@inproceedings{armenta-segura-etal-2023-ometeotl,
title = "Ometeotl@Multimodal Hate Speech Event Detection 2023: Hate Speech and Text-Image Correlation Detection in Real Life Memes Using Pre-Trained {BERT} Models over Text",
author = "Armenta-Segura, Jesus and
N{\'u}{\~n}ez-Prado, C{\'e}sar Jes{\'u}s and
Sidorov, Grigori Olegovich and
Gelbukh, Alexander and
Rom{\'a}n-God{\'\i}nez, Rodrigo Francisco",
editor = {H{\"u}rriyeto{\u{g}}lu, Ali and
Tanev, Hristo and
Zavarella, Vanni and
Yeniterzi, Reyyan and
Y{\"o}r{\"u}k, Erdem and
Slavcheva, Milena},
booktitle = "Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.case-1.7",
pages = "53--59",
abstract = "Hate speech detection during times of war has become crucial in recent years, as evident with the recent Russo-Ukrainian war. In this paper, we present our submissions for both subtasks from the Multimodal Hate Speech Event Detec- tion contest at CASE 2023, RANLP 2023. We used pre-trained BERT models in both submis- sion, achieving a F1 score of 0.809 in subtask A, and F1 score of 0.567 in subtask B. In the first subtask, our result was not far from the first place, which led us to realize the lower impact of images in real-life memes about feel- ings, when compared with the impact of text. However, we observed a higher importance of images when targeting hateful feelings towards a specific entity. The source code to reproduce our results can be found at the github repository https://github.com/JesusASmx/OmeteotlAtCASE2023",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="armenta-segura-etal-2023-ometeotl">
<titleInfo>
<title>Ometeotl@Multimodal Hate Speech Event Detection 2023: Hate Speech and Text-Image Correlation Detection in Real Life Memes Using Pre-Trained BERT Models over Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jesus</namePart>
<namePart type="family">Armenta-Segura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">César</namePart>
<namePart type="given">Jesús</namePart>
<namePart type="family">Núñez-Prado</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grigori</namePart>
<namePart type="given">Olegovich</namePart>
<namePart type="family">Sidorov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Gelbukh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodrigo</namePart>
<namePart type="given">Francisco</namePart>
<namePart type="family">Román-Godínez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vanni</namePart>
<namePart type="family">Zavarella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reyyan</namePart>
<namePart type="family">Yeniterzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erdem</namePart>
<namePart type="family">Yörük</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milena</namePart>
<namePart type="family">Slavcheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hate speech detection during times of war has become crucial in recent years, as evident with the recent Russo-Ukrainian war. In this paper, we present our submissions for both subtasks from the Multimodal Hate Speech Event Detec- tion contest at CASE 2023, RANLP 2023. We used pre-trained BERT models in both submis- sion, achieving a F1 score of 0.809 in subtask A, and F1 score of 0.567 in subtask B. In the first subtask, our result was not far from the first place, which led us to realize the lower impact of images in real-life memes about feel- ings, when compared with the impact of text. However, we observed a higher importance of images when targeting hateful feelings towards a specific entity. The source code to reproduce our results can be found at the github repository https://github.com/JesusASmx/OmeteotlAtCASE2023</abstract>
<identifier type="citekey">armenta-segura-etal-2023-ometeotl</identifier>
<location>
<url>https://aclanthology.org/2023.case-1.7</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>53</start>
<end>59</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ometeotl@Multimodal Hate Speech Event Detection 2023: Hate Speech and Text-Image Correlation Detection in Real Life Memes Using Pre-Trained BERT Models over Text
%A Armenta-Segura, Jesus
%A Núñez-Prado, César Jesús
%A Sidorov, Grigori Olegovich
%A Gelbukh, Alexander
%A Román-Godínez, Rodrigo Francisco
%Y Hürriyetoğlu, Ali
%Y Tanev, Hristo
%Y Zavarella, Vanni
%Y Yeniterzi, Reyyan
%Y Yörük, Erdem
%Y Slavcheva, Milena
%S Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F armenta-segura-etal-2023-ometeotl
%X Hate speech detection during times of war has become crucial in recent years, as evident with the recent Russo-Ukrainian war. In this paper, we present our submissions for both subtasks from the Multimodal Hate Speech Event Detec- tion contest at CASE 2023, RANLP 2023. We used pre-trained BERT models in both submis- sion, achieving a F1 score of 0.809 in subtask A, and F1 score of 0.567 in subtask B. In the first subtask, our result was not far from the first place, which led us to realize the lower impact of images in real-life memes about feel- ings, when compared with the impact of text. However, we observed a higher importance of images when targeting hateful feelings towards a specific entity. The source code to reproduce our results can be found at the github repository https://github.com/JesusASmx/OmeteotlAtCASE2023
%U https://aclanthology.org/2023.case-1.7
%P 53-59
Markdown (Informal)
[Ometeotl@Multimodal Hate Speech Event Detection 2023: Hate Speech and Text-Image Correlation Detection in Real Life Memes Using Pre-Trained BERT Models over Text](https://aclanthology.org/2023.case-1.7) (Armenta-Segura et al., CASE-WS 2023)
ACL