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Abstract

The Event Causality Identification Shared Task
of CASE 2023 is the second iteration of a
shared task centered around the Causal News
Corpus. Two subtasks were involved: In Sub-
task 1, participants were challenged to predict
if a sentence contains a causal relation or not.
In Subtask 2, participants were challenged to
identify the Cause, Effect, and Signal spans
given an input causal sentence. For both sub-
tasks, participants uploaded their predictions
for a held-out test set, and ranking was done
based on binary F1 and macro F1 scores for
Subtask 1 and 2, respectively. This paper in-
cludes an overview of the work of the ten teams
that submitted their results to our competition
and the six system description papers that were
received. The highest F1 scores achieved for
Subtask 1 and 2 were 84.66% and 72.79%, re-
spectively.

Keywords: Causal News Corpus, Causal event
classification, Cause-Effect-Signal span detec-
tion

1 Introduction

A causal relation represents a semantic relationship
between a Cause argument and an Effect argument,
where the occurrence of the Cause triggers the oc-
currence of the Effect (Barik et al., 2016). The
extraction of causal information from text holds

significant implications for downstream applica-
tions in natural language processing (NLP), like
for summarization and prediction (Radinsky et al.,
2012; Radinsky and Horvitz, 2013; Izumi et al.,
2021; Hashimoto et al., 2014), question answer-
ing (Dalal et al., 2021; Hassanzadeh et al., 2019;
Stasaski et al., 2021), inference and understanding
(Jo et al., 2021; Dunietz et al., 2020).

Given the limited availability of data for causal
text mining (Asghar, 2016; Xu et al., 2020; Yang
et al., 2022; Tan et al., 2022b), in 2022, the
Causal News Corpus (CNC) was created (Tan et al.,
2022b).1 We also introduced a shared task to pro-
mote modelling for two causal text mining tasks:
(1) Causal Event Classification and (2) Cause-
Effect-Signal Span Detection (Tan et al., 2022a).
This paper describes the second iteration of this
shared task. In this iteration, some parts of our data
have updated labels and for Subtask 2, much more
annotated data is provided.

The remainder of the paper is organized as fol-
lows: Section 2 describes the dataset and its an-
notations. Section 3 formally introduces the two
subtasks for the shared task. Section 4 describes the
evaluation metrics and competition set-up. Next,
Section 5 summarizes the methods used by par-

1The CNC was created by a similar group of authors, some
of which did not work on this shared task.
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Stat. Label Train Dev Test Total
#
Sent-
ences

Causal 1624 185 173 1982
Non-causal 1451 155 179 1785
Total 3075 340 352 3767

Avg.
#
words

Causal 33.44 34.41 35.93 33.75
Non-causal 26.69 26.85 28.67 26.90
Total 30.25 30.96 32.24 30.50

Table 1: Subtask 1 Data Summary Statistics.

Statistic Train Dev Test Total
# Sentences 1624 185 173 1982
# Relations 2257 249 248 2754
Avg. rels/sent 1.39 1.35 1.43 1.39
Avg. # words 33.44 34.41 35.93 33.75

Cause 11.56 12.20 12.96 11.74
Effect 10.71 10.18 11.54 10.74
Signal 1.45 1.53 1.46 1.46

Avg # Sig./rel 0.70 0.64 0.79 0.70
Prop. of rels w/ Sig. 0.68 0.63 0.76 0.69

Table 2: Subtask 2 Data Summary Statistics.

ticipants in the competition. Finally, Section 6
concludes this paper.

2 Dataset

Our shared task uses Version 2 (V2) of the Causal
News Corpus (Tan et al., 2022b), which is based on
the corpora released in the scope of Hürriyetoğlu
et al. (2021).2 V2 incorporates additional span
annotations for Subtask 2. As compared to the pre-
vious version of 160 sentences and 183 relations,
the current version contains 1981 sentences and
2754 causal relations. Annotations were also re-
vised for some examples across both Subtasks. The
summary statistics for Subtask 1 and 2 are available
in Tables 1 and 2 respectively.

3 Shared Task Description

The task is comprised of two subtasks related to
Event Causality Identification: (1) Causal Event
Classification and (2) Cause-Effect-Signal Span
Detection. The objective of each subtask is de-
scribed below in Sections 3.1 and 3.2. The 2023
edition is the second iteration of this shared task
which was first introduced in 2022 (Tan et al.,
2022a). The shared task is re-launched to work
on the larger and revised CNC-V2 discussed in the
earlier Section. Additionally, for Subtask 2, the
traditional evaluation metrics (P, R and F1) were

2https://github.com/tanfiona/
CausalNewsCorpus

updated to use fairer evaluation calculations, dis-
cussed in Section 4.1.

3.1 Subtask 1: Causal Event Classification

The aim of this task is to classify whether an event
sentence contains any cause-effect meaning. Sys-
tems had to predict Causal or Non-causal labels
per test sentence. An event sentence was defined to
be Causal if it contains at least one causal relation.

3.2 Subtask 2: Cause-Effect-Signal Span
Detection

The objective of this task is to detect the consec-
utive spans relevant to a Causal relation. There
are three types of spans involved in a Causal rela-
tion: The Cause span refers to words that describe
the event that triggers another Effect event. The
Effect span refers to words that describe the result-
ing event arising from a Cause event. Signals are
optionally present, and are words that explicitly
indicate a Causal relation is present. In our dataset,
multiple Causal relations can exist in a sentence,
and participants have to identify all of them.

4 Evaluation & Competition

4.1 Evaluation Metrics

Evaluation metrics were the same as the shared
task launched last year (Tan et al., 2022a). For
Subtask 1, Precision (P), Recall (R), F1, Accu-
racy (Acc) and Matthews Correlation Coefficient
(MCC) metrics were used. For Subtask 2, Macro
P, R and F1 were used. Evaluation was conducted
at the relation level. In other words, examples with
multiple causal relations were unpacked and each
relation contributed equally to the final score. We
designed an evaluation algorithm that allows partic-
ipants to submit multiple Cause-Effect-Signal span
predictions per input sequence in any order. One
change from the previous years’ evaluation is that
we use the FairEval implementation3 of seqeval
(Nakayama, 2018; Ramshaw and Marcus, 1995) in
Subtask 2 to prevents double penalties of close-to-
correct predictions (Ortmann, 2022).

4.2 Baseline

For Subtask 1, we replicate last year’s BERT bench-
mark (Tan et al., 2022b,a). The model fine-tunes
the pre-trained (PTM) Bidirectional Encoder Rep-
resentations from Transformers (BERT) model

3https://huggingface.co/spaces/
hpi-dhc/FairEval

https://github.com/tanfiona/CausalNewsCorpus
https://github.com/tanfiona/CausalNewsCorpus
https://huggingface.co/spaces/hpi-dhc/FairEval
https://huggingface.co/spaces/hpi-dhc/FairEval
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Rank Team Name Codalab Username R P F1 Acc MCC
1 - DeepBlueAI 86.13 83.24 84.66 84.66 69.37
2 InterosML (Patel, 2023) rpatel12 87.28 81.62 84.36 84.09 68.37
3 BoschAI (Schrader et al., 2023) timos 87.86 80.00 83.75 83.24 66.83
4 CSECU-DSG (Hossain et al., 2023) csecudsg 85.55 80.00 82.68 82.39 64.95
5 - elhammohammadi 89.60 76.35 82.45 81.25 63.52
6 BERT Baseline tanfiona 89.02 75.86 81.91 80.68 62.37
7 Anonymous sgopala4 86.13 78.01 81.87 81.25 62.88
8 MLModeler5 (Bhatia et al., 2023) nitanshjain 87.28 65.37 74.75 71.02 44.83
9 VISU kunwarv4 52.60 85.85 65.23 72.44 48.19
10 - pakapro 47.40 44.09 45.68 44.60 -10.72

Table 3: Subtask 1 Leaderboard. Ranked by Binary F1. All scores are reported in percentages (%). Highest score
per column is in bold.

Ra-
nk

Team Name
Codalab
Username

Overall Cause (n=119) Effect (n=119) Signal (n=98)
R P F1 R P F1 R P F1 R P F1

1 BoschAI (Schrader et al., 2023) timos 63.98 84.42 72.79 59.66 85.28 70.20 62.88 82.76 71.46 70.44 85.36 77.18
2 1Cademy Baseline tanfiona 59.18 60.25 59.71 54.20 60.92 57.36 59.04 65.98 62.32 64.75 54.75 59.33
3 CSECU-DSG (Hossain et al., 2023) csecudsg 36.12 40.00 37.96 40.00 42.86 41.38 31.44 33.43 32.40 36.72 44.22 40.12
4 - pakapro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Subtask 2 Leaderboard. Ranked by Overall Macro F1. All scores are reported in percentages (%). Highest
score per column is in bold.

(Devlin et al., 2019) for sequence classification.
After BERT encodes sentences into word em-
beddings, the hidden state corresponding to the
[CLS] token is fed through a binary classification
head to obtain the predicted logits. We used the
bert-base-cased pre-trained model.

For Subtask 2, we replicate the top submis-
sion from last year’s shared task. Team 1Cademy
(Chen et al., 2022)4 framed the challenge as
a reading comprehension task that aims to pre-
dict the start and end token positions of each
Cause, Effect, and Signal span. We used the
albert-xxlarge-v2 (Lan et al., 2019) pre-
trained model.

4.3 Competition Set-up
We used the Codalab website to host our competi-
tion.5

Registration 29 participants requested to par-
ticipate on the Codalab page. However, we re-
quired participants to email us some personal de-
tails (Name, Institution and Email) to avoid teams
from creating multiple accounts to cheat. Eventu-
ally, only 23 participants were successfully regis-
tered, out of which, only 10 accounts participated
by uploading predictions.

4https://github.com/Gzhang-umich/
1CademyTeamOfCASE

5The competition page is at https://codalab.lisn.
upsaclay.fr/competitions/11784.

Trial and Test Periods The trial period started
on May 01, 2023, where the training and validation
data were released. Participants could upload any
number of submissions against the validation set,
and they could also submit results for the validation
set at any point in time. The main purpose of this
setting is for participants to familiarise themselves
with the Codalab platform.

The test period started on June 15, 2023 and
ended on July 7, 2023. Each participant was al-
lowed only 5 submissions to prevent participants
from over-fitting to the test set. After the compe-
tition ended, an additional scoring page was cre-
ated,6 where participants could upload one result
a day to generate more scores for their description
papers. None of the scores from this additional
scoring page were included into the final leader-
board.

For both Subtasks, the performance was ranked
by F1 score: the binary F1 score for Subtask 1, and
the Macro F1 score for Subtask 2.

5 Participant Systems

5.1 Overview

Nine participants successfully submitted scores to
Subtask 1 while only three successfully submitted
scores to Subtask 2 during test period. Table 3 and

6The additional scoring page is at https://codalab.
lisn.upsaclay.fr/competitions/14265.

https://github.com/Gzhang-umich/1CademyTeamOfCASE
https://github.com/Gzhang-umich/1CademyTeamOfCASE
https://codalab.lisn.upsaclay.fr/competitions/11784
https://codalab.lisn.upsaclay.fr/competitions/11784
https://codalab.lisn.upsaclay.fr/competitions/14265
https://codalab.lisn.upsaclay.fr/competitions/14265
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Ra-
nk

Team Name
Codalab
Username

Overall Cause (n=119) Effect (n=119) Signal (n=98)
R P F1 R P F1 R P F1 R P F1

1 BoschAI (Schrader et al., 2023) timos 53.47 82.59 64.91 47.39 82.52 60.20 50.41 80.26 61.93 64.68 84.97 73.45
2 1Cademy Baseline tanfiona 38.68 41.98 40.26 33.64 40.45 36.73 36.04 43.96 39.60 47.00 41.59 44.13
3 CSECU-DSG (Hossain et al., 2023) csecudsg 21.16 24.80 22.84 24.63 26.46 25.51 14.66 16.97 15.73 23.96 31.51 27.22
4 - pakapro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Subtask 2 Leaderboard for Examples with Multiple Causal Relations. This leaderboard was not used in the
competition ranking but provided here for discussion purposes. All scores are reported in percentages (%). Highest
score per column is in bold.

4 reflects the leaderboard for Subtask 1 and 2 re-
spectively for evaluation metrics described earlier
in Section 4.1. For Subtask 2, we further provided
the performance for each span type (i.e., Cause,
Effect and Signal). We also provide a separate
leaderboard for examples with multiple causal rela-
tions in Table 5.

For Subtask 1, the top performing team was
DeepBlueAI, scoring 84.66% for F1. DeepBlueAI
also topped the charts for Acc and MCC scores.
Team InterosML (Patel, 2023) followed closely af-
ter, with an F1 score of 84.36%. Unfortunately,
DeepBlueAI did not submit a paper, so we do not
know the method they used. InterosML’s (Patel,
2023) employed a two-phased approach to fine-
tune the model first using RoBERTa embeddings
and with contrastive loss.

For Subtask 2, the top performing team was
BoschAI (Schrader et al., 2023) with an F1 score
of 72.79%, far higher than the 1Cademy baseline
that we provided. A key modelling decision that
they had was to stack multiple token labels into
one target label, thereby allowing their model to
detect multiple causal relations per sequence. This
key feature sets them ahead of the model design
of the 1Cademy baseline. This can be observed
by the large improvements in overall F1 score of
24.65% for examples with multiple causal relations
in Table 5 (40.26% vs 64.91.%).

All participants used pre-trained models in their
frameworks. For Subtask 1, although multiple
teams described a similar sequence classification
framework using BERT and RoBERTa, different F1
scores were reported. This suggests the importance
of carefully designing and implementing suitable
hyperparamters in training a model.

5.2 Methods
We summarize the systems of the six teams that
submitted description papers below, sorted accord-
ing to their leaderboard ranking. Only four papers
were accepted to be included in the proceedings of
the CASE workshop.

5.2.1 Subtask 1
InterosML (Patel, 2023)’s methodology in-
volved two phases: (1) pre-training a baseline
RoBERTa model with supervised contrastive loss
(SuperCon), and (2) Fine-tuning the pre-trained
model on Subtask 1 itself. For Phase 1, the positive
instances refer to sequences containing causal rela-
tions, while negative instances refer to sequences
without causal relations. The authors demonstrate
the usefulness of using contrastive loss, achiev-
ing high F1 score of 84.36%, clinching 2nd place,
and only slightly below the first place’s score. In
their paper, they present T-SNE visualizations to
investigate the effectiveness of their model on the
classification task.

BoschAI (Schrader et al., 2023) used a sequence
classification framework that outputs a prediction
based on the [CLS] embedding. They experi-
mented with two pre-trained models, BERT-large
and RoBERTa-large. A weighted cross-entropy
loss was applied to up-weight positive samples.

CSECU-DSG (Hossain et al., 2023) used two
transformer models, DeBERTa and RoBERTa to
extract contextualized embeddings, which are then
combined through a linear feed-forward layer to
estimate the probability score of each class. A
weighted average of the scores from the two mod-
ules is used to obtain the final probability of the
scores for each label.

Anonymous they experimented with two mod-
els: (1) BERT-base sequence classifier and (2)
few-shot prompting of GPT-4 using 0, 2, 4, 6, 14
prompts. In their experiments, they showed that
a fine-tuned BERT classifier obtains an F1 score
of 81.8%, exceeding the best score possible with
GPT-4 of 70.7%. They also did not find a corre-
lation between increasing the number of prompts
shown to GPT-4 with any improvements in F1.

MLModeler5 (Bhatia et al., 2023) used a
RoBERTa sequence classification model to clas-
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sify input sequences with a binary label indicat-
ing if causal relations exists in the sequence or
not. Their main contribution is the exploration of
four datasets, created by processing the original
data with four different heuristics-based method.
According to their experiments, their model per-
formed best when trained on a dataset that had stop
words removed and abbreviations were replaced in
the input sequences.

VISU used multiple embedding methods (static,
stacked, and contextualized) for this task. For
non-contextualized embeddings, a BiLSTM was
applied onto various embeddings from GloVe, fast-
Text or frozen-BERT. For contextualized embed-
dings, a linear layer was applied onto various em-
beddings like ERT-base, BART, DistilBERT or
RoBERTa. In their experiments, they demonstrate
that contextualized embeddings obtain the highest
F1 scores, the best being RoBERTa which scored
an F1 of 65.23%.

5.2.2 Subtask 2

BoschAI (Schrader et al., 2023) approached the
task as a sequence tagging task using the BILOU
(Alex et al., 2007) labeling scheme. This scheme
extends the BIO scheme by adding markers for the
end of a multi-token sequence (L) and a single-
token entity (U). They experimented with two pre-
trained models, BERT-large and RoBERTa-large,
that generate embeddings fed to a linear layer to
obtain logits per token, then the logits were parsed
through a CRF output layer to compute the most
likely consistent tag sequence. However, this ap-
proach can only predict a single output sequence
per sample, which is not suitable for sentences with
multiple causal chains. To address this, the BILOU
labels are stacked using a pipe (|) operator similar
to Straková et al. (2019), allowing the model to
consider multiple causal relations within a single
instance. Three layers are used to keep the label
space manageable. Stacked labels occurring in the
training and validation data are added, resulting in
approximately 300 three-layer BILOU labels. Dur-
ing evaluation, these stacked labels are split into
three distinct layers, allowing the model to predict
up to three different causal relations per sentence.
Data augmentation was also used to increase the
number of training samples. This approach was
able to rank first in the subtask with an F1-score of
72.79%.

CSECU-DSG (Hossain et al., 2023) employed
two different transformer models, namely De-
BERTa and DistilRoBERTa, independently for cap-
turing cause-effect and signal span features, respec-
tively. Subsequently, they combined both sets of
features and fed them into a stacked BiLSTM net-
work to capture long-term relationships among the
tokens. After the BiLSTM network, a max-pooling
layer and classifier were incorporated to predict to-
ken labels. To enhance system performance, the au-
thors introduced a contrastive loss for cause-effect
token classification, whereas, for signal token clas-
sification, they utilized cross-entropy loss, consider-
ing that signal tokens may or may not be present in
the text. The R, P, and F1 achieved by the approach
were 36.12%, 40.00%, and 37.96% respectively.

6 Conclusion

In conclusion, our shared task investigated two im-
portant tasks in causal text mining, namely: (1)
Causal Event Classification, and (2) Cause-Effect-
Signal Span Detection. Our shared task attracted
23 registered participants and 10 active participants.
Based on the six description papers received, some
novel methods that exceeded our initial baseline
were proposed. The best F1 scores achieved for
Subtask 1 and 2 were 84.66% and 72.79% respec-
tively.
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