is shown
in Figure 9 where for each event type we can see
what fraction of all predictions were made by all
three models, by a particular pair of models, or
by an individual model. We can observe that over
half of all predictions either overlap between all
three models or between the two fine-tuned models.
Unlike the other two models, NEXT100 produces
a significant number of predictions not matched by
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Figure 8: Number of documents containing predictions
by baseline model and overlapped with NEXT100 and
NEXT500 (using sentences as input)

Figure 9: Overlap in event predictions between models
(using sentences as input). For each event type the bar
shows what fraction of predictions are made by all three
models, by two of the models, or by a single one.

any of the other models. It is also worth noting
that all predictions made by NEXT100, whether in
agreement with other models or not, account for
over 90% of all predictions.

Results of model evaluatuation on whole claims,
rather than individual sentences, are very similar
and figures and tables are included in the appendix.

5.4 Comparing precision of original event
types predictions between baseline and
fine-tuned models

For each event type we sample up to 20 predictions
for each overlap subset (individual models, pairs
of models, all models). For each prediction, we
manually evaluated whether the corresponding doc-
ument contains an event of such type, regardless
of whether the trigger prediction is also correct.
The resulting estimates for event type classification
precision are given in Table 4. The estimated preci-
sion scores for individual models are obtained by
combining the estimates over all relevant subsets
(e.g. for the baseline model we add the number of

correct predictions from only baseline, baseline &
NEXT100, baseline & NEXT500 and all models)
and are shown in Table 5.

5.5 Estimating recall of original event types
predictions for baseline and fine-tuned
models

We are unable to calculate recall and F1-score as
those would require knowing the total number of
positive samples for each event type for our fake
news debunk dataset.

However, the precision of sampled predictions
not made by the baseline model (i.e. made either
by a single or by both fine-tuned models only) is
on-par with the precision of sampled predictions
made by the baseline model (usually also predicted
by one or both of the fine-tuned models).

We can thus reason that the fine-tuned models
not only retain the baseline model’s recall but im-
prove on it 2- to 4-fold, since for all event types
the fine-tuned models generate two to four times as
many predictions, as already shown in Figure 8.

6 Discussion

Our proposed approach NEXT to extend an exist-
ing event schema with new event types has a few
advantages, but also limitations.

A notable advantage of this approach is that a
dozen annotated samples are sufficient for achiev-
ing high precision given a sufficient number of
fine-tuning epochs. Learning good recall, however,
is a more challenging task and requires a larger
number of samples - about 50.

Fine-tuning the model also does not require
significant computational resources. All reported
experiments were performed on a single CUDA-
enabled GPU. Each fine-tuning of an individual
model took a few minutes.

As expected, we observe that fine-tuning for
many epochs leads to overfitting on the new event
type. Namely, the precision of predictions for the
new event type decreases with a larger number of
epochs, while the number of predictions grows si-
multaneously. This problem can be mitigated by
pre-filtering the sentences or claims on which the
model is used, with a rule as simple as checking
whether they contain likely triggers for the event
type (e.g. "cure", "treat", "heal" for Cure-Claim
events), as seen in Figure 5. Another solution
would be to adopt a voting approach by consid-
ering only predictions made by both NEXT100 and
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Event type only base only 100 only 500 base & 100 base & 500 100 & 500 all models
Attack 0.65 0.70 0.60 0.70 0.90 0.80 0.95
Die 0.95 1.00 1.00 1.00 1.00 1.00 1.00
Elect 1.00 0.85 0.83 1.00 1.00 1.00 1.00
Demonstrate 1.00 0.90 0.87 0.95 1.00 0.95 1.00
Transport 0.95 1.00 0.95 0.90 1.00 1.00 1.00
Arrest-Jail 0.83 0.85 0.80 1.00 0.50 0.90 1.00
End-Position 1.00 0.90 0.85 1.00 1.00 1.00 0.95
Transfer-Money 0.80 0.85 0.80 0.77 1.00 1.00 1.00
Meet 1.00 1.00 1.00 1.00 0.00 1.00 1.00
Start-Position 1.00 0.90 1.00 1.00 1.00 0.95 1.00

Table 4: Event type classification precision on subsets of sampled predictions made by individual models (baseline,
NEXT100 or NEXT500) or by two or all models.

Event type Base NEXT100 NEXT500
Attack 0.91 0.84 0.87
Die 1.00 1.00 1.00
Elect 1.00 0.99 0.99
Demonstrate 1.00 0.98 0.98
Transport 0.99 0.99 1.00
Arrest-Jail 1.00 0.93 0.95
End-Position 0.95 0.95 0.97
Transfer-Money 0.99 0.97 0.98
Meet 1.00 1.00 1.00
Start-Position 1.00 0.95 0.97

Table 5: Event type classification precision on sam-
pled predictions for baseline, NEXT100 and NEXT500
models.

NEXT500 models (or majority rule if a third fine-
tuned model is used as well) as predictions shared
between models tend to be more accurate compared
to predictions made by individual models (Table
with comparison is available in the Appendix).

Despite the large number of fine-tuning epochs
for the new event type, this approach retains the
model’s capability of predicting existing event
types. We showed that the majority of such predic-
tions made by the baseline Text2Event model are
also made by the fine-tuned models. Furthermore,
the fine-tuned models generate two to four times
as many predictions as the baseline model. This
has only a minor effect on precision - a small drop
in performance compared to the baseline model
can be observed in Table 5. The largest drops in
precision are by 0.07 for NEXT100 (Attack and
Arrest-Jail) and 0.05 for NEXT500 (Arrest-Jail).

We attribute this rise in recall to the baseline
model not having been trained or fine-tuned on
samples from our claim debunks dataset. Though
this dataset consists of texts from the same do-

main as ACE2005 (news media / publishing), the
datasets differ on other parameters such as the av-
erage number of sentences per text. We observe
that a few annotated samples for fine-tuning on one
event type are sufficient to boost recall of all other
event types.

7 Conclusion and further work

In this work we presented an approach to extend
an existing event schema with new event types for
closed-domain event extraction. Our approach uses
a very small number of annotations containing full
event structures (event type, trigger and arguments
are all annotated).

The proposed approach also leads to improve-
ment in the recall of existing event types, on which
the model was pre-trained while retaining precision.
It can thus be used not only to fine-tune the event
extraction model for a new event type but to also
simultaneously fine-tune the model for the existing
event types on a new dataset without the need for
annotation for all event types.

An interesting direction for future research
would be evaluating whether this boost in perfor-
mance would also be observed when the task is
transferred to a dataset from a less related domain,
e.g. biomedical, manufacturing, energy, etc. Fur-
ther pre-training might also be of interest.

In terms of evaluation, it would be interesting
to explore how our proposed approach compares
to alternatives, such as open-domain approaches.
Also, more documents from the initial dataset could
be annotated for the original event types, in order
to obtain a clearer picture of the baseline’s model
performance on them.
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A Appendix

A.1 Keywords
For the building of the Cure-Claim event type
dataset, we have used the following keywords:

• cure, cures, cured, curing

• heal, heals, healed, healing

• treat, treats, treated, treating, treatment, treat-
ments

• remedy, remedies

• relieve, relieves, relieved, relieving

• boost, boosts, boosted, boosting

In addition to the listed above keywords, the
following ones were identified as triggers during
the annotation process: stop, kill, prevent, regular.

A.2 Trigger classification evaluation

We classify trigger prediction as follows:

• TP (true positive) - event is annotated and
prediction matches its type and trigger;

• TN (true negative) - no event is annotated and
no event is predicted;

• FP (false positive) - no event is annotated but
one is predicted OR event is annotated but
predicted trigger does not match;

• FN (false negative) - event is annotated but
none is predicted.

A.3 Argument classification evaluation

We consider the following four different scenarios:

1. An annotated event is predicted with the cor-
rect trigger.

2. An annotated event is predicted, but with a
wrong trigger.

3. There is an annotated Cure-Claim event, but
none is predicted. In this case we count the
event and all its annotated arguments as false
negatives.

4. There is no annotated Cure-Claim event, but
one is predicted. In this case we count the
event and all its predicted Cure-Claim argu-
ments as false positives.

For the first two scenarios we report mean preci-
sion, recall and F1-score. In both cases we classify
the argument prediction as follows:
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• TP (true positive) - the argument prediction
matches an annotated argument’s type and
span;

• FP (false positive) - the argument prediction
matches an annotated argument’s type but not
span OR the argument prediction does not
match any annotated argument’s type;

• FN (false negative) - there is no argument pre-
diction that matches an annotated argument’s
type and/or span.

We don’t report true negative predictions for argu-
ment classification.

When event is annotated, but not predicted, we
count all annotated arguments as false negative
predictions. When event is not annotated, but is
predicted, we count all predicted arguments as false
positive predictions.

A.4 Additional results of baseline and
fine-tuned models comparison

Figure 10: Number of documents containing predictions
by baseline model, NEXT100 and NEXT500 (using
claims as input)

Figure 11: Number of documents containing predictions
by baseline model and overlapped with NEXT100 and
NEXT500 (using claims as input)

Figure 12: Overlap in event predictions between models
(using whole claims as input). For each event type the
bar shows what fraction of predictions is made by all
three models, by two of the models, or by a single one.

Input NEXT100 only NEXT500 only both
full set as sentences 0.53 0.33 0.60
full set as claims 0.50 0.27 0.47
subset as sentences 0.83 0.87 0.93
subset as claims 0.88 0.83 1.00

Table 6: Event type classification precision for Cure-
Claim predictions made by NEXT100 only, NEXT500
only, or both models.


